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Abstract. By a “box integral” we mean here an expectation 〈|~r− ~q|s〉 where ~r runs over
the unit n-cube, with ~q and s fixed, explicitly:∫ 1

0

· · ·
∫ 1

0

(
(r1 − q1)

2 + · · ·+ (rn − qn)2
)s/2

dr1 · · · drn.

The study of box integrals leads one naturally into several disparate fields of analysis.
While previous studies have focused upon symbolic evaluation and asymptotic analysis
of special cases (notably s = 1), we work herein more generally—in interdisciplinary
fashion—developing results such as: (1) analytic continuation (in complex s), (2) rele-
vant combinatorial identities, (3) rapidly converging series, (4) statistical inferences, (5)
connections to mathematical physics, and (6) extreme-precision quadrature techniques
appropriate for these integrals. These intuitions and results open up avenues of exper-
imental mathematics, with a view to new conjectures and theorems on integrals of this
type.
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1 Box integrals as expectations

We define a box integral1 for dimension n and parameters ~q, s as the expectation, from
a fixed point ~q, of a certain norm |r − q|s with point ~r chosen in equidistributed random
fashion over the unit n-cube:

Xn(s, ~q) := 〈|~r − ~q|s〉r∈[0,1]n

=

∫
~r∈[0,1]n

|~r − ~q|s D~r,

=

∫ 1

0

· · ·
∫ 1

0

(
(r1 − q1)

2 + · · ·+ (rn − qn)2
)s/2

dr1 · · · drn, (1)

where here and elsewhere D~r := dr1 · · · drn is the n-space volume element. We also shall
denote simply by r the magnitude |~r|.

There are two classically important instances/functionals of the X-integrals, namely
Bn and ∆n defined:

Bn(s) := Xn(s,~0) =

∫
~r∈[0,1]n

rs D~r

=

∫ 1

0

· · ·
∫ 1

0

(
r2
1 + · · ·+ r2

n

)s/2
dr1 · · · drn, (2)

∆n(s) := 〈Xn(s, ~q)〉~q∈[0,1]n =

∫
~r,~q∈[0,1]n

|~r − ~q|s D~r D~q

=

∫ 1

0

· · ·
∫ 1

0

(
(r1 − q1)

2 + · · ·+ (rn − qn)2
)s/2

dr1 · · · drn dq1 · · · dqn. (3)

Note that

1. Bn(1) is the expected distance of a random point from any vertex of the n-cube,

2. ∆n(1) is the expected distance between two random points of said cube,

3. Xn(1, (1/2, 1/2, . . . 1/2) ) is the expected distance of a random point from the center
of said cube.

These are oft-discussed entities in the literature. There are many others such as the
expected distance between points on distinct sides of a cube or hypercube investigated in
[8, §1.7] or [6]. We remark that B3(1) is also known as the Robbins constant, after [12].
Note that the third entity here is not genuinely different, because for general s one has
the expected norm from center as

Xn(s, (1/2, 1/2, . . . 1/2) ) =
1

2s
Bn(s), (4)

1Not to be confused with “box integrals” of particle physics, those integrals being scattering-loop
contributions, although such entities are indeed n-dimensional integrals.
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as can be shown quickly from relations (1) by setting ~q = (1/2, 1/2, . . . 1/2) ), changing
to pi = (ri − qi)/2, and observing how the integral has scaled. This is one of the various
relations we shall develop that hold for all complex s; in particular, we shall address
analytic continuation. It will turn out, interestingly, that Bn(s) is always analytic in s
except for a simple pole at s = −n.

There have been interesting modern treatments of the Bn and related integrals, as in
[6], [8, p.208], [17], [15]. Related material is also found in [10, 16]. A pivotal, original
treatment is the 1976 work of Anderssen et al, [1] who gave a large-n asymptotic series

Bn(1) ∼
√

n

3

(
1− n

10
+ . . .

)
, (5)

together with a convergent series development for Bn(1) we cite later (and extend to
general s), and a collection of bounds, derived via statistical theory, such as√

n

4
≤ Bn(1) ≤

√
n

3
.

