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Over the past few decades, Gregory Chaitin, a mathematician at IBM's T.J. 
Watson Research Center in Yorktown Heights, N.Y., has been 
uncovering the distressing reality that much of higher math may be 
riddled with unprovable truths--that it's really a collection of random facts 
that are true for no particular reason. And rather than deducing those 
facts from simple principles, "I'm making the suggestion that mathematics 
is done more like physics in that you come about things experimentally," 
he says. "This will still be controversial when I'm dead. It's a major 
change in how you do mathematics.“

Chaitin's idea centers on a number he calls omega, which he discovered in 
1975 and which is much too complicated to explain here. (Chaitin's book 
Meta Math! The Quest for Omega, out this month, should help make 
omega clear.) Suffice it to say that the concept broadens two major 
discoveries of 20th century math: Gödel's incompleteness theorem, 
which says there will always be unprovable statements in any system of 
math, and Turing's halting problem, which says it's impossible to predict 
in advance whether a particular computer calculation can ever be
finished.

Sounds like a nonevent in the real world, but it may not be. 
Cryptographers assume that their mathematically based encryption
schemes are unbreakable. Oops. "If any of these people wake up at night 
and worry," says Chaitin, "I'm giving them theoretical justification."  

From the Sep. 12, 2005 issue  
Posted Sunday, Sep. 04, 2005Chaitin's universal halting constant
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Elsewhere Kronecker said “In mathematics,

I recognize true scientific value only in con-

crete mathematical truths, or to put it more

pointedly, only in mathematical formulas.”

... I would rather say “computations” than

“formulas”, but my view is essentially the

same. (Harold M. Edwards, 2004)

www.cs.dal.ca/ddrive
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Two Scientific Quotations

Kurt Gödel overturned the mathematical apple cart
entirely deductively, but he held quite different ideas
about legitimate forms of mathematical reasoning:

If mathematics describes an objective world
just like physics, there is no reason why in-
ductive methods should not be applied in
mathematics just the same as in physics.∗

and Christof Koch accurately captures scientific dis-
taste for philosophizing:

Whether we scientists are inspired, bored,
or infuriated by philosophy, all our theoriz-
ing and experimentation depends on partic-
ular philosophical background assumptions.
This hidden influence is an acute embarrass-
ment to many researchers, and it is therefore
not often acknowledged. (Christof Koch†,
2004)

∗Taken from an until then unpublished 1951 manuscript in his
Collected Works, Volume III.
†In “Thinking About the Conscious Mind,” a review of John
R. Searle’s Mind. A Brief Introduction, OUP 2004.
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Three Mathematical Definitions

mathematics, n. a group of related subjects, in-
cluding algebra, geometry, trigonometry and calcu-
lus , concerned with the study of number, quantity,
shape, and space, and their inter-relationships, ap-
plications, generalizations and abstractions.

This definition taken from the Collins Dictionary
makes no immediate mention of proof, nor of the
means of reasoning to be allowed. Webster’s Dic-
tionary contrasts:

induction, n. any form of reasoning in
which the conclusion, though supported by
the premises, does not follow from them
necessarily ; and

deduction, n. a process of reasoning in
which a conclusion follows necessarily from
the premises presented, so that the conclu-
sion cannot be false if the premises are true.

I, like Gödel, and as I shall show many others, sug-
gest that both should be openly entertained in math-
ematical discourse.

3



My Intentions in these Lectures

I aim to discuss Experimental Mathodology, its phi-
losophy, history, current practice and proximate fu-
ture, and using concrete accessible—entertaining I
hope—examples, to explore implications for math-
ematics and for mathematical philosophy.

Thereby, to persuade you both of the power
of mathematical experiment and that the
traditional accounting of mathematical learn-
ing and research is largely an ahistorical car-
icature.

The four lectures are largely independent

The tour mirrors that from the recent books:

Jonathan M. Borwein and David H. Bailey,
Mathematics by Experiment: Plausible Rea-
soning in the 21st Century; and with Roland
Girgensohn, Experimentation in Mathemat-
ics: Computational Paths to Discovery, A.K.
Peters, Natick, MA, 2004.
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The Four Clifford Lectures

1. Plausible Reasoning in the 21st Century, I.

This first lecture will be a general introduc-

tion to

Experimental Mathematics, its Practice and

its Philosophy.

It will reprise the sort of ‘Experimental method-

ology’ that David Bailey and I—among many

others—have come to practice over the past

two decades.∗

Dalhousie-DRIVE
∗All resources are available at www.experimentalmath.info.
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2. Plausible Reasoning in the 21st Century, II.

The second lecture will focus on the differ-

ences between

Determining Truths or Proving Theorems.

We shall explore various of the tools avail-

able for deciding what to believe in math-

ematics, and—using accessible examples—

illustrate the rich experimental tool-box math-

ematicians can now have access to.

Dalhousie-DRIVE
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3. Ten Computational Challenge Problems.

This lecture will make a more advanced analy-
sis of the themes developed in Lectures 1
and 2. It will look at ‘lists and challenges’
and discuss Ten Computational Mathemat-
ics Problems including

∫ ∞
0

cos(2x)
∞∏

n=1

cos
(

x

n

)
dx

?
=

π

8
.

This problem set was stimulated by Nick
Trefethen’s recent more numerical SIAM 100
Digit, 100 Dollar Challenge.∗

· · · · · ·

Die ganze Zahl schuf der liebe Gott, alles
Ubrige ist Menschenwerk. God made the in-
tegers, all else is the work of man. (Leopold
Kronecker, 1823-1891)

∗The talk is based on an article to appear in the May
2005 Notices of the AMS, and related resources such as
www.cs.dal.ca/∼jborwein/digits.pdf.
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4. Apéry-Like Identities for ζ(n) .

The final lecture comprises a research level

case study of generating functions for zeta

functions. This lecture is based on past re-

search with David Bradley and current re-

search with David Bailey.

One example is:

Z(x) := 3
∞∑

k=1

1(
2k
k

)
(k2 − x2)

k−1∏

n=1

4x2 − n2

x2 − n2

=
∞∑

n=1

1

n2 − x2
(1)


=

∞∑

k=0

ζ(2k + 2)x2 k =
1− πx cot(πx)

2x2


 .

Note that with x = 0 this recovers

3
∞∑

k=1

1(
2k
k

)
k2

=
∞∑

n=1

1

n2
= ζ(2).
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Experiments and Implications

I shall talk broadly about experimental and heuris-

tic mathematics, giving accessible, primarily visual

and symbolic, examples. The typographic to digital

culture shift is vexing in math, viz:

• There is still no truly satisfactory way of dis-

playing mathematics on the web

• We respect authority∗ but value authorship deeply

• And we care more about the reliability of our

literature than does any other science

While the traditional central role of proof in math-

ematics is arguably under siege, the opportunities

are enormous.

• Via examples, I intend to ask:

∗Judith Grabiner, “Newton, Maclaurin, and the Authority of
Mathematics,” MAA, December 2004
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MY QUESTIONS

F What constitutes secure mathematical knowl-

edge?

F When is computation convincing? Are humans

less fallible?

• What tools are available? What methodologies?

• What of the ‘law of the small numbers’?

• Who cares for certainty? What is the role of

proof?

F How is mathematics actually done? How should

it be?

10



DEWEY on HABITS

Old ideas give way slowly; for they are more

than abstract logical forms and categories.

They are habits, predispositions, deeply en-

grained attitudes of aversion and preference.

· · · Old questions are solved by disappear-

ing, evaporating, while new questions cor-

responding to the changed attitude of en-

deavor and preference take their place. Doubt-

less the greatest dissolvent in contemporary

thought of old questions, the greatest pre-

cipitant of new methods, new intentions,

new problems, is the one effected by the

scientific revolution that found its climax in

the “Origin of Species.” ∗ (John Dewey)

∗The Influence of Darwin on Philosophy, 1910. Dewey knew
‘Comrade Van’ in Mexico.
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and MY ANSWERS

² “Why I am a computer assisted fallibilist/social
constructivist”

F Rigour (proof) follows Reason (discovery)

F Excessive focus on rigour drove us away from
our wellsprings

• Many ideas are false. Not all truths are provable.
Not all provable truths are worth proving . . .

F Near certainly is often as good as it gets— in-
tellectual context (community) matters

• Complex human proofs are fraught with error
(FLT, simple groups, · · · )

F Modern computational tools dramatically change
the nature of available evidence
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I Many of my more sophisticated examples origi-

nate in the boundary between mathematical physics

and number theory and involve the ζ-function,

ζ(n) =
∑∞

k=1
1
kn, and its relatives.

They often rely on the sophisticated use of Integer

Relations Algorithms — recently ranked among the

‘top ten’ algorithms of the century. Integer Rela-

tion methods were first discovered by our colleague

Helaman Ferguson the mathematical sculptor.

In 2000, Sullivan and Dongarra wrote “Great algo-

rithms are the poetry of computation,” when they

compiled a list of the 10 algorithms having “the

greatest influence on the development and practice

of science and engineering in the 20th century”.∗

• Newton’s method was apparently ruled ineligible

for consideration.

∗From “Random Samples”, Science page 799, February 4,
2000. The full article appeared in the January/February 2000
issue of Computing in Science & Engineering. Dave Bailey
wrote the description of ‘PSLQ’.
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The 20th century’s Top Ten

#1. 1946: The Metropolis Algorithm for Monte

Carlo. Through the use of random processes,
this algorithm offers an efficient way to stumble
toward answers to problems that are too com-
plicated to solve exactly.

#2. 1947: Simplex Method for Linear Program-

ming. An elegant solution to a common prob-
lem in planning and decision-making.

#3. 1950: Krylov Subspace Iteration Method. A
technique for rapidly solving the linear equations
that abound in scientific computation.

#4. 1951: The Decompositional Approach to

Matrix Computations. A suite of techniques
for numerical linear algebra.

#5. 1957: The Fortran Optimizing Compiler. Turns
high-level code into efficient computer-readable
code.

14



#6. 1959: QR Algorithm for Computing Eigenval-
ues. Another crucial matrix operation made
swift and practical.

#7. 1962: Quicksort Algorithms for Sorting. For
the efficient handling of large databases.

#8. 1965: Fast Fourier Transform. Perhaps the
most ubiquitous algorithm in use today, it breaks
down waveforms (like sound) into periodic com-
ponents.

#9. 1977: Integer Relation Detection. A fast
method for spotting simple equations satisfied
by collections of seemingly unrelated numbers.

#10. 1987: Fast Multipole Method. A breakthrough
in dealing with the complexity of n-body calcula-
tions, applied in problems ranging from celestial
mechanics to protein folding.

Eight of these appeared in the first two decades of
serious computing. Most are multiply embedded in
every major mathematical computing package.
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FOUR FORMS of EXPERIMENTS

We should discuss what Experiments are!

♣ Kantian examples: generating “the

classical non-Euclidean geometries (hyperbolic, el-

liptic) by replacing Euclid’s axiom of parallels (or

something equivalent to it) with alternative forms.”

♦ The Baconian experiment is a contrived as op-

posed to a natural happening, it “is the consequence

of ‘trying things out’ or even of merely messing

about.”

♥ Aristotelian demonstrations: “apply electrodes

to a frog’s sciatic nerve, and lo, the leg kicks; always

precede the presentation of the dog’s dinner with

the ringing of a bell, and lo, the bell alone will soon

make the dog dribble.”

16



♠ The most important is Galilean: “a critical ex-

periment – one that discriminates between possibil-

ities and, in doing so, either gives us confidence in

the view we are taking or makes us think it in need

of correction.”

• The only form which will make Experimental

Mathematics a serious enterprise.

A Julia set From Peter Medawar

(1915–87) Advice to a

Young Scientist (1979)

17



A PARAPHRASE of HERSH

In any event mathematics is and will remain a uniquely

human undertaking. Indeed Reuben Hersh’s argu-

ments for a humanist philosophy of mathematics,

as paraphrased below, become more convincing in

our computational setting:

1. Mathematics is human. It is part of

and fits into human culture. It does not

match Frege’s concept of an abstract, time-

less, tenseless, objective reality.