This asymptotic is especially interesting when one realizes that the positive unit n-ball
sector (the intersection of the n-ball with the cube [0, 1]n) has volume decaying superexpo-
nentially fast with n. Intuitively speaking, this discrepancy is due to the fact of “so many
corners” of the n-cube, where integrable matter resides. We shall argue using statistical
intuition that for general s,

Bn(s) ∼
(n

3

)s/2

. (6)

A word here is relevant as to the importance of box integrals in other fields of research.
It should be noted first that the Anderssen et al. work [1] was motivated by global-
optimization study, which explains why the adroit use of statistical principles is apparent
in that effort. Secondly, there are problems of lattice theory—such as derivation of what
are called “jellium” potentials, that involve Bn(s) for negative s. It is easy to imagine how
potential theory for a periodic crystal can involve box integrals. We define and discuss
later an n-dimensional jellium potential Jn as an expectation 〈Vn〉 where Vn is a potential
relevant to the n-dimensional Laplace equation.

As we explain herein, it turns out that both Bn(s), ∆n(s) even for large n can be
numerically evaluated to extreme precision, in much the same way that Bailey et al. [5]
resolved the Ising-class integrals Cn for dimension n ∼ 1000 to hundreds of decimals. In
that previous work, a modified-Bessel kernel was employed in a 1-dimensional represen-
tation suitable for numerical quadrature. In our present case, an error-function kernel
is appropriate. These high-precision quadratures have motivated some conjectures and
subsequent proofs of same.
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2 Dimensional reduction via vector-field calculus

It turns out that a box integral Xn(s, ~q) can be reduced to a suitable integral over the
faces of a displaced n-cube, in some instances reducible yet further to edges, and so on.
Let us write

Xn(s, ~q) =

∫
~r ∈ C

rs D~r,

where r := |~r| and the integration is over a translated cube

C := [0, 1]n − ~q.

We may then invoke an elegant procedure from mathematical physics; namely, we attempt
to write the (radially symmetric) integrand rs as the Laplacian of a scalar field. That is,
we seek a function Φ of position, such that

∇2Φ(~r) = rs.

A radially symmetric solution will satisfy the radial part of the Laplacian relation, as

1

rn−1

∂

∂r

(
rn−1 ∂

∂r

)
= rs,

whence there is a solution satisfying

∂Φ

∂r
=

1

n + s
rs+1.

The point of these machinations is that we may now utilize the divergence theorem for
vector fields, in the form2 ∫

R

∇ · ~F D~r =

∫
∂R

~F · D~a,

where ~F(~r) is a vector field, the left-hand integral is over the interior of a region R,
the right integral is over the boundary, with D~a denoting an area element with vector
direction always normal to the surface.

The next step is to consider the vector field defined ~F := ∇Φ. Using the above
observations, we conclude

Xn(s, ~q) =
1

n + s

∫
~r ∈ ∂C

rs ~r · µ̂ da (7)

2Known classically as the Gauss theorem for vector fields, this integral relation is ubiquitous in elec-
trostatics and hydrodynamics.
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where da is the surface element with normal unit vector µ̂. Note that we have hereby
reduced the box integral to an integral over the faces of a certain, displaced unit cube.
For the box integrals Bn(s), so we have offset ~q = (1/2, . . . , 1/2), we realize there are
2n symmetrically situated faces, and our results boils down to the dimensional-reduction
relation

Bn(s) =
n

n + s

∫
~r ∈ [0,1]n−1

(
r2 + 1

)s/2 D~r. (8)

So for example the 2-dimensional case reduces to a 1-dimensional integral and a final
hypergeometric evaluation.

B2(s) :=

∫
~r ∈ [0,1]2

rs D~r =
2

2 + s

∫ 1

0

(x2 + 1)s/2 dx

=
2

2 + s
2F1

(
1

2
,−s

2
;
3

2
;−1

)
. (9)

This hypergeometric entity is rational when s is a nonnegative even integer, and evidently
is always a surd plus the log of a surd for s a nonnegative odd integer (see Section 7 for
some closed forms).

For the 3-dimensional case, we are able to reduce one further dimension by employing,
after the first reduction step from (8), a 2-dimensional solution to

∇2Φ = (r2 + 1)s/2,

which solution has the property

r
∂Φ

∂r
=

(r2 + 1)s/2 − 1

s + 2
,

to get a 1-dimensional representation, like so:

B3(s) =
3

3 + s

∫
~r ∈ [0,1]2

(r2 + 1)s/2 D~r

=
3

3 + s

2

2 + s

∫ 1

0

(y2 + 2)s/2 − 1

y2 + 1
dy

=
6

(3 + s)(2 + s)

(
−π

4
+

∫ π/4

0

(1 + sec2 t)s/2+1 dt

)
. (10)

As with the cases B2(s), these B3(s) do enjoy some closed forms, as in Section 7.

5



3 Error-function formalism and combinatorics

We have seen that an n-dimensional box integral can be reduced by at least one dimen-
sion. It turns out that, for numerical quadrature applications, one may achieve a one-
dimensional integral representation of either Bn or ∆n. The procedure runs as follows.3

We start with a certain representation of complex powers:

zρ =
ρ

Γ(1− ρ)

∫ ∞

0

t−ρ−1
(
1− e−tz

)
dt, (11)

valid for <(z) > 0 and <(ρ) ∈ (0, 2). We next define two key functions

b(u) :=

∫ 1

0

e−u2x2

dx =

√
π erf(u)

2u
, (12)

d(u) :=

∫ 1

0

∫ 1

0

e−u2(x−y)2 dx dy =
−1 + e−u2

+
√

π u erf(u)

u2
. (13)

Now, the defining integrals (2) and (3), and the representation (11), lead to 1-dimensional
integrals for each of Bn, ∆n, like so:

Bn(s) =
s

Γ(1− s/2)

∫ ∞

0

du

us+1
(1− b(u)n) , (14)

∆n(s) =
s

Γ(1− s/2)

∫ ∞

0

du

us+1
(1− d(u)n) , (15)

both of which being convergent integrals for <(s) ∈ (0, 2). Incidentally, these integrals
prove immediately that both Bn, ∆n for any fixed real s are monotonic increasing in n.

We discuss the issue of numerical quadrature of these error-function representations
later. For the moment, we give relevant series developments, as these, relevant to compu-
tations on Bn:

b(u) =
∞∑

k=0

(−1)ku2k

k!(2k + 1)
= e−u2

∞∑
k=0

2ku2k

(2k + 1)!!
, (16)

and these for ∆n manipulations:

d(u) =
∞∑

k=0

(−1)ku2k

(k + 1)!(2k + 1)

= e−u2
∞∑

k=0

u2k

(
2k+1

(2k + 1)!!
− 1

(k + 1)!

)
. (17)

3The present authors developed this technique for Bn, with a view to extreme-precision quadrature
and subsequent experimental mathematics. We found later that M. Trott had previously applied a similar
approach for the ∆n [17]. In a sense, the present treatment is an attempt at unification of the ideas, for
more general box integrals.
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We discuss in Section 8 how these series play key roles in numerical quadrature. For
the moment, we analyze properties of the 1-dimensional integral representations (14), and
(15). Important relations along these lines will be these two, where coefficients βnk, δnk

are implicitly defined (
b
(√

t/2
)

et/2
)n

=:
∑
k≥0

βnkt
k, (18)(

d
(√

t/2
)

et/2
)n

=:
∑
k≥0

δnkt
k. (19)

Inserting these into (14, 15) we obtain two formal series:

Bn(s) = ns/2

∞∑
k=0

(
2

n

)k

(−s/2)kβnk, (20)

∆n(s) = ns/2

∞∑
k=0

(
2

n

)k

(−s/2)kδnk, (21)

where (z)k is the Pochhammer symbol4. Though developed formally, with regard for
convergence issues, it can be shown that each series here converges absolutely whenever
<(s) + n > 0.