2. Mathematical knowledge is fallible. As in

science, mathematics can advance by mak-

ing mistakes and then correcting or even re-

correcting them. The “fallibilism” of math-

ematics is brilliantly argued in Lakatos’ Proofs

and Refutations.
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3. There are different versions of proof or

rigor. Standards of rigor can vary depend-

ing on time, place, and other things. The

use of computers in formal proofs, exempli-

fied by the computer-assisted proof of the

four color theorem in 1977 (1997), is just

one example of an emerging nontraditional

standard of rigor.

A 4-coloring

4. Empirical evidence, numerical experimen-

tation and probabilistic proof all can help

us decide what to believe in mathematics.

Aristotelian logic isn’t necessarily always the

best way of deciding.
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5. Mathematical objects are a special variety

of a social-cultural-historical object. Con-

trary to the assertions of certain post-modern

detractors, mathematics cannot be dismissed

as merely a new form of literature or reli-

gion. Nevertheless, many mathematical ob-

jects can be seen as shared ideas, like Moby

Dick in literature, or the Immaculate Con-

ception in religion.

I “Fresh Breezes in the Philosophy of Mathemat-

ics”, MAA Monthly, Aug 1995, 589–594.

A 2-coloring?
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A PARAPHRASE of ERNEST

The idea that what is accepted as mathematical
knowledge is, to some degree, dependent upon a
community’s methods of knowledge acceptance is
central to the social constructivist school of math-
ematical philosophy.

The social constructivist thesis is that math-
ematics is a social construction, a cultural
product, fallible like any other branch of knowl-
edge. (Paul Ernest)

Associated most notably with the writings of Paul
Ernest∗ social constructivism seeks to define math-
ematical knowledge and epistemology through the
social structure and interactions of the mathemati-
cal community and society as a whole.

r DISCLAIMER: Social Constructivism is not Cul-
tural Relativism

∗In Social Constructivism As a Philosophy of Mathematics,
Ernest, an English Mathematician and Professor in the Phi-
losophy of Mathematics Education, carefully traces the in-
tellectual pedigree for his thesis, a pedigree that encom-
passes the writings of Wittgenstein, Lakatos, Davis, and
Hersh among others.
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A NEW PROOF
√

2 is IRRATIONAL

One can find new insights in the oldest areas:

• Here is Tom Apostol’s lovely new graphical proof∗
of the irrationality of

√
2. I like very much that

this was published in the present millennium.

Root two is irrational
(static and self-similar pictures)

∗MAA Monthly, November 2000, 241–242.
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PROOF. To say
√

2 is rational is to draw a right-

angled isoceles triangle with integer sides. Consider

the smallest right-angled isoceles triangle with in-

teger sides—that is with shortest hypotenuse.

Circumscribe a circle of radius one side and con-

struct the tangent on the hypotenuse [See picture].

Repeating the process once yields a yet smaller such

triangle in the same orientation as the initial one.

The smaller triangle again has integer sides . . .QED

Note the philosophical transitions.

• Reductio ad absurdum ⇒ minimal configuration

• Euclidean geometry ⇒ Dynamic geometry

23



FOUR Humanist VIGNETTES

I. Revolutions

By 1948, the Marxist-Leninist ideas about the

proletariat and its political capacity seemed

more and more to me to disagree with real-

ity ... I pondered my doubts, and for several

years the study of mathematics was all that

allowed me to preserve my inner equilibrium.

Bolshevik ideology was, for me, in ruins. I had

to build another life.

Jean Van Heijenoort (1913-1986) With Trotsky in

Exile, in Anita Feferman’s From Trotsky to Gödel

• Dewey ran Trotsky’s ‘treason trial’ in Mexico
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II. It’s Obvious . . .

Aspray: Since you both [Kleene and Rosser]

had close associations with Church, I was

wondering if you could tell me something

about him. What was his wider mathemat-

ical training and interests? What were his

research habits? I understood he kept rather

unusual working hours. How was he as a lec-

turer? As a thesis director?

Rosser: In his lectures he was painstakingly

careful. There was a story that went the

rounds. If Church said it’s obvious, then

everybody saw it a half hour ago. If Weyl

says it’s obvious, von Neumann can prove it.

If Lefschetz says it’s obvious, it’s false.∗

∗One of several versions of this anecdote in The Princeton
Mathematics Community in the 1930s. This one in Tran-
script Number 23 (PMC23)
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III. The Evil of Bourbaki

“There is a story told of the mathe-

matician Claude Chevalley (1909–84),

who, as a true Bourbaki, was extremely

opposed to the use of images in geo-

metric reasoning.

He is said to have been giving a very abstract and

algebraic lecture when he got stuck. After a moment

of pondering, he turned to the blackboard, and, try-

ing to hide what he was doing, drew a little diagram,

looked at it for a moment, then quickly erased it,

and turned back to the audience and proceeded with

the lecture.. . .

. . .The computer offers those less expert, and less

stubborn than Chevalley, access to the kinds of im-

ages that could only be imagined in the heads of the

most gifted mathematicians, . . .”a (Nathalie Sinclair)

aChapter in Making the Connection: Research and Practice in
Undergraduate Mathematics, MAA Notes, 2004 in Press.
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IV. The Historical Record

And it is one of the ironies of this entire field

that were you to write a history of ideas in

the whole of DNA, simply from the docu-

mented information as it exists in the liter-

ature - that is, a kind of Hegelian history of

ideas - you would certainly say that Watson

and Crick depended on Von Neumann, be-

cause von Neumann essentially tells you how

it’s done.

But of course no one knew anything about

the other. It’s a great paradox to me that

this connection was not seen. Of course,

all this leads to a real distrust about what

historians of science say, especially those of

the history of ideas.∗ (Sidney Brenner)

∗The 2002 Nobelist talking about von Neumann’s essay on
The General and Logical Theory of Automata on pages 35–
36 of My life in Science as told to Lewis Wolpert.
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POLYA and HEURISTICS

“[I]ntuition comes to us much earlier and

with much less outside influence than for-

mal arguments which we cannot really un-

derstand unless we have reached a relatively

high level of logical experience and sophisti-

cation.”∗ (George Polya)

Scatter-plot discovery of a cardioid

∗In Mathematical Discovery: On Understanding, Learning and
Teaching Problem Solving, 1968.
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Polya on Picture-writing

Polya’s illustration of the change solution∗

Polya, in a 1956 American Mathematical Monthly

article provided three provoking examples of con-

verting pictorial representations of problems into

generating function solutions. We discuss the first

one.

1. In how many ways can you make change for a

dollar?

∗Illustration courtesy Mathematical Association of America
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This leads to the (US currency) generating function

∑

k≥0

Pkxk =
1

(1− x)(1− x5)(1− x10)(1− x25)(1− x50)

which one can easily expand using a Mathematica

command,

Series[1/((1-x)*(1-x^5)*(1-x^10)*(1-x^25)*(1-x^50)),

{x,0,100}]

to obtain P100 = 292 (243 for Canadian currency,

which lacks a 50 cent piece but has a dollar coin in

common circulation).

• Polya’s diagram is shown in the Figure
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• To see why, we use geometric series and con-

sider the so called ordinary generating function

1

1− x10
= 1 + x10 + x20 + x30 + · · ·

for dimes and

1

1− x25
= 1 + x25 + x50 + x75 + · · ·

for quarters etc.

• We multiply these two together and compare

coefficients

1

1− x10

1

1− x25
= 1 + x10 + x20 + x25

+ x30 + x35 + x40 + x45

+ 2x50 + x55 + 2x60 + · · ·

We argue that the coefficient of x60 on the right

is precisely the number of ways of making 60 cents

out of identical dimes and quarters.

31



• This is easy to check with a handful of change

or a calculator, The general question with more

denominations is handled similarly.

• I leave it open whether it is easier to decode

the generating function from the picture or vice

versa

– in any event, symbolic and graphic experi-

ment provide abundant and mutual reinforce-

ment and assistance in concept formation.

“In the first place, the beginner must be

convinced that proofs deserve to be stud-

ied, that they have a purpose, that they are

interesting.” (George Polya)

While by ‘beginner’ George Polya intended young

school students, I suggest this is equally true of

anyone engaging for the first time with an unfamiliar

topic in mathematics.
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Our MOTIVATION and GOALS

INSIGHT – demands speed ≡ micro-parallelism

• For rapid verification.

• For validation; proofs and refutations; “monster

barring”.

F What is “easy” changes: HPC & HPN blur,

merging disciplines and collaborators — democ-

ratizing math but challenging authenticity.

• Parallelism ≡ more space, speed & stuff.

• Exact ≡ hybrid ≡ symbolic ‘+’ numeric (Maple

meets NAG, Matlab calls Maple).

• In analysis, algebra, geometry & topology.
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. . . Moreover

• Towards an Experimental Mathodology— phi-

losophy and practice.

I Intuition is acquired — mesh computation and

mathematics.

• Visualization — 3 is a lot of dimensions.

I “Monster-barring” (Lakatos) and “Caging” (JMB):

– randomized checks: equations, linear alge-

bra, primality.

– graphic checks: equalities, inequalities, ar-

eas.
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. . . Graphic Checks

• Comparing y − y2 and y2 − y4 to − y2 ln(y) for

0 < y < 1 pictorially is a much more rapid way

to divine which is larger than traditional analytic

methods.

• It is clear that in the later case they cross, it is

futile to try to prove one majorizes the other. In

the first case, evidence is provided to motivate

a proof.

Graphical comparison of

y − y2 and y2 − y4 to − y2 ln(y) (red)
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MINIMAL POLYNOMIALS of MATRICES

Consider matrices A, B, C, M :

A :=
[
(−1)k+1

(2n− j

2n− k

)]
, B :=

[
(−1)k+1

(2n− j

k − 1

)]

C :=
[
(−1)k+1

(j − 1

k − 1

)]

(k, j = 1, . . . , n) and set

M := A + B − C

• In work on Euler Sums we needed to prove M

invertible: actually

M−1 =
M + I

2
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• The key is discovering

A2 = C2 = I (2)

B2 = CA, AC = B.

∴ The group generated by A,B,C is S3

¦ Once discovered, the combinatorial proof of this
is routine – for a human or a computer (‘A = B‘,
Wilf-Zeilberger).

One now easily shows using (2)

M2 + M = 2I

as formal algebra since M = A + B − C.

• In truth I started in Maple with cases of

‘minpoly(M, x)‘

and then emboldened I typed

‘minpoly(B, x)‘ . . .

– Random matrices have full degree minimal
polynomials.

– Jordan Forms uncover Spectral Abscissas.
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OUR EXPERIMENTAL MATHODOLOGY

1. Gaining insight and intuition

2. Discovering new patterns and relationships

3. Graphing to expose math principles

4. Testing and especially falsifying conjectures

5. Exploring a possible result to see if it merits

formal proof

6. Suggesting approaches for formal proof

7. Computing replacing lengthy hand derivations

8. Confirming analytically derived results
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A BRIEF HISTORY OF RIGOUR

• Greeks: trisection, circle squaring, cube dou-

bling and
√

2

• Newton and Leibniz: fluxions/infinitesimals

• Cauchy and Fourier: limits and continuity

• Frege and Russell, Gödel and Turing: para-

doxes and types, proof and truth

• ENIAC and COQ: verification and validation

–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.5 1 1.5 2 2.5 3
x

For continuous

functions

Fourier series

need

not converge:

in 1810, 1860 or

1910?
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THE PHILOSOPHIES OF RIGOUR

• Everyman: Platonism—stuff exists (1936)

• Hilbert: Formalism—math is invented; formal

symbolic games without meaning

• Brouwer: Intuitionism-—many variants; (‘em-

bodied cognition’)

• Bishop: Constructivism—tell me how big; (not

‘social constructivism’)

f Last two deny excluded middle: A ∨ Ã and res-

onate with computer science—as does some of

formalism.