To sketch the convergence argument, we initially focus on combinatorial relations for
the βnk (the analysis for the ∆n series is similar). An elementary observation is in order.
First, for s = 2m with m a nonnegative integer, the box integral Bn(2m) can always be
written as a finite combinatorial sum of rational components, via simple expansion of the
defining integrand. Equivalently, series (20) devolves for s = 2m an even integer, into a
finite sum

Bn(2m) :=

∫
~r ∈ [0,1]n

(
r2
1 + . . . r2

n

)m D~r

= nm

m∑
k=0

(−m)k

(
2

n

)k

βnk. (22)

This representation of Bn at even integers will prove quite useful in further analysis. Next,
stemming from the implicit definition (18) one can derive various relations, the first of
which being a beautiful reciprocal relation with the finite sums Bn(2m):

βnk =
nk

2kk!

k∑
j=0

(
k
j

)(
−1

n

)j

Bn(2j). (23)

4The Pochhammer symbol (z)k := z(z + 1) · · · (z + k − 1) is extended, for z not a positive integer, by
(z)k := Γ(z + k)/Γ(z), and for all z we define (z)0 := 1.
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Other derivable relations are

βnk =
nk

2kk!

∫
~r ∈ [0,1]n

(
1− r2

n

)k

D~r, (24)

βnk =
∑

k1+...kn=k

1

(2k1 + 1)!!
· · · 1

(2kn + 1)!!
,

βnk =
k∑

j=0

1

(2k + 1)!!
βn−1,k−j. (25)

In checking all of these combinatorial relations, it is convenient to know some “starting
cases.” We define βn0 := 1 if n = 0, else 0, and note

β1k =
1

(2k + 1)!!
, βn1 =

n

3
, βn2 =

n2

18
+

n

90
,

Bn(0) = 1, Bn(2) =
n

3
, Bn(4) =

n2

9
+

4n

45
,

and so on. Now to the convergence issue for the general expansion (20). From relation
(24) one can show

βnk ≤
nk

2kk!
max

(
1, (n/k)n/2

)
,

and one has for the relevant Pochhammer symbol

|(−s/2)k| = O
(
k!k−1−<(s/2)

)
.

Thus the k-th summand in (20) is O(1/kn+<(s)+1) and absolute convergence obtains when-
ever n + <(s) > 0.

Using the above analysis for the general series (20)—and after a similar analysis for
(21)—we see that several results accrue. We obtain convenient expansions for the even-
argument Bn(2m), ∆2m, and an analytic continuation at least for n + <(s) > 0. There
are various additional inferences we may pursue, such as asymptotic behavior (see Section
6), but first we shall describe a more powerful analytic continuation—and more rapidly
converging general series—for the Bn in particular.

4 Analytic continuations

Remarkably, and perhaps surprisingly, the relation (8) actually leads to a rapidly (linearly)
converging general series for s, and a subsequent analytic continuation to all complex s.
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Indeed, using the ideas behind (14) we can infer from the dimensional-reduction formula
(8) that

Bn(s) =
n

n + s

s

Γ(1− s/2)

∫ ∞

0

du

us+1

(
1− e−u2

b(u)n−1
)

, (26)

leading, after term-by-term integration as before, to an efficient general expansion

Bn(s) = ns/2 n

n + s

∞∑
k=0

(
2

n

)k

(−s/2)kβn−1,k. (27)

The rather innocent-looking modifications here over the generally slower series (20) give
a much more efficient series. Indeed, since(

2

n

)k

(−s/2)kβn−1,k = O
(
(1− 1/n)kk−1−<(s/2)−n/2

)
the sum in the general series (27) is linearly convergent for fixed n. Thus, (27) provides
an analytic continuation of Bn to all complex s except for a simple pole at s = −n.