Ξ Absolutism versus Fallibilism.
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SOME SELF PROMOTION

• Today Experimental Mathematics is being dis-

cussed quite widely

From Scientific American, May 2003
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From Science News April 2004
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A Discovery in SnapPea
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CONCLUSION

From American Scientist, March 2005

© In the next Lecture we will return to these themes
more mathematically.
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Finding and Proving Things

Jonathan M. Borwein, FRSC

Research Chair in IT
Dalhousie University

Halifax, Nova Scotia, Canada

2005 Clifford Lecture II

Tulane, March 31–April 2, 2005

The object of mathematical rigor is to sanc-

tion and legitimize the conquests of intu-

ition, and there was never any other object

for it. (Jacques Hadamard)

www.cs.dal.ca/ddrive
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FINDING vs PROVING THINGS

The second lecture will focus on the differ-
ences between Determining Truths or Prov-
ing Theorems.

We shall explore various of the tools avail-
able for deciding what to believe in math-
ematics, and—using accessible examples—
illustrate the rich experimental tool-box math-
ematicians can now have access to.

30
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The modulus of ζ(1/2 + it)—on the critical line

F Let us start with some TEX...
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An Inverse Symbolic Discovery

Donald Knuth∗ asked for a closed form evaluation

of:

∞∑

k=1

{
kk

k! ek
− 1√

2π k

}
= −0.084069508727655 . . . .

• 2000 CE. It is easy to compute 20 or 200 digits

of this sum

] The ‘smart lookup’ facility in the Inverse Sym-

bolic Calculator † rapidly returns

0.084069508727655 ≈ 2

3
+

ζ (1/2)√
2π

.

We thus have a prediction which Maple 9.5 on a

laptop confirms to 100 places in under 6 seconds

and to 500 in 40 seconds.

Arguably we are done. 2

∗Posed as MAA Problem 10832, November 2002.
†At www.cecm.sfu.ca/projects/ISC/ISCmain.html
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A Fuller Account and a Proof

10832. Donald E. Knuth, Stanford University, Stan-

ford, CA. Evaluate

∞∑

k=1

(
kk

k! ek
− 1√

2πk

)
.

1. A very rapid Maple computation yielded

−0.08406950872765600 . . .

as the first 16 digits of the sum.

2. The Inverse Symbolic Calculator has a ‘smart

lookup’ feature∗ which replied that this was probably

−2
3 − ζ

(
1
2

)
/
√

2π.

3. Ample experimental confirmation was provided

by checking this to 50 digits. Thus within minutes

we knew the answer.

4. As to why? A clue was provided by the surpris-

ing speed with which Maple computed the slowly

convergent infinite sum.
∗Alternatively, a sufficiently robust integer relation finder
could be used.
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• The package clearly knew something the user

did not. Peering under the covers revealed that

it was using the LambertW function, W, which

is the inverse of w = z exp(z).∗

5. The presence of ζ(1/2) and standard Euler-

MacLaurin techniques, using Stirling’s formula (as

might be anticipated from the question), led to

∞∑

k=1




1√
2πk

− 1√
2

(
1
2

)
k−1

(k − 1)!


 =

ζ
(
1
2

)

√
2π

, (1)

where the binomial coefficients in (1) are those of

1√
2− 2 z

.

X Now, (1) is a formula Maple can ‘prove’:

∗A search in 2000 (2005) for “Lambert W” on MathSciNet
provided 9 (25 ) references – all since 1997 when the function
appears named for the first time in Maple and Mathematica.
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6. It remains to show

∞∑

k=1




kk

k! ek
− 1√

2

(
1
2

)
k−1

(k − 1)!


 = −2

3
. (2)

7. Guided by the presence of W , and its series

W (z) =
∞∑

k=1

(−k)k−1 zk

k!
,

an appeal to Abel’s limit theorem lets one deduce

the need to evaluate

lim
z→1

(
d

dz
W

(
−z

e

)
+

1√
2− 2 z

)
=

2

3
. (3)

X Again Maple happily does know (3). 2

I Of course, this all took a fair amount of hu-

man mediation and insight.

I Less if Maple had been taught to recognize

W from its series.
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In the same vein . . .

Consider the following two Euler sum identities both

discovered heuristically.

• Both merit quite firm belief—more so than many

proofs.

Why?

• Only the first warrants significant effort being

exerted for its proof.

Why and Why Not?

7



“Lisez Euler, lisez Euler

“Lisez Euler, lisez Euler, c’est notre maitre

a tous.” Goldbach precisely formulated by letter

the series which sparked Euler’s further investiga-

tions into what would become known as the Zeta-

function.

• These investigations were apparently due to a

serendipitous mistake.

Euler wrote back:

When I recently considered further the in-

dicated sums of the last two series in my

previous letter, I realized immediately that

the same series arose due to a mere writing

error, from which indeed the saying goes,

“Had one not erred, one would have achieved

less.”(Si non errasset, fecerat ille minus).∗

∗Translation thanks to Martin Matmüller, scientific collabora-
tor of Euler’s Opera Omnia, vol. IVA4, Birkhäuser Verlag.
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A FIRST MULTIPLE ZETA VALUE

Euler sums or MZVs are a wonderful generalization

of the classical ζ function.

For natural numbers

ζ(i1, i2, . . . , ik) :=
∑

n1>n2>ṅk>0

1

n
i1
1 n

i2
2 · · ·n

ik
k

¦ Thus ζ(a) =
∑

n≥1 n−a is as before and

ζ(a, b) =
∞∑

n=1

1 + 1
2b + ·+ 1

(n−1)b

na

X k is the sum’s depth and i1 + i2 + · · ·+ ik is its

weight.

• This clearly extends to alternating and character

sums.
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• MZV’s satisfy many striking identities, of which

the simplest are

ζ(2,1) = ζ(3), 4ζ(3,1) = ζ(4).

• MZV’s have found interesting interpretations in

high energy physics, knot theory, combinatorics

. . .

X Euler found and partially proved theorems on

reducibility of depth 2 to depth 1 ζ’s

– Goldbach’s letter conjectured

ζ(3,1) + ζ(4) = π4/72.

• ζ(6,2) is the lowest weight ‘irreducible’

X High precision fast ζ-convolution (see EZFace/Java)

allows use of integer relation methods and leads

to important dimensional (reducibility) conjec-

tures and amazing identities.

10



A Striking CONJECTURE open for all n > 2 is:

8n ζ({−2,1}n) ?
= ζ({2,1}n)

There is abundant evidence amassed since it was

found in 1996.

c© For example, very recently Petr Lisonek checked

the first 85 cases to 1000 places in about 41 HP

hours with only the expected error. And N=163

was confirmed in ten hours.

• This is the only identification of its type of an

Euler sum with a distinct MZV.

• Can even just the case n = 2 be proven symbol-

ically as is the case for n = 1?
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II. A CHARACTER EULER SUM

Let

[2b,−3](s, t) :=
∑

n>m>0

(−1)n−1

ns

χ3(m)

mt
,

where χ3 is the character modulo 3.

Then

[2b,−3](2N + 1,1)

=
L−3 (2N + 2)

41+N
− 1 + 4−N

2
L−3 (2N + 1) log (3)

+
N∑

k=1

1− 3−2N+2 k

2
L−3 (2N − 2 k + 2)α (2 k)

−
N∑

k=1

1− 9−k

1− 4−k

1 + 4−N+k

2
L−3 (2N − 2 k + 1)α (2 k + 1)

− 2L−3 (1)α (2N + 1) .

X Here α is the alternating zeta function and L−3

is the primitive L-series modulo 3.

X One first evaluates such sums as integrals
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COINCIDENCE or FRAUD

• Coincidences do occur

The approximations

π ≈ 3√
163

log(640320)

and

π ≈
√

2
9801

4412
occur for deep number theoretic reasons—the first

good to 15 places, the second to eight

By contrast

eπ − π = 19.999099979189475768 . . .

most probably for no good reason.

X This seemed more bizarre on an eight digit cal-

culator
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Likewise, as spotted by Pierre Lanchon recently

e = 10.10110111111000010101000101100 . . .

while

π = 11.0010010000111111011010101000 . . .

have 19 bits agreeing in base two—with one read

right to left

• More extended coincidences are almost always

contrived . . .

• And strong heuristics exist for believing results

like the preceding ζ-function and π examples.

r But recall the Skewes number
∫ x

2

dt

log t
≥ π(x) failure at (10360)

and the Merten Conjecture
∣∣∣∣∣∣

n∑

k=1

µ(k)

∣∣∣∣∣∣
≤ √

n failure at (10110)

counter-examples.
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HIGH PRECISION FRAUD

∞∑

n=1

[n tanh(π)]

10n

?
=

1

81

is valid to 268 places; while

∞∑

n=1

[
n tanh

(
π
2

)]

10n

?
=

1

81

is valid to just 12 places.

• Both are actually transcendental numbers

Correspondingly the simple continued fractions for

tanh(π) and tanh
(

π
2

)
are respectively

[0,1, 267,4,14,1,2,1,2,2,1,2,3,8,3,1]

and

[0,1, 11,14,4,1,1,1,3,1,295,4,4,1,5,17,7]

• Bill Gosper describes how continued fractions let

you “see” what a number is. “[I]t’s completely

astounding ... it looks like you are cheating God

somehow.”

15



DICTIONARIES are LIKE TIMEPIECES

I Samuel Johnson observed of watches that “the
best do not run true, and the worst are bet-
ter than none.” The same is true of tables and
databases. Michael Berry

“would give up Shakespeare in favor of
Prudnikov, Brychkov and Marichev.”

• That excellent 3 volume compendium contains

∞∑

k=1

∞∑

l=1

1

k2
(
k2 − kl + l2

) =
π∝√3

30
, (4)

where the “∝” is probably “4” [volume 1, entry
9, page 750].

F Integer relation methods suggest that no rea-
sonable value of ∝ works

• Forensic Mathematics (CSI-Math).

– what is intended in (4)? There are many
such examples (e.g., Lewin on Landen, Fer-
mat’s margin)
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SIMON and RUSSELL on INDUCTION

This skyhook-skyscraper construction of sci-

ence from the roof down to the yet uncon-

structed foundations was possible because

the behaviour of the system at each level de-

pended only on a very approximate, simpli-

fied, abstracted characterization at the level

beneath.13

This is lucky, else the safety of bridges and

airplanes might depend on the correctness

of the “Eightfold Way” of looking at ele-

mentary particles.

¦ Herbert A. Simon, The Sciences of the Artifi-

cial, MIT Press, 1996, page 16. (An early ex-

perimental computational scientist.)

17



13... More than fifty years ago Bertrand

Russell made the same point about the ar-

chitecture of mathematics. See the “Pref-

ace” to Principia Mathematica “... the chief

reason in favour of any theory on the princi-

ples of mathematics must always be induc-

tive, i.e., it must lie in the fact that the the-

ory in question allows us to deduce ordinary

mathematics. In mathematics, the greatest

degree of self-evidence is usually not to be

found quite at the beginning, but at some

later point; hence the early deductions, un-

til they reach this point, give reason rather

for believing the premises because true con-

sequences follow from them, than for be-

lieving the consequences because they fol-

low from the premises.” Contemporary pref-

erences for deductive formalisms frequently

blind us to this important fact, which is no

less true today than it was in 1910.
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FROM ENIAC: Integrator and Calculator

SIZE/WEIGHT: ENIAC had 18,000 vacuum tubes,

6,000 switches, 10,000 capacitors, 70,000 resistors,

1,500 relays, was 10 feet tall, occupied 1,800 square

feet and weighed 30 tons

SPEED/MEMORY: A 1.5GHz Pentium does 3

million adds/sec. ENIAC did 5,000 — 1,000 times

faster than any earlier machine. The first stored-

memory computer, ENIAC could store 200 digits.
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ARCHITECTURE: Data flowed from one accu-

mulator to the next. After each accumulator fin-

ished a calculation, it communicated its results to

the next in line

The accumulators were connected to each other

manually

• The 1949 computation of π to 2,037 places sug-

gested by von Neumann, took 70 hours

• It would have taken roughly 100,000 ENIACs to

store the Smithsonian’s picture!