It is not hard to see how analytic continuation works for the box integrals Bn. Take
the trivial scenario of n = 1 dimension. Then, formally, B1(s) =

∫ 1

0
xs dx = 1/(s+1) and

though the integral diverges for s = −1, the analytic continuation of B1 is the function
1/(s + 1). The same kind of thinking reveals that in n dimensions, the integrand rs does
diverge for s = −n; yet, there is an analytic continuation to finite Bn values at any other
s. An example of a continued value—when the literal integral of rs is infinite—is

B4(−5) = −0.96120393268995345712165978002474521286412992715 . . . ,

which could well have a closed form but we do not know it; this approximate value was
obtained from the series (27). Note in this regard that our previous, hypergeometric-like
reductions (9, 10) for B2(s), B3(s) respectively are already in analytic continuation form.

There is another way to obtain an efficient series and subsequent continuation, which
is foreshadowed by the statistical work in [1] where the attention was exclusively on
Bn(1). Within our present formalism we can generalize to arbitrary s by contemplating
the expectation

〈rs〉~r∈[0,1]n =
n

n + s

〈(
(1 + (n− 1)/2) + (r2 − (n− 1)/2)

)s/2
〉

~r∈[0,1]n−1
,

where we have written 1 + r2 in an intentionally cumbersome way in order to invoke the
binomial theorem for power s/2. After manipulation, we obtain a very efficient series

Bn(s) =

(
n + 1

2

)s/2
n

n + s

∞∑
k=0

(
s/2
k

)
αn−1,k

(n + 1)k
, (28)
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where the new α-coefficients are defined

αnk := 2k

k∑
j=0

(
k
j

)(
1− n

2

)k−j

Bn(2j).

Incidentally, in computations involving the series (28) it is useful to know, as a simple
consequence of (8), that

Bn(2m) =
n

n + 2m

m∑
k=0

(
m
k

)
Bn−1(2k).

In this way, numerical evaluation of (28) becomes an exercise in the use of recursion
relations.

Again we have a convergent series for all complex s except for the pole at s = −n;
indeed (28) appears to be the fastest converging series we have, although (27) has certain
practical features, such as the appearance of the β-terms which in turn can be evaluated
via fast convolution from (25).

5 “Jellium” physics and box integrals

Given an n-cube of uniformly charged jelly of total charge +1, what is the electrostatic
potential energy of an electron (having charge (−1)) at the cube center? This ques-
tion cannot be answered until we settle on suitable potentials in n dimensions. One
possibility—which we hereby adopt—is to take the radial potential at distance r from the
electron as Vn(r), where

V1(r) := r − 1/2, (29)

V2(r) := log(2r), (30)

Vn(r) := 2n−2 −
(

1

r

)n−2

, n > 2. (31)

These potentials are uniquely determined by two requirements a) Vn satisfies the Laplace
equation in n dimensions, and b) Vn vanishes on any face-center (r = 1/2). (We are free
in electrostatic theory to give any potential a constant offset.)

Let us then define the n-th jellium potential as

Jn := 〈Vn(r)〉~r∈[−1/2,1/2]n .

Interestingly, every Jn except J2 is essentially—up to offset—a box integral. We can
dispense with exact evaluations for n = 1, 2 (see Section 7), and observe that

Jn = 2n−2(1−Bn(2− n)), n > 2. (32)
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Because the general jellium potential involves negative parameter s = 2 − n for n > 2,
we are moved to use one of (20, 27, 28) for evaluation. However, reminiscent of relations
(14), (15) one may derive an additional error-function representation

Bn(s) =
2

Γ(−s/2)

∫ ∞

0

du

us+1
b(u)n, (33)

valid for <(s) in the negative interval (−n, 0).

6 Intuition via the central limit theorem

The central limit theorem of classical probability theory tells us that in some appropriate
sense, the distribution of the random variable χ := ~r · ~r over ~r ∈ [0, 1]n is Gaussian-
normal, with mean and variance

〈χ〉 =
n

3
,

〈(χ− 〈χ〉)2〉 = 〈(r2 − n/3)2〉 =
4n

45
.

Heuristically speaking, then, we should have

Bn(s) ∼n
1√
2πv

∫ ∞

−∞
(n/3 + x)se−x2/(2v) dx,

where v := 4n/45. Interestingly, even though error terms in central-limit expansions can
be problematic, binomial development of the integrand gives

Bn(s) ∼n

(n

3

)s/2
(

1 +
s(s− 2)

10n
+ . . .