⊗
Now after 40 years of Moore’s law . . .

“Moore’s Law” is now taken to be the as-

sertion that semiconductor technology ap-

proximately doubles in capacity and per-

formance roughly every 18 to 24 months

20



. . . To Moore’s Law

The complexity for minimum component costs

has increased at a rate of roughly a factor

of two per year. . . . Over the longer term,

the rate of increase is a bit more uncertain,

although there is no reason to believe it will

not remain nearly constant for at least 10

years.∗ (Gordon Moore, Intel co-founder,

1965)

∗‘Expect at least another decade.’ (Moore et al)
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I An astounding record of sustained exponential

progress without peer in history of technology

• Math tools are now being implemented on par-

allel platforms, providing much greater power to

the research mathematician

xNERSC’s 6656cpu Seaborgy
727-fold speed-

up of quadra-

ture on the 1K

G5’s at Virginia

Tech reduces

3hrs to 15secs

I Amassing huge amounts of processing power

will not solve many mathematical problems. There

are few math ‘Grand-challenge problems’ —more

value in very rapid ‘Aha’s.
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VISUAL DYNAMICS

• In recent continued fraction work, we needed to

study the dynamical system t0 := t1 := 1:

tn ←↩
1

n
tn−1 + ωn−1

(
1− 1

n

)
tn−2,

where ωn = a2, b2 for n even, odd respectively.

X Think of this as a black box.

¤ Numerically all one sees is tn → 0 slowly.

¤ Pictorially we learn significantly more∗:

∗. . . “Then felt I like a watcher of the skies, when a new planet
swims into his ken.” (Chapman’s Homer)
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• Scaling by
√

n, and coloring odd and even it-

erates, fine structure appears. We now predict

and validate:

The attractors for various |a| = |b| = 1

24



RAMANUJAN’S FRACTION

Chapter 18 of Ramanujan’s Second Notebook stud-

ies the beautiful:

Rη(a, b) =
a

η +
b2

η +
4a2

η +
9b2

η + ...

(1.1)

for real, positive a, b, η > 0. Remarkably, R satisfies

an AGM relation

Rη

(
a + b

2
,
√

ab

)
=
Rη(a, b) +Rη(b, a)

2
(1.2)

A scatter plot experi-

ment discovered the domain

of convergence for a/b ∈ C.

This is now fully explained

with a lot of dynamics work.
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HADAMARD and GAUSS

The object of mathematical rigor is to sanc-

tion and legitimize the conquests of intu-

ition, and there was never any other object

for it.

¦ J. Hadamard quoted at length in E. Borel, Lecons

sur la theorie des fonctions, 1928.

Pauca sed Matura

Carl Friedrich Gauss, who drew (carefully) and com-

puted a great deal, once noted, I have the result,

but I do not yet know how to get it.∗

∗Likewise the quote!
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Novus in analysi campus se nobis aperuit

An excited young Gauss writes: “A new field of

analysis has revealed itself to us, evidently in the

study of functions etc.” (October 1798)
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HALES and KEPLER

• Kepler’s conjecture: the densest way to stack
spheres is in a pyramid is the oldest problem
in discrete geometry.

• The most interesting recent example of com-
puter assisted proof. Published in Annals of
Math with an “only 99% checked” disclaimer.

• This has triggered very varied reactions. (In
Math, Computers Don’t Lie. Or Do They?
NYT 6/4/04)

• Famous earlier examples: the Four Color Theo-
rem and the Non-existence of a Projective Plane
of Order 10.

• The three raise and answer quite distinct ques-
tions —both real and specious. As does the sta-
tus of the classification of Finite Simple Groups.

• Formal Proof theory has received an unexpected
boost: automated proofs may now exist of:
Four Color Theorem, Prime Number Theorem.

28



Grocers the world over know the most efficient way to stack spheres — but a mathematical proof for the method has brought reviewers to their knees.

J
ust under five years ago, Thomas Hales
made a startling claim. In an e-mail he
sent to dozens of mathematicians,

Hales declared that he had used a series of
computers to prove an idea that has evaded
certain confirmation for 400 years. The sub-
ject of his message was Kepler’s conjecture,
proposed by the German astronomer
Johannes Kepler, which states that the dens-
est arrangement of spheres is one in which
they are stacked in a pyramid — much the
same way as grocers arrange oranges.

Soon after Hales made his announce-
ment, reports of the breakthrough appeared
on the front pages of newspapers around the
world. But today, Hales’s proof remains in
limbo. It has been submitted to the presti-
gious Annals of Mathematics, but is yet to
appear in print. Those charged with check-
ing it say that they believe the proof is correct,
but are so exhausted with the verification
process that they cannot definitively rule out
any errors. So when Hales’s manuscript
finally does appear in the Annals, probably
during the next year, it will carry an unusual
editorial note — a statement that parts of the
paper have proved impossible to check.

At the heart of this bizarre tale is the use 
of computers in mathematics, an issue that
has split the field. Sometimes described as a
‘brute force’ approach, computer-aided

proofs often involve calculating thousands of
possible outcomes to a problem in order to
produce the final solution.Many mathemati-
cians dislike this method, arguing that it is
inelegant. Others criticize it for not offering
any insight into the problem under consider-
ation.In 1977,for example,a computer-aided
proof was published for the four-colour 
theorem,which states that no more than four
colours are needed to fill in a map so that any
two adjacent regions have different colours1,2.
No errors have been found in the proof, but
some mathematicians continue to seek a
solution using conventional methods.

Pile-driver

Hales, who started his proof at the University
of Michigan in Ann Arbor before moving to
the University of Pittsburgh, Pennsylvania,
began by reducing the infinite number of
possible stacking arrangements to 5,000 con-
tenders. He then used computers to calculate
the density of each arrangement. Doing so
was more difficult than it sounds. The proof
involved checking a series of mathematical
inequalities using specially written computer
code. In all, more than 100,000 inequalities
were verified over a ten-year period.

Robert MacPherson, a mathematician at
the Institute for Advanced Study in Prince-
ton, New Jersey, and an editor of the Annals,

was intrigued when he heard about the
proof.He wanted to ask Hales and his gradu-
ate student Sam Ferguson, who had assisted
with the proof, to submit their finding for
publication,but he was also uneasy about the
computer-based nature of the work.

TheAnnalshad,however,already accepted
a shorter computer-aided proof — the paper,
on a problem in topology, was published this
March3. After sounding out his colleagues on
the journal’s editorial board, MacPherson
asked Hales to submit his paper. Unusually,
MacPherson assigned a dozen mathemati-
cians to referee the proof — most journals
tend to employ between one and three. The
effort was led by Gábor Fejes Tóth of the
Alfréd Rényi Institute of Mathematics in
Budapest, Hungary, whose father, the math-
ematician László Fejes Tóth, had predicted in
1965 that computers would one day make a
proofofKepler’s conjecture possible.

It was not enough for the referees to rerun
Hales’s code — they had to check whether
the programs did the job that they were 
supposed to do. Inspecting all of the code
and its inputs and outputs, which together
take up three gigabytes of memory space,
would have been impossible. So the referees
limited themselves to consistency checks, a
reconstruction of the thought processes
behind each step of the proof, and then a

news feature

Does the proof stack up?
Think peer review  takes too long? One m athem atician has w aited four

years to have his paper refereed, only to hear that the exhausted review ers

can’t be certain w hether his proof is correct. George Szpiro investigates.
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Pyramid power:

Thomas Hales

believes that

computers will

succeed where

humans have failed

in verifying 

his proof.

study ofall of the assumptions and logic used
to design the code. A series of seminars,
which ran for full academic years, was orga-
nized to aid the effort.

But success remained elusive. Last July,
Fejes Tóth reported that he and the other 
referees were 99% certain that the proof is
sound. They found no errors or omissions,
but felt that without checking every line of
the code,they could not be absolutely certain
that the proof is correct.

For a mathematical proof, this was not
enough. After all, most mathematicians
believe in the conjecture already — the proof
is supposed to turn that belief into certainty.
The history of Kepler’s conjecture also gives
reason for caution. In 1993, Wu-Yi Hsiang,
then at the University ofCalifornia,Berkeley,
published a 100-page proofof the conjecture
in the International Journal of Mathematics4.
But shortly after publication, errors were
found in parts of the proof.Although Hsiang
stands by his paper,most mathematicians do
not believe it is valid.

After the referees’ reports had been con-
sidered, Hales says that he received the 
following letter from MacPherson: “The
news from the referees is bad, from my per-
spective. They have not been able to certify
the correctness of the proof, and will not be
able to certify it in the future, because they
have run out of energy … One can speculate
whether their process would have converged
to a definitive answer had they had a more
clear manuscript from the beginning, but
this does not matter now.”

The last sentence lets some irritation shine
through. The proof that Hales delivered was
by no means a polished piece. The 250-page
manuscript consisted of five separate papers,
each a sort of lab report that Hales and Fer-
guson filled out whenever the computer 
finished part of the proof. This unusual 
format made for difficult reading. To make
matters worse, the notation and definitions
also varied slightly between the papers.

Rough but ready
MacPherson had asked the authors to edit
their manuscript. But Hales and Ferguson
did not want to spend another year rework-
ing their paper. “Tom could spend the rest
of his career simplifying the proof,” Fergu-
son said when they completed their paper.
“That doesn’t seem like an appropriate use
of his time.” Hales turned to other chal-
lenges, using traditional methods to solve
the 2,000-year-old honeycomb conjecture,
which states that of all conceivable tiles of
equal area that can be used to cover a floor
without leaving any gaps, hexagonal tiles
have the shortest perimeter5. Ferguson left
academia to take a job with the US Depart-
ment of Defense.

Faced with exhausted referees, the editor-
ial board of the Annalsdecided to publish the
paper — but with a cautionary note. The
paper will appear with an introduction by
the editors stating that proofs of this type,
which involve the use of computers to check
a large number of mathematical statements,
may be impossible to review in full. The 
matter might have ended there, but for
Hales, having a note attached to his proof

was not satisfactory.
This January, he launched the 

Flyspeck project, also known as the
Formal Proof of Kepler.Rather than
rely on human referees, Hales
intends to use computers to verify

news feature

every step of his proof.The effort will require
the collaboration ofa core group ofabout ten
volunteers, who will need to be qualified
mathematicians and willing to donate the
computer time on their machines. The team
will write programs to deconstruct each step
of the proof, line by line, into a set of axioms
that are known to be correct. If every part of
the code can be broken down into these
axioms, the proof will finally be verified.

Those involved see the project as doing
more than just validating Hales’s proof.Sean
McLaughlin, a graduate student at New York
University, who studied under Hales and 
has used computer methods to solve other
mathematical problems, has already volun-
teered. “It seems that checking computer-
assisted proofs is almost impossible for
humans,”he says.“With luck, we will be able
to show that problems of this size can be 
subjected to rigorous verification without
the need for a referee process.”

But not everyone shares McLaughlin’s
enthusiasm. Pierre Deligne, an algebraic
geometer at the Institute for Advanced Study,
is one of the many mathematicians who do
not approve of computer-aided proofs.
“I believe in a proof if I understand it,”he says.
For those who side with Deligne, using com-
puters to remove human reviewers from the
refereeing process is another step in the
wrong direction.

Despite his reservations about the proof,
MacPherson does not believe that math-
ematicians should cut themselves off from
computers.Others go further.Freek Wiedijk,
of the Catholic University ofNijmegen in the
Netherlands, is a pioneer of the use of com-
puters to verify proofs. He thinks that the
process could become standard practice in
mathematics. “People will look back at the
turn of the twentieth century and say ‘that is
when it happened’,”Wiedijk says.

Whether or not computer-checking takes
off, it is likely to be several years before 
Flyspeck produces a result. Hales and
McLaughlin are the only confirmed partici-
pants, although others have expressed an
interest. Hales estimates that the whole
process, from crafting the code to running 
it, is likely to take 20 person-years of work.
Only then will Kepler’s conjecture become
Kepler’s theorem, and we will know for sure
whether we have been stacking oranges 
correctly all these years. n

George Szpiro writes for the Swiss newspapers NZZ

and NZZ am Sonntag from Jerusalem, Israel. His book

Kepler’s Conjecture (Wiley, New York) was published 

in February. 
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Star player:Johannes Kepler’s conjecture has

kept mathematicians guessing for 400 years.
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In 1998, a young University of Michigan
mathematician named Thomas Hales solved
a nearly 4-century-old problem called the
Kepler conjecture. The task was to prove that
the standard grocery-store arrangement of
oranges is, in fact, the densest way to pack
spheres together. The editor of Annals of
Mathematics, one of the most prestigious
journals in mathematics, invited him to sub-
mit his proof to Annals. Neither of them was
prepared for what happened next.

Over a period of 4 years, a team of 12 ref-
erees wrestled with the lengthy paper and
eventually raised a white flag. They informed
the editor that they were only “99 percent”
certain that it was correct. In particular, they
could not vouch for the validity of the lengthy
computer calculations that were essential to
Hales’s proof. The editor took the unprece-
dented step of publishing the article with a
disclaimer that it could not be absolutely ver-
ified (Science, 7 March 2003, p. 1513).

It is a scenario that has repeated itself, with
variations, several times in recent years: A
high-prof ile problem is solved with an
extraordinarily long and difficult megaproof,
sometimes relying heavily on computer cal-
culation and often leaving a miasma of doubt
behind it. In 1976, the Four Color Theorem
started the trend, with a proof based on com-
puter calculations so lengthy that no human
could hope to follow them. The classification
of finite simple groups, a 10,000-page multi-
author project, was completed (sort of) in
1980 but had to be recompleted last year.
“We’ve arrived at a strange place in mathe-
matics,” says David Goldschmidt of the Insti-
tute for Defense Analyses in Alexandria, Vir-
ginia, one of the collaborators on the finite
simple group proof. “When is a proof really a
proof? There’s no absolute standard.” Gold-
schmidt thinks the traditional criterion—
review by a referee (or team of them)—
breaks down when a paper reaches hundreds
or thousands of pages.

The computer—which at first sight seems
to be part of the problem—may also be the
solution. In the past few months, software
packages called “proof assistants,” which go
through every step of a carefully written argu-
ment and check that it follows from the
axioms of mathematics, have served notice
that they are no longer toys. Last fall, Jeremy
Avigad, a professor of philosophy at Carnegie

Mellon University, used a computer assistant
called Isabelle to verify the Prime Number
Theorem, which (roughly speaking)
describes the probability that a randomly cho-
sen number in any interval is prime. And in
December, Georges Gonthier, a computer sci-
entist at Microsoft Research Cambridge,
announced a successful verification of the
proof of the Four Color Theorem, using a
proof assistant called Coq. “It’s finally getting
to the stage where you can do serious things
with these programs,” says Avigad.

Even Hales is getting into the action.
Over the past 2 years, he has taught himself
to use an assistant called HOL Light. In Jan-
uary, he became the first person to complete
a computer verification of the Jordan Curve

Theorem, f irst published in 1905, which
says that any closed curve drawn in the plane
without crossing itself separates the plane
into two pieces.

For Hales, the motivation is obvious: He
hopes, eventually, to vindicate his proof of the
Kepler conjecture. In fact, three graduate stu-
dents in Europe (not Hales’s own) are already

at work on separate parts of this
project, two using Isabelle and one
using Coq. Hales expects them to
finish in about 7 years.

But Hales thinks that computer
verif iers have implications far
beyond the Kepler conjecture.
“Suppose you could check a page a
day,” he says. “At that point it would
make sense to devote the resources
to put 100,000 pages of mathemat-
ics into one of these systems. Then
the mathematical landscape is
entirely changed.” At present, com-
puter assistants still take a lot of
time to puzzle through some facts
that even an advanced undergradu-
ate would know or be able to figure
out. With a large enough knowl-

edge base, that particular time sink could be
eliminated, and the programs might enable
mathematicians to work more efficiently.
“My own experience is that you spend a long
time going over and going over a proof, mak-
ing sure you haven’t missed anything,” says
Carlos Simpson, an algebraic geometer and
computer scientist at the University of Nice in
France. “With the computer, once it’s proved,
it’s proved. You only have to do it once, and
the computer makes sure you get all the
details.” 

In fact, computer proof assistants could
change the whole concept of proof. Ever
since Euclid, mathematical proofs have
served a dual purpose: certifying that a
statement is true, and explaining why it is

What in the Name of Euclid Is
Going On Here?
Computer assistants may help mathematicians dot the i’s and cross the t’s of proofs so
complex that they defy human comprehension

Mathematics

Mapping the way. Georges Gonthier’s computer verified 
billions of calculations on “hypermaps” like the one shown.

Have a Coq and a Smile
Why would hundreds of computer scientists devote more than 30 years to developing
mathematical proof assistants that most mathematicians don’t even want? The answer is
that they are chasing an even more elusive grail: self-checking computer code.

In a sense, the statement “this program (or chip, or operating system) performs task x
correctly” is a mathematical theorem, and programmers would love to have that kind of
certainty. “Currently, people who have experience with programming ‘know’ that serious
programs without bugs are impossible,” Freek Wiedijk and Henk Barendregt, computer sci-
entists at the University of Nijmegen in the Netherlands, wrote in 2003.“However, we think
that eventually the technology of computer mathematics … will change this perception.”

Already, leading chip manufacturers use computer proof assistants to make sure their
circuit designs are correct. Advanced Micro Devices uses a proof checker called ACL2, and
Intel uses HOL Light. “When the division algorithm turned out to be wrong on the Pentium
chip, that was a real wake-up call to Intel,” says John Harrison, who designed HOL Light and
was subsequently hired as a senior software engineer by Intel. –D.M.

PublishedbyAAAS
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MORE of OUR ‘METHODOLOGY’

1. (High Precision) computation of object(s)

2. Pattern Recognition of Real Numbers (The In-
verse Symbolic Calculator∗ and ‘identify’ or ‘Recog-
nize’)

identify(
√

2. +
√

3.) =
√

2 +
√

3

3. Pattern Recognition of Sequences (Salvy & Zim-
mermann’s ‘gfun’, Sloane & Plouffe’s Encyclo-
pedia).

4. Much use of ‘Integer Relation Methods’:†

X “Exclusion bounds” are especially useful

X Great test bed for “Experimental Math”

5. Some automated theorem proving (Wilf-Zeilberger
etc)

∗ISC space limits: from 10Mb in 1985 to 10Gb today.
†PSLQ, LLL, FFT. Top Ten “Algorithm’s for the Ages,” Ran-
dom Samples, Science, Feb. 4, 2000.
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Another Truth

24

7
√

7

∫ π/2

π/3
log

∣∣∣∣∣
tan t +

√
7

tan t−√7

∣∣∣∣∣ dt
?
= L−7(2) (5)

where

L−7(s) =
∞∑

n=0

[
1

(7n + 1)s
+

1

(7n + 2)s
− 1

(7n + 3)s

+
1

(7n + 4)s
− 1

(7n + 5)s
− 1

(7n + 6)s

]
.

I Equation (5) arises from volumes of ideal tetra-
hedron in hyperbolic space. For algebraic topol-
ogy reasons, it is known that the ratio of left-
hand to right-hand side of (5) is rational.

• “Identity” (5) has been verified to 20,000 places.
I have no idea of how to prove it.

I A 64-CPU 10,000 digit run (7250 secs) and a
256-CPU run (1855 secs) on the Virginia Tech
G5 cluster agreed precisely—a week in an hour :
20,000 in 3104 secs on 1024-CPUs and 900 fold
speed up: the largest numerical quadrature cal-
culation ever done?
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JOHN MILNOR

If I can give an abstract

proof of something, I’m

reasonably happy. But

if I can get a concrete,

computational proof and

actually produce num-

bers I’m much happier.

I’m rather an addict of

doing things on the com-

puter, because that gives

you an explicit criterion

of what’s going on. I

have a visual way of

thinking, and I’m happy

if I can see a picture of

what I’m working with.
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ZEROES of 0− 1 POLYNOMIALS

Data mining in polynomials

• The striations are unexplained!
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WHAT YOU DRAW is WHAT YOU SEE

The price of metaphor is eternal vigilance

(Arturo Rosenblueth & Norbert Wiener)
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SEEING PATTERNS in PARTITIONS

The number of additive partitions of n, p(n), is gen-

erated by

1 +
∑

n≥1

p(n)qn =
1

∏
n≥1(1− qn)

. (6)

Thus, p(5) = 7 since

5 = 4 + 1 = 3 + 2 = 3 + 1 + 1 = 2 + 2 + 1

= 2 + 1 + 1 + 1 = 1 + 1 + 1 + 1 + 1.

• Developing (6) is an introduction to enumer-

ation via generating functions as discussed in

Polya’s change example.

• Additive partitions are harder to handle than

multiplicative factorizations, but they may be

introduced in the elementary school curriculum

with questions like:

How many ‘trains‘ of a given length can

be built with Cuisenaire rods?
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Ramanujan used MacMahon’s 1900 table for p(n)
to intuit remarkable deep congruences like

p(5n+4) ≡ 0 mod 5, p(7n+5) ≡ 0 mod 7

p(11n+6) ≡ 0 mod 11,

from relatively limited data like P (q) =

1 + q + 2 q2 + 3 q3 + 5 q4 + 7 q5 + 11 q6 + 15 q7

+ 22 q8 + 30 q9 + 42 q10 + 56 q11 + 77 q12

+ 101 q13 + 135 q14 + 176 q15 + 231 q16

+ 297 q17 + 385 q18 + 490 q19 + 627 q20

+ 792 q21 + 1002 q22 + 1255 q23 + 1575 q24

+ · · ·+ 3972999029388 q200 + · · · (7)

• Cases 5n + 4 and 7n + 5 are flagged in (7)

– leading to the crank (Dyson, Andrews, Gar-
van, Ono, and very recently Mahlburg)

– connections with modular forms much facili-
tated by symbolic computation

• Of course, it is easier to (heuristically) confirm
than find these fine examples of Mathematics:
the science of patterns.∗

∗Keith Devlin’s 1997 book.
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IS HARD or EASY BETTER?

A modern computationally driven question is How

hard is p(n) to compute?

• In 1900, it took the father of combinatorics,

Major Percy MacMahon (1854–1929), months

to compute p(200) using recursions developed

from (6).

• By 2000, Maple produced p(200) in seconds

simply as the 200’th term of the Taylor series

(ignoring ‘combinat[numpart]’)

• A few years earlier it required being careful to

compute the series for
∏

n≥1(1 − qn) first and

then the series for the reciprocal of that series!

• This baroque event is occasioned by Euler’s pen-

tagonal number theorem

∏

n≥1

(1− qn) =
∞∑

n=−∞
(−1)nq(3n+1)n/2.
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• The reason is that, if one takes the series for

(6), the software has to deal with 200 terms on

the bottom.

But the series for
∏

n≥1(1−qn), has only to han-

dle the 23 non-zero terms in series in the pen-

tagonal number theorem.

• If introspection fails, we can find and learn about

the pentagonal numbers occurring above in Neil

Sloanes’ exemplary on-line

‘Encyclopedia of Integer Sequences’:

www.research.att.com/personal/njas/sequences/eisonline.html

~ Such ex post facto algorithmic analysis can be

used to facilitate independent student discov-

ery of the pentagonal number theorem, and like

results.
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• The difficulty of estimating the size of p(n) ana-

lytically —so as to avoid enormous or unattain-

able computational effort—led to some marvel-

lous mathematical advances∗.

• The corresponding ease of computation may

now act as a retardant to insight.

F New mathematics is often discovered only when

prevailing tools run totally out of steam.

• This raises a caveat against mindless comput-

ing:

Will a student or researcher discover struc-

ture when it is easy to compute without

needing to think about it?

Today, she may thoughtlessly compute p(500)

which a generation ago took much, much

pain and insight.