)
.

This agrees, at least through the first two parenthetical terms, with the proven asymptotic
of Anderssen et al. [1] for their case s = 1.

Still thinking statistically and heuristically, there is another intriguing way to infer
that Bn(s) ∼n (n/3)s/2(1 + c/n) for constant c, which is to rewrite (24) in the form

βnk =
nk

3kk!

∫
~r ∈ [0,1]n

(
1− 3r2 − n

2n

)k

D~r, (34)

where we note that there is now a 3k in the denominator. Evidently, then, the β-coefficient
is seen to depend on moments µm := 〈(r2 − n/3)m〉; additionally we have µ0 = 1, µ1 =
0, µ2 = 4n/45, and generally µm = O(1+m2/n). Now these estimates for µ, when inserted
into the converging series (20), can be seen to give the desired asymptotic. We have not
made this argument rigorous; however, relation (34) is promising in this regard.
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7 Various closed forms

We next state some known closed and nearly closed forms. The nearly-closed forms engage
four unresolved integrals which are given numerically in a website file [4].

1. Box integrals as expectations of distance—or inverse-distance-from-vertex:

B2(−1) = log
(
3 + 2

√
2
)

,

B3(−1) = −π

4
− 1

2
log 2 + log(5 + 3

√
3),

B1(1) =
1

2
,

B2(1) =

√
2

3
+

1

3
log
(√

2 + 1
)

,

B3(1) =

√
3

4
+

1

2
log
(
2 +

√
3
)
− π

24
,

B4(1) =
2

5
+

7

20
π
√

2− 1

20
π log

(
1 +

√
2
)

+ log (3)− 7

5

√
2 arctan

(√
2
)

+
1

10
K0,

where the one unresolved term, namely

K0 :=

∫ 1

0

log(1 +
√

3 + y2)− log(−1 +
√

3 + y2)

1 + y2
dy = 2

∫ 1

0

arctanh

(
1√
3+y2

)
1 + y2

dy,

(35)

is a dilogarithm-like entity that can be evaluated reasonably rapidly, via the 2-dimensional
sum

K0 =
∑

m,k≥0

2k+1

2m + 1

Im+k

3m+k+1
=

2

3

∞∑
p=0

Ip

(
2

3

)p p∑
n=0

1

2n (2n + 1)
,

where I0 := 1/2 and

Im =
1

2m + 1

{
2mIm−1 +

(
3

4

)m
1

2

}
.

Now K0 can also be recast from this sum in a form revealing more obviously a linear
convergence (essentially, by powers of (2/3)):

K0 =
∞∑

n=1

β

(
1

2
, n

)
κn

(
2

3

)n

− 1

2

∞∑
n=1

2F1

(
1, n +

1

2
, n + 1,

3

4

)
κn

(
1

2

)n
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where

κn :=
n∑

m=1

1

(2 m− 1) 2m
.

The expression for B4(1) results from two dimension reductions followed by substan-
tial symbolic computation with the remaining two-dimensional integrals, all of which
ultimately resolved—via dilogarithms—except for K0.

2. Average distance—or inverse-distance between two points:

∆2(−1) =
2

3
− 4

3

√
2 + 4 log(1 +

√
2),

∆1(1) =
1

3
,

∆2(1) =
1

15

(
2 +

√
2 + 5 log(1 +

√
2)
)

,

∆3(1) =
4

105
+

17

105

√
2− 2

35

√
3 +

1

5
log(1 +

√
2) +

2

5
log(2 +

√
3)− 1

15
π,

∆4(1) =
26

15
G− 34

105
π
√

2− 16

315
π +

197

420
log (3) +

52

105
log
(
2 +

√
3
)

+
1

14
log
(
1 +

√
2
)

+
8

105

√
3 +

73

630

√
2− 23

135
+

136

105

√
2 arctan

(
1√
2

)
− 1

5
π log

(
1 +

√
2
)

+
4

5
α log

(
1 +

√
2
)
− 4

5
Cl2 (α)− 4

5
Cl2

(
α +

π

2

)
.

∆5(1) =
65

42
G− 380

6237

√
5 +

568

3465

√
3− 4

189
π − 449

3465
− 73

63

√
2 arctan

(√
2

4

)
− 184

189
log (2)

+
64

189
log
(√

5 + 1
)

+
1

54
log
(
1 +

√
2
)

+
40

63
log
(√

2 +
√

6
)
− 5

28
π log

(
1 +

√
2
)

+
52

63
π log (2) +

295

252
log (3) +

4

315
π2 +

3239

62370

√
2− 8

21

√
3 arctan

(
1√
15

)
− 52

63
π log

(√
2 +

√
6
)

+
5

7
α log

(
1 +

√
2
)
− 5

7
Cl2 (α)− 5

7
Cl2

(
α +

π

2

)
+

52

63
K1,

where the unresolved quantity is the integral

K1 :=

∫ 4

3

arcsec (x)√
x2 − 4 x + 3

dx, (36)
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and where α := arcsin
(
2/3− 1/6

√
2
)
, G is the Catalan constant, Cl2 is the order-2

Clausen function, Ψn is the order-n polygamma function, and Lin is the polylogarithm
function—see [8] or [11] for details.

The evaluations for ∆4(1) and ∆5(1) come from taking those given in [17] and then
(i) carefully eliminating dependent terms (which often entails reexpressing logarithms
and polylogarithms) and (ii) using the Kummer formula [11, eq. (5.5)] to express the
remaining polylogarithms as Clausen functions.

3. Jellium potentials vs. dimension:

J1 = −1

4
,

J2 = −3

2
+

π

4
+

1

2
log 2,

J3 = 2 +
1

2
π − 3 log

(
2 +

√
3
)

,

J4 = 4 + π2 + 8 G− 4

3
ln
(
2 +

√
3
)

π − 4 Cl2

(
1

6
π

)
− 4 Cl2

(
5

6
π

)
− 16K2

J5 = 8− 5

3
π2 − 20 ln

(
2 +

√
3
)

π + 80K3.

The unresolved quantities in the above are given by

K2 :=

∫ π/4

0

√
1 + sec2 (a) arctan

(
1√

1 + sec2 (a)

)
da

=
π2

16
−

∞∑
m=1

(−1)m

2m

m−1∑
k=1

(−(m−k)
k

)
2(m− k) + 1

k−1∑
j=0

(−1)j

2 j + 1

= 1− π

4
+

π2

16
−

∞∑
N=1

(
1

2

)N N∑
n=1

(
N − 1

n− 1

)N−1∑
m=1

(−1)n+m

(2 m + 1) (2 n + 1)

+
∞∑

N=1

(
1

2

)N N∑
n=1

(
N − 1

n− 1

) n∑
m=1

(−1)n+N−m

(2 N − 2 m + 1) (2 n + 1)
(37)

and

K3 :=

∫ π/4

0

∫ π/4

0

√
1 + sec2 (a) + sec2 (b) da db (38)

= −
√

3
∞∑

n=0

(
2 n
n

)
/ (2 n− 1)

12n

n∑
k=0

(
n

k

)(
π

4
−

k−1∑
j=0

(−1)j

2 j + 1

)(
π

4
−

n−k−1∑
j=0

(−1)j

2 j + 1

)
.

The value of J4 was obtained from (8). The even-more partial expansion of J5 was likewise
obtained from two polar transformations.

Note again that the dimensions n = 1, 2 have special status, as per (29), (30) and (31).

14



8 Extreme-precision quadrature

Using the 1-dimensional integral representations (14), (15) and (33), we were able to gen-
erate extreme-precision values of Bn := Bn(1), ∆n := ∆n(1) and Bn(2− n), respectively,
for a selection of n. Note that Jn can be readily and accurately evaluated from Bn(2−n)
by using (32). These numerical values are given explicitly in Appendix 1, together with
values for the unresolved integrals Kn for n = 0, 1, 2 and 3, which we computed using
(35), (36), (37) and (38), respectively.