∗By researchers including Hardy and Ramanujan, and
Rademacher
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BERLINSKI

The body of mathematics to which the cal-

culus gives rise embodies a certain swash-

buckling style of thinking, at once bold and

dramatic, given over to large intellectual ges-

tures and indifferent, in large measure, to

any very detailed description of the world.

It is a style that has shaped the physical but

not the biological sciences, and its success in

Newtonian mechanics, general relativity and

quantum mechanics is among the miracles

of mankind. But the era in thought that

the calculus made possible is coming to an

end. Everyone feels this is so and everyone

is right.

· · · and · · ·
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The computer has in turn changed the very

nature of mathematical experience, suggest-

ing for the first time that mathematics, like

physics, may yet become an empirical dis-

cipline, a place where things are discovered

because they are seen. (David Berlinski, 1997)∗

• As all sciences rely more on ‘dry experiments’,

via computer simulation, the boundary between

physics (e.g., string theory) and mathematics

(e.g., by experiment) is again delightfully blurred.

• An early exciting example is provided by gravi-

tational boosting:

∗In “Ground Zero”, a Review of The Pleasures of Counting,
by T. W. Koerner.
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MATH AWARENESS MONTH

• Interactive graphics will become an integral part

of mathematics: gravitational boosting, gravity

waves, Lagrange points, many-body problems

. . .

1905 Special relativity, Brownian motion, Photoelec-

tricity
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Gravitational Boosting

“The Voyager Neptune Planetary Guide” (JPL Pub-

lication 89–24) has an excellent description of Michael

Minovitch’s computational and unexpected discov-

ery of gravitational boosting (also known as sling-

shot magic) at the Jet Propulsion Laboratory in

1961.

The article starts by quoting Arthur C. Clarke

“Any sufficiently advanced technology is indistin-

guishable from magic.”

Sedna and Friends in 2004
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Until he showed Hohmann transfer ellipses were not

least energy paths to the outer planets:

“most planetary mission designers considered the

gravity field of a target planet to be somewhat of

a nuisance, to be cancelled out, usually by onboard

Rocket thrust.”

• Without a boost from the orbits of Saturn, Jupiter

and Uranus, the Earth-to-Neptune Voyager mis-

sion (achieved in 1989 in around a decade) would

have taken over 30 years!

} We would still be waiting; longer to see Sedna

confirmed (8 billion miles away—3 times further

than Pluto).
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LIGO: Math and the Cosmos

Einstein’s theory of general relativity describes how

massive bodies curve space and time; it realizes

gravity as movement of masses along shortest paths

in curved space-time.

• A subtle mathematical inference is that rela-

tively accelerating bodies will produce ripples on

the curved space-time surface, propagating at

the speed of light: gravitational waves.

These extraordinarily weak cosmic signals hold the

key to a new era of astronomy if only we can build

detectors and untangle the mathematics to inter-

pret them. The signal to noise ratio is tiny!
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LIGO, the Laser Interferometer Gravitational-Wave

Observatory, is such a developing US gravitational

wave detector.

One of the first 3D simulations of

the gravitational waves arising

when two black holes collide

• Only recently has the computational power ex-

isted to realise such simulations, on computers

such as at WestGrid (www.westgrid.ca)
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SOME CONCLUSIONS

The issue of paradigm choice can never be

unequivocally settled by logic and experi-

ment alone. · · · in these matters neither

proof nor error is at issue. The transfer of

allegiance from paradigm to paradigm is a

conversion experience that cannot be forced.

(Thomas Kuhn)

• In Who Got Einstein’s Office? (Beurling)

And Max Planck, surveying his own career in

his Scientific Autobiography, sadly remarked

that “a new scientific truth does not tri-

umph by convincing its opponents and mak-

ing them see the light, but rather because

its opponents eventually die, and a new gen-

eration grows up that is familiar with it.”

(Einstein)
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HILBERT

Moreover a mathematical problem should be

difficult in order to entice us, yet not com-

pletely inaccessible, lest it mock our efforts.

It should be to us a guidepost on the mazy

path to hidden truths, and ultimately a re-

minder of our pleasure in the successful so-

lution.

· · ·

Besides it is an error to believe that rigor in

the proof is the enemy of simplicity. (David

Hilbert, 1900)

• In his ‘23’ “Mathematische Probleme” lecture

to the Paris International Congress, 1900∗

∗See Ben Yandell’s fine account in The Honors Class, AK
Peters, 2002.
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CHAITIN

I believe that elementary number theory and

the rest of mathematics should be pursued

more in the spirit of experimental science,

and that you should be willing to adopt new

principles. I believe that Euclid’s statement

that an axiom is a self-evident truth is a big

mistake∗. The Schrödinger equation cer-

tainly isn’t a self-evident truth! And the

Riemann Hypothesis isn’t self-evident either,

but it’s very useful. A physicist would say

that there is ample experimental evidence

for the Riemann Hypothesis and would go

ahead and take it as a working assumption.

∗There is no evidence that Euclid ever made such a statement.
However, the statement does have an undeniable emotional
appeal.
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In this case, we have ample experimental

evidence for the truth of our identity and we

may want to take it as something more than

just a working assumption. We may want to

introduce it formally into our mathematical

system. (Greg Chaitin, 1994)∗

A tangible Riemann surface for Lambert-W

∗A like article is in the 2004 Mathematical Intelligencer.
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FINAL COMMENTS

F The traditional deductive accounting of Mathe-

matics is a largely ahistorical caricature∗

F Mathematics is primarily about secure knowl-

edge not proof, and the aesthetic is central

• Proofs are often out of reach — understanding,

even certainty, is not

• Packages can make concepts accessible (Linear

relations, Galois theory, Groebner bases)

• While progress is made “one funeral at a time”

(Niels Bohr), “you can’t go home again” (Thomas

Wolfe).

∗Quotations are at jborwein/quotations.html
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HOW NOT TO EXPERIMENT

Pooh Math
‘Guess and Check’

while

Aiming Too High
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APPENDIX I. ANOTHER CASE STUDY

LOG-CONCAVITY

Consider the unsolved Problem 10738 in the 1999

American Mathematical Monthly:

Problem: For t > 0 let

mn(t) =
∞∑

k=0

kn exp(−t)
tk

k!

be the nth moment of a Poisson distribution with

parameter t. Let cn(t) = mn(t)/n! . Show

a) {mn(t)}∞n=0 is log-convex∗ for all t > 0.

b) {cn(t)}∞n=0 is not log-concave for t < 1.

c∗) {cn(t)}∞n=0 is log-concave for t ≥ 1.

∗A sequence {an} is log-convex if an+1an−1 ≥ a2
n, for n ≥ 1 and

log-concave when the sign is reversed.
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Solution. (a) Neglecting the factor of exp(−t) as

we may, this reduces to

∑

k,j≥0

(jk)n+1tk+j

k!j!
≤

∑

k,j≥0

(jk)ntk+j

k! j!
k2 =

∑

k,j≥0

(jk)ntk+j

k!j!

k2 + j2

2
,

and this now follows from 2jk ≤ k2 + j2.

(b) As

mn+1(t) = t
∞∑

k=0

(k + 1)n exp(−t)
tk

k!
,

on applying the binomial theorem to (k + 1)n, we

see that mn(t) satisfies the recurrence

mn+1(t) = t
n∑

k=0

(n

k

)
mk(t), m0(t) = 1.

In particular for t = 1, we obtain the sequence

1,1,2,5,15,52,203,877,4140 . . . .
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• These are the Bell numbers as was discovered

by consulting Sloane’s Encyclopedia.

www.research.att.com/personal/njas/sequences/index.html

• Sloane can also tell us that, for t = 2, we have

the generalized Bell numbers, and gives the ex-

ponential generating functions.∗

I Inter alia, an explicit computation shows that

t
1 + t

2
= c0(t) c2(t) ≤ c1(t)

2 = t2

exactly if t ≥ 1, which completes (b).

Also, preparatory to the next part, a simple calcu-

lation shows that
∑

n≥0

cnun = exp (t(eu − 1)) . (8)

∗The Bell numbers were known earlier to Ramanujan — an
example of Stigler’s Law of Eponymy!
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(c∗)∗ We appeal to a recent theorem due to E. Rod-

ney Canfield,† which proves the lovely and quite dif-

ficult result below.

Theorem 1 If a sequence 1, b1, b2, · · · is non-negative

and log-concave then so is the sequence 1, c1, c2, · · ·
determined by the generating function equation

∑

n≥0

cnun = exp


 ∑

j≥1

bj
uj

j


 .

Using equation (8) above, we apply this to the se-

quence bj = t/(j− 1)! which is log-concave exactly

for t ≥ 1. QED

∗The ‘*’ indicates this was the unsolved component.
†A search in 2001 on MathSciNet for “Bell numbers” since
1995 turned up 18 items. This paper showed up as number
10. Later, Google found it immediately!
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• It transpired that the given solution to (c) was

the only one received by the Monthly

IThis is quite unusual

• The reason might well be that it relied on the

following sequence of steps:

(??) ⇒ Computer Algebra System ⇒ Interface

⇒ Search Engine ⇒ Digital Library

⇒ Hard New Paper ⇒ Answer

F Now if only we could automate this!
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Experimental Mathematics:

2×Ten Computational Challenge Problems

Jonathan M. Borwein, FRSC

Research Chair in IT
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Halifax, Nova Scotia, Canada

2005 Clifford Lecture III

Tulane, March 31–April 2, 2005

Moreover a mathematical problem should be
difficult in order to entice us, yet not com-
pletely inaccessible, lest it mock our efforts.
It should be to us a guidepost on the mazy
path to hidden truths, and ultimately a re-
minder of our pleasure in the successful solu-
tion. · · · Besides it is an error to believe that
rigor in the proof is the enemy of simplicity.
(David Hilbert, 1900)

www.cs.dal.ca/ddrive

AK Peters 2004 Talk Revised: 03–20–05
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Ten Computational Challenge Problems

This lecture will make a more advanced analy-

sis of the themes developed in Lectures 1 and

2. It will look at ‘lists and challenges’ and

discuss two sets of Ten Computational Math-

ematics Problems including

∫ ∞
0

cos(2x)
∞∏

n=1

cos
(

x

n

)
dx

?
=

π

8
.

This problem set was stimulated by Nick Tre-

fethen’s recent more numerical SIAM 100 Digit,

100 Dollar Challenge.∗

• We start with a general description of the Digit

Challenge† and finish with an examination of some

of its components.

∗The talk is based on an article to appear in the May
2005 Notices of the AMS, and related resources such as
www.cs.dal.ca/∼jborwein/digits.pdf.
†Quite full details of which are beautifully recorded on Borne-
mann’s website
www-m8.ma.tum.de/m3/bornemann/challengebook/
which accompanies The Challenge.
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Lists, Challenges, and Competitions

These have a long and primarily lustrous—social

constructivist—history in mathematics.

I Consider the Hilbert Problems∗, the Clay Insti-

tute’s seven (million dollar) Millennium problems,

or Dongarra and Sullivan’s ‘Top Ten Algorithms’.

• We turn to the story of a recent highly successful

challenge.

The book under review also makes it clear

that with the continued advance of comput-

ing power and accessibility, the view that “real

mathematicians don’t compute” has little trac-

tion, especially for a newer generation of math-

ematicians who may readily take advantage

of the maturation of computational packages

such as Maple, Mathematica and MATLAB.

(JMB, 2005)

∗See the late Ben Yandell’s wonderful The Honors Class:
Hilbert’s Problems and Their Solvers, A K Peters, 2001.
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Numerical Analysis Then and Now

Emphasizing quite how great an advance positional

notation was, Ifrah writes:

A wealthy (15th Century) German merchant,

seeking to provide his son with a good busi-

ness education, consulted a learned man as to

which European institution offered the best

training. “If you only want him to be able to

cope with addition and subtraction,” the ex-

pert replied, “then any French or German uni-

versity will do. But if you are intent on your

son going on to multiplication and division –

assuming that he has sufficient gifts – then

you will have to send him to Italy. (Georges

Ifrah∗)

∗From page 577 of The Universal History of Numbers: From
Prehistory to the Invention of the Computer, translated from
French, John Wiley, 2000.