These integrals were computed using the tanh-sinh quadrature scheme. Tanh-sinh
quadrature is remarkably effective in evaluating integrals to very high precision, even in
cases where the integrand function has an infinite derivative or blow-up singularity at one
or both endpoints. It is well-suited for highly parallel evaluation [2], and is also amenable
to computation of provable bounds on the error [3]. It is based on the transformation
x = g(t), where g(t) = tanh[π/2 · sinh(t)]. In a straightforward implementation of the
tanh-sinh scheme, one first calculates a set of abscissas xk and weights wk

xj := tanh[π/2 · sinh(jh)]

wj :=
π/2 · cosh(jh)

cosh2[π/2 · sinh(jh)]
,

where h is the interval of integration. Then the integral of the function f(t) on [−1, 1] is
performed as ∫ 1

−1

f(x) dx =

∫ ∞

−∞
f(g(t))g′(t) dt ≈ h

N∑
−N

wjf(xj)

where N is chosen so that the terms wjf(xj) are sufficiently small that they can be ignored
for j > N . Full details of a robust implementation are given in [7]. Tanh-sinh quadrature
has its roots in a 1969 paper by Schwartz [13], although it was first described in the
present form in 1973 by Takahashi and Mori [14].

Computing Bn using (14) requires one to perform two integrals, one with the inte-
grand function f(u) = (1 − (

√
π/(2u) · erfu)n/us+1, from 0 to 1, and a second integral

of f(1/u)/u2, from 0 to 1. Adding the two together gives the integral from 0 to ∞.
Computing these integrals is complicated by the fact that in tanh-sinh quadrature, the
integrand function must be evaluated to high precision very close to the endpoints, and
subtractions or other inaccuracies int he function evaluation can result in quadrature er-
rors (a difficulty first described in 1984 by Evans, Forbes and Hyslop [9]). In this case,
it is not sufficient just to compute erf to high relative precision near zero; because of
the subtractions here, one must use a Taylor series expansion for the integrand function
when the argument is within say 10−10 of zero. Computing these Taylor series coefficients
(which we did using Mathematica) turned out to be the most expensive part of the entire
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computation. Once highly accurate integrand functions were available, the quadrature
evaluations for Bn were completed in less than one minute each.

Computing ∆n using (15) also required Taylor series expansions, at least for the first of
the two integrals to be performed. Again, obtaining these Taylor series coefficients turned
out to be the most expensive aspect of the computation. Computing the Bn(2 − n)
integrals required no Taylor series expansions and was completely straightforward.

Computing K0, K1 and K2 using (35), (36) and (37) was relatively straightforward.
However, computing K3 using (38) requires 2-dimensional quadrature. We were able
to do this by a straightforward extension of the 1-dimensional tanh-sinh scheme to two
dimensions. However, because many times more function evaluations are required, the
run time was correspondingly longer—four hours, as opposed to a few seconds for the
others. We also computed K3 using the nested infinite series given just following (38),
but this required even more run time. The two numerical values, however, agreed.

All of our computed values are available on a public website [4].

9 Open problems

• Can the jellium potential J3 be generalized for different offset vectors (but still in a
3 dimensional setting), to yield via summation the true jellium potential due to an
infinite cube of charged jelly?

This leads to the intriguing research area of obtaining other Madelung and Wigner
lattice sums via box integrals with changing offset. Note the fixed point ~q in the
very definition of Xn does not have to be within the unit cube.

• What is the precise asymptotic behavior of ∆n(s)?

• The authors of the original treatment [1] pointed out that a series of the type (28)
does not seem to be available even for their parameter case of s = 1. Nor do we
know presently how to convert (27) for the ∆n problems. We do have (21) which
converges, albeit slowly. So, what is a rapidly converging series for ∆n?

• How can (7) be used to reduce the dimension—in a convenient way—for some specific
∆n? We say “convenient” because the many symmetries of the Bn cases allowed us
to make practical use of (8).

• How can (34) be used to establish a precise asymptotic expansion for Bn(s)? The
original reference [1] perhaps contains sufficient clues.

• Which of the Ki integrals can be further or completely resolved?
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