5



Archimedes method

George Phillips has accurately called Archimedes the
first numerical analyst. In the process of obtaining
his famous estimate

3 +
10

71
< π < 3 +

10

70
he had to master notions of recursion without com-
puters, interval analysis without zero or positional
arithmetic, and trigonometry without any of our mod-
ern analytic scaffolding ...

A modern computer algebra system can tell one that

0 <
∫ 1

0

(1− x)4x4

1 + x2
dx =

22

7
− π, (1)

since the integral may be interpreted as the area un-
der a positive curve.

We are though no wiser as to why! If, however, we
ask the same system to compute the indefinite inte-
gral, we are likely to be told that

∫ t

0
· = 1

7
t7 − 2

3
t6 + t5 − 4

3
t3 + 4 t− 4 arctan (t) .

Now (1) is rigourously established by differentiation
and an appeal to the Fundamental theorem of calcu-
lus. 2
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• While there were many fine arithmeticians over

the next 1500 years, Ifrah’s anecdote above shows

how little had changed, other than to get worse,

before the Renaissance.

• By the 19th Century, Archimedes had finally been

outstripped both as a theorist, and as an (applied)

numerical analyst:

In 1831, Fourier’s posthumous work on equations showed

33 figures of solution, got with enormous labour. Think-

ing this is a good opportunity to illustrate the superi-

ority of the method of W. G. Horner, not yet known

in France, and not much known in England, I pro-

posed to one of my classes, in 1841, to beat Fourier

on this point, as a Christmas exercise. I received sev-

eral answers, agreeing with each other, to 50 places of

decimals. In 1848, I repeated the proposal, requesting

that 50 places might be exceeded: I obtained answers

of 75, 65, 63, 58, 57, and 52 places.∗ (Augustus

De Morgan)

∗Quoted by Adrian Rice in “What Makes a Great Mathemat-
ics Teacher?” on page 542 of The American Mathematical
Monthly, June-July 1999.
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A pictorial proof

• De Morgan seems to have been one of the first
to mistrust William Shanks’s epic computations
of Pi—to 527, 607 and 727 places, noting there
were too few sevens.

• But the error was only confirmed three quarters
of a century later in 1944 by Ferguson with the
help of a calculator in the last pre-computer cal-
culations of π.∗

^ Until around 1950 a “computer” was still a per-
son and ENIAC was an “Electronic Numerical In-
tegrator and Calculator” on which Metropolis and
Reitwiesner computed Pi to 2037 places in 1948
and confirmed that there were the expected num-
ber of sevens.

∗A Guinness record for finding an error in math literature?
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Reitwiesner, then working at the Ballistics Research
Laboratory, Aberdeen Proving Ground in Maryland,
starts his article with:

Early in June, 1949, Professor John von Neu-
mann expressed an interest in the possibility
that the ENIAC might sometime be employed
to determine the value of π and e to many
decimal places with a view to toward obtain-
ing a statistical measure of the randomness
of distribution of the digits.

The paper notes that eappears to be too random—
this is now proven—and ends by respecting an oft-
neglected ‘best-practice’:

Values of the auxiliary numbers arccot 5 and
arccot 239 to 2035D ... have been deposited
in the library of Brown University and the
UMT file of MTAC.

• Just as layers of software, hardware & middleware
have stabilized, so have their roles in scientific and
especially mathematical computing.
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• Thirty years ago, LP texts concentrated on ‘Y2K’-
like tricks for limiting storage demands.

– Now serious users and researchers will often
happily run large-scale problems in MATLAB

and other broad spectrum packages, or rely
on NAG library routines.

– While such out-sourcing or commoditization of
scientific computation and numerical analysis
is not without its drawbacks, the analogy with
automobile driving in 1905 and 2005 is apt.

• We are now in possession of mature—not to be
confused with ‘error-free’—technologies. We can
be fairly comfortable that Mathematica is sensi-
bly handling round-off or cancelation error, using
reasonable termination criteria etc.

– Below the hood, Maple is optimizing poly-
nomial computations using tools like Horner’s
rule, running multiple algorithms when there
is no clear best choice, and switching to re-
duced complexity (Karatsuba or FFT-based)
multiplication when accuracy so demands.∗

∗Though, it would be nice if all vendors allowed as much peering
under the bonnet as Maple does.
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About the Contest

In a 1992 essay “The Definition of Numerical Analy-

sis”∗. Trefethen engagingly demolishes the conven-

tional definition of Numerical Analysis as “the science

of rounding errors”. He explores how this hyperbolic

view emerged and finishes by writing:

I believe that the existence of finite algorithms for cer-

tain problems, together with other historical forces, has

distracted us for decades from a balanced view of nu-

merical analysis. ... For guidance to the future we

should study not Gaussian elimination and its beguil-

ing stability properties, but the diabolically fast con-

jugate gradient iteration, or Greengard and Rokhlin’s

O(N) multipole algorithm for particle simulations, or

the exponential convergence of spectral methods for

solving certain PDEs, or the convergence in O(N) it-

eration achieved by multigrid methods for many kinds

of problems, or even Borwein and Borwein’s magical

AGM iteration for determining 1,000,000 digits of π in

the blink of an eye. That is the heart of numerical

analysis.

∗SIAM News, November 1992.
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In SIAM News (Jan 2002), Trefethen liste ten diverse
problems used in teaching modern graduate numer-
ical analysis in Oxford. Readers were challenged to
compute 10 digits of each, with a dollar per digit
($100) prize to the best entry. Trefethen wrote,

“If anyone gets 50 digits in total, I will be
impressed.”

• And he was, 94 teams from 25 nations submitted
results. Twenty of these teams received a full
100 points (10 correct digits for each problem).

– They included the late John Boersma working
with Fred Simons and others, Gaston Gonnet
(a Maple founder) and Robert Israel, a team
containing Carl Devore, and the current au-
thors variously working alone and with others.

– An originally anonymous donor, William J. Brown-
ing, provided funds for a $100 award to each
of the twenty perfect teams.

– JMB, David Bailey∗ and Greg Fee entered, but
failed to qualify for an award.†

∗Bailey wrote the introduction to the book under review.
†We took Nick at his word and turned in 85 digits!
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The Ten Digit Challenge Problems

The purpose of computing is insight, not num-
bers.∗ (Richard Hamming)

#1. What is limε→0
∫ 1
ε x−1 cos(x−1 logx) dx?

#2. A photon moving at speed 1 in the x-y plane
starts at t = 0 at (x, y) = (1/2,1/10) heading due
east. Around every integer lattice point (i, j) in
the plane, a circular mirror of radius 1/3 has been
erected. How far from the origin is the photon at
t = 10?

#3. The infinite matrix A with entries a11 = 1, a12 =
1/2, a21 = 1/3, a13 = 1/4, a22 = 1/5, a31 = 1/6,
etc., is a bounded operator on `2. What is ||A||?

#4. What is the global minimum of the function

exp(sin(50x)) + sin(60ey) + sin(70 sinx)

+sin(sin(80y))− sin(10(x + y)) + (x2 + y2)/4?

∗In Numerical Methods for Scientists and Engineers, 1962.
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#5. Let f(z) = 1/Γ(z), where Γ(z) is the gamma

function, and let p(z) be the cubic polynomial

that best approximates f(z) on the unit disk in

the supremum norm || · ||∞. What is ||f − p||∞?

#6. A flea starts at (0,0) on the infinite 2-D integer

lattice and executes a biased random walk: At

each step it hops north or south with probability

1/4, east with probability 1/4 + ε, and west with

probability 1/4 − ε. The probability that the flea

returns to (0,0) sometime during its wanderings

is 1/2. What is ε?

#7. Let A be the 20000 × 20000 matrix whose en-

tries are zero everywhere except for the primes

2,3,5,7, · · · ,224737 along the main diagonal and

the number 1 in all the positions aij with |i− j| =
1,2,4,8, · · · ,16384. What is the (1,1) entry of

A−1.
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#8. A square plate [−1,1]× [−1,1] is at temperature

u = 0. At time t = 0 the temperature is increased

to u = 5 along one of the four sides while being

held at u = 0 along the other three sides, and heat

then flows into the plate according to ut = ∆u.

When does the temperature reach u = 1 at the

center of the plate?

#9. The integral I(α) =
∫ 2
0 [2+sin(10α)]xα sin(α/(2−

x)) dx depends on the parameter α. What is the

value α ∈ [0,5] at which I(α) achieves its maxi-

mum?

#10. A particle at the center of a 10 × 1 rectangle

undergoes Brownian motion (i.e., 2-D random

walk with infinitesimal step lengths) till it hits the

boundary. What is the probability that it hits at

one of the ends rather than at one of the sides?

Answers correct to 40 digits are at

web.comlab.ox.ac.uk/oucl/work/nick.trefethen/hundred.html
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About the Book and Its Authors

Success in solving these problems requires a broad
knowledge of mathematics and numerical analysis,
together with significant computational effort, to ob-
tain solutions and ensure correctness of the results.

• The strengths and limitations of Maple, Math-
ematica, Matlab (The 3Ms), and other software
tools such as PARI or GAP, are strikingly revealed
in these ventures.

• Almost all of the solvers relied in large part on
one or more of these three packages, and while
most solvers attempted to confirm their results,
there was no explicit requirement for proofs to be
provided.

In December 2002, Keller wrote:

To the Editor: ... found it surprising that no proof
of the correctness of the answers was given. Omitting
such proofs is the accepted procedure in scientific com-
puting. However, in a contest for calculating precise
digits, one might have hoped for more.

Joseph B. Keller, Stanford University
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Keller’s request for proofs as opposed to compelling
evidence of correctness is, in this context, somewhat
unreasonable and even in the long-term somewhat
counter-productive.
Nonetheless, the The Challenge makes a complete
and cogent response to Keller and much much more.
The interest in the contest has extended to The
Challenge, which has already received reviews in places
such as Science where mathematics is not often seen.

• Different readers, depending on temperament, tools
and training will find the same problem more or
less interesting and more or less challenging.

• Problems can be read independently : multiple so-
lution techniques are given, background, imple-
mentation details—variously in each of the 3Ms
or otherwise—and extensions are discussed.

• Each problem has its own chapter and lead au-
thor : Folkmar Bornemann, Dirk Laurie, Stan Wagon
and Jörg Waldvogel come from 4 countries on 3
continents and did not know each other, though
Dirk did visit Jörge and Stan visited Folkmar as
they were finishing up.

18



Some High Spots

The book proves the growing power of collaboration,
networking and the grid—both human and computa-
tional. A careful reading yields proofs of correctness
for all problems except for #1, #3 and #5.

• For #5 one difficulty is to develop a robust
interval implementation for both complex com-
putation and, more importantly, for the Gamma
function. Error bounds for #1 may be out of
reach, but an analytic solution to #3 seems tan-
talizingly close.

• The authors ultimately provided 10,000-digit so-
lutions to nine of the problems. They say that
this improved their knowledge on several fronts
as well as being ‘cool’.

– success with Integer Relation Methods often
demands ultrahigh precision computation.

• One (and only one) problem remains totally in-
tractable —by this rarefied measure. As of today
only 300 digits of #3 are known.
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Some Surprising Outcomes

The authors∗ were surprised by the following:

#1. The best algorithm for 10,000 digits was the trusty
trapezoidal rule—a not uncommon personal ex-
perience of mine.

#2. Using interval arithmetic with starting intervals of
size smaller than 10−5000, one can still find the
position of the particle at time 2000 (not just
time ten), which makes a fine exercise for very
high-precision interval computation.

#4. Interval analysis algorithms can handle similar prob-
lems in higher dimensions. As a foretaste of fu-
ture graphic tools, one can solve this problem us-
ing current adaptive 3-D plotting routines which
can catch all the bumps.

As an optimizer by background this was the first
problem my group solved using a damped Newton
method.

∗Stan Wagon and Folkmar Bornemann, private communica-
tions.
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#5. While almost all canned optimization algorithms
failed, differential evolution, a relatively new type
of evolutionary algorithm worked quite well.

#6 This has an almost-closed form via elliptic inte-
grals and leads to a study of random walks on
hypercubic lattices, and Watson integrals

#9. The maximum parameter is expressible in terms
of a MeijerG function. Unlike most contestants,
Mathematica and Maple both figure this out.

– This is another measure of the changing en-
vironment.∗ It is a good idea—and not at all
immoral—to data-mine and find out what your
one of the 3Ms knows about your current ob-
ject of interest. Thus, Maple says:

The Meijer G function is defined by the inverse
Laplace transform

MeijerG([as,bs],[cs,ds],z)
/

1 | GAMMA(1-as+y) GAMMA(cs-y) y
= ------ O ------------------------- z dy

2 Pi I | GAMMA(bs-y) GAMMA(1-ds+y)
/

L
where ...

∗As is Lambert W, see Brian Hayes’ Why W?

21



Two Big Surprises

Two solutions really surprised the authors: #7 Too
Large to be Easy, Too Small to Be Hard.

Not so long ago a 20,000 × 20,000 matrix was large
enough to be hard. Using both congruential and p-
adic methods, Dumas, Turner and Wan obtained a
fully symbolic answer, a rational with a 97,000-digit
numerator and like denominator. Wan has reduced
the time needed to 15 minutes on one machine, from
using many days on many machines.

• While p-adic analysis is parallelizable it is less easy
than with congruential methods; the need for bet-
ter parallel algorithms lurks below the surface of
much modern computational math.

• The surprise here, though, is not that the solu-
tion is rational, but that it can be explicitly con-
structed.

The chapter, like the others offers an interest-
ing menu of numeric and exact solution strate-
gies. Of course, in any numeric approach ill-
conditioning rears its ugly head while the use of
sparsity and other core topics come into play.
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Problem #10: Hitting the Ends

(My personal favourite, for reasons that may be ap-

parent.) Bornemann starts the chapter by exploring

Monte-Carlo methods, which are shown to be im-

practicable.

• He then reformulates the problem deterministi-

cally as the value at the center of a 10 × 1 rec-

tangle of an appropriate harmonic measure of

the ends, arising from a 5-point discretization of

Laplace’s equation with Dirichlet boundary con-

ditions.

• This is then solved by a well chosen sparse Cholesky

solver. At this point a reliable numerical value of

3.837587979 · 10−7

is obtained.

And the posed problem is solved numerically to

the requisite 10 places.

But this is only the warm up ...
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Analytic Solutions

We proceed to develop two analytic solutions, the

first using separation of variables∗ on the underlying

PDE on a general 2a× 2b rectangle. We learn that

p(a, b) =
4

π

∞∑

k=0

(−1)k

2k + 1
sech

(
(2k + 1)

π

2
ρ

)
(2)

where ρ := a/b.

A second method using conformal mappings, yields

arccot ρ = p(a, b)
π

2
+ argK

(
eip(a,b)π

)
(3)

where K is the complete elliptic integral of the first

kind.

• It will not be apparent to one unfamiliar with in-

version of elliptic integrals that (2) and (3) en-

code the same solution—though they must as the

solution is unique in (0,1)—and each can now be

used to solve for ρ = 10 to arbitrary precision.

∗As with the trapezoidal rule, easy can be good.
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Enter Srinivasa Ramanujan

Bornemann finally shows that, for far from simple

reasons, the answer is

p =
2

π
arcsin (k100) , (4)

where

k100 :=

((
3− 2

√
2

) (
2 +

√
5

) (
−3 +

√
10

) (
−
√

2 +
4√
5

)2
)2

• No one anticipated a closed form like this—a sim-

ple composition of Pi, one arcsin and a few square

roots.∗

B Let me show how to finish up the feast.

∗Actually fundamental units of real (quadratic/quartic) fields;
solutions to Pell’s equation.
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An apt result in Pi and the AGM is that

∞∑

n=0

(−1)n

2n + 1
sech

(
π(2n + 1)

2
ρ

)
=

1

2
arcsin k, (5)

exactly when kρ2 is parametrized by theta functions

in terms of the elliptic nome as Jacobi discovered.

We have thus gotten

kρ2 =
θ2
2(q)

θ2
3(q)

=

∑∞
n=−∞ q(n+1/2)2

∑∞
n=−∞ qn2 q := e−πρ.(6)

Comparing (5) and (2) we see that the solution is

k100 = 6.02806910155971082882540712292 . . .·10−7

as asserted in (4).

• The explicit form follows from 19th century mod-

ular function theory . 2

• If only Trefethen had asked for a
√

210 × 1 box,

or even better a
√

15×√14 one.

– k15/14 and k210 share their units (Pi & AGM).
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A Singular Interlude

Indeed k210 is the singular value sent to Hardy in
Ramanujan’s famous 1913 letter of introduction—
ignored by two other famous English mathematicians.

k210 :=
(√

2− 1
)2 (√

3− 2
) (√

7− 6
)2 (

8− 3
√

7
)

×
(√

10− 3
)2 (√

15−
√

14
) (

4−
√

15
)2 (

6−
√

35
)

GH Hardy (1877–1947)

CP Snow’s description in
A Mathematician’s Apology
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A Modern Finale

Alternatively, armed only with the knowledge that the
singular values are always algebraic we may finish with
an au courant proof: numerically obtain the minimal
polynomial from a high precision computation with
(6) and recover the surds.

Maple allows the following

> Digits:=100:with(PolynomialTools):

> k:=s->evalf(EllipticModulus(exp(-Pi*sqrt(s)))):

> p:=latex(MinimalPolynomial(k(100),12)):

> ’Error’,fsolve(p)[1]-evalf(k(100)); galois(p);

-106

Error, 4 10

"8T9", {"D(4)[x]2", "E(8):2"}, "+", 16, {"(4 5)(6 7)", "(4 8)(1

5)(26)(3 7)", "(1 8)(2 3)(4 5)(6 7)", "(2 8)(1 3)(4 6)(5 7)"}

This finds the minimal polynomial for k100, checks it
to 100 places, tells us the galois group, and returns
a latex expression ‘p’ which sets as:

1 − 1658904 X − 3317540 X 2 + 1657944 X 3 + 6637254 X 4

+ 1657944 X 5 − 3317540 X 6 − 1658904 X 7 + X 8,

and is self-reciprocal:
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It satisfies p(x) = x8p(1/x).

This suggests taking a square root and we discover
y =

√
k100 satisfies

p(y) = 1 − 1288 y + 20 y2 − 1288 y3 − 26 y4

+ 1288 y5 + 20 y6 + 1288 y7 + y8.

Now life is good. The prime factors of 100 are 2 and
5 prompting:

subs(_X=z,[op(((factor(p,{sqrt(2),sqrt(5)}))))]))

The code yields four quadratic terms, the desired one
being

q = z2 + 322 z − 228 z
√

2 + 144 z
√

5− 102 z
√

2
√

5

+ 323− 228
√

2 + 144
√

5− 102
√

2
√

5.

For security,

w:=solve(q)[2]: evalf[1000](k(100)-w^2);

gives a 1000-digit error check of 2.20226255 ·10−998.

• We can work a little more to find, using one of
the 3Ms, the beautiful form of k100 given in (4).

2
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The Ten Symbolic Challenge Problems

Each of the following requires numeric work—some

times considerable—to facilitate whatever transpires

thereafter.

#1. Compute the value of r for which the chaotic

iteration xn+1 = rxn(1 − xn), starting with some

x0 ∈ (0,1), exhibits a bifurcation between 4-way

periodicity and 8-way periodicity.

Extra credit: This constant is an algebraic num-

ber of degree not exceeding 20. Find its minimal

polynomial.

#2. Evaluate

∑

(m,n,p)6=0

(−1)m+n+p
√

m2 + n2 + p2
, (7)

where convergence is over increasingly large cubes

surrounding the origin.

Extra credit: Identify this constant.
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#3. Evaluate the sum

∞∑

k=1

(
1− 1

2
+ · · ·+ (−1)k+11

k

)2
(k + 1)−3.

Extra credit: Evaluate this constant as a multi-

term expression involving well-known mathemat-

ical constants. This expression has seven terms,

and involves π, log 2, ζ(3), and Li5(1/2).

Hint: The expression is “homogenous.”

#4. Evaluate

∞∏

k=1

[
1 +

1

k(k + 2)

]log2 k

=
∞∏

k=1

k

[
log2

(
1+ 1

k(k+2)

)]

Extra credit: Evaluate this constant in terms of

a less-well-known mathematical constant.
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#5. Given a, b, η > 0, define

Rη(a, b) =
a

η +
b2

η +
4a2

η +
9b2

η + ...

.

Calculate R1(2,2).

Extra credit: Evaluate this constant as a two-

term expression involving a well-known mathe-

matical constant.

#6. Calculate the expected distance between two ran-

dom points on different sides of the unit square.

Hint: This can be expressed in terms of integrals

as

2

3

∫ 1

0

∫ 1

0

√
x2 + y2 dx dy

+
1

3

∫ 1

0

∫ 1

0

√
1 + (y − u)2 du dy.

Extra credit: Express this constant as a three-

term expression involving algebraic constants and

the natural logarithm with an algebraic argument.
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Similarly:

#7. Calculate the expected distance between two ran-

dom points on different faces of the unit cube.

Hint: This can be expressed in terms of integrals

as

4

5

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

√
x2 + y2 + (z − w)2 dw dx dy dz +

1

5

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

√
1 + (y − u)2 + (z − w)2 du dw dy dz.

Extra credit: Express this constant as a six-term

expression involving algebraic constants and two

natural logarithms.

Answers to all ten are detailed in our paper [Bailey,

Borwein, Kapoor and Weisstein].

• The final three we finish by further discussing...
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#8. Calculate
∫ ∞
0

cos(2x)
∞∏

n=1

cos
(

x

n

)
dx. (8)

Extra credit: Express this constant as an ana-
lytic expression.

Hint: It is not what it first appears to be.

#9. Calculate

∑

i>j>k>l>0

1

i3jk3l
.

Extra credit: Express this constant as a single
well-known mathematical constant.

Solution. In the notation of Lecture II:

ζ(3,1,3,1) =
2π8

10!
,

and is the second case of Zagier’s conjecture,
now proven (see APPENDIX I, D).

#10. Evaluate

W1 =

∫ π

−π

∫ π

−π

∫ π

−π

1

3− cos (x)− cos (y)− cos (z)
dx dy dz.

Extra credit: Express this constant in terms of
the Gamma function.
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History and Context

The challenge of showing that the value of π2 < π/8

was posed by Bernard Mares, Jr., along with the prob-

lem of showing

π1 :=
∫ ∞
0

∞∏

n=1

cos
(

x

n

)
dx <

π

4
. (9)

This is indeed true, although the error is remarkably

small, as we shall see.

Solution The computation of a high-precision nu-

merical value for this integral is rather challenging,

due in part to the oscillatory behavior of
∏

n≥1 cos(x/n)

but mostly due to the difficulty of computing high-

precision evaluations of the integrand function.

Let f(x) be the integrand function. We can write

f(x) = cos(2x)




m∏

1

cos(x/k)


 exp(fm(x)), (10)

where we choose m > x, and where

fm(x) =
∞∑

k=m+1

log cos
(

x

k

)
. (11)
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The log cos evaluation can be expanded as follows:

log cos
(

x

k

)
=

∞∑

j=1

(−1)j22j−1(22j − 1)B2j

j(2j)!

(
x

k

)2j
,

where B2j are Bernoulli numbers. Note that since

k > m > x in (11), this series converges. We can now

write

fm(x) =
∞∑

k=m+1

∞∑

j=1

(−1)j22j−1(22j − 1)B2j

j(2j)!

(
x

k

)2j
,

which after interchanging the sums gives

fm(x) = −
∞∑

j=1

(22j − 1)ζ(2j)

jπ2j




∞∑

k=m+1

1

k2j


 x2j.

or as follows:

fm(x) = −
∞∑

j=1

(22j − 1)ζ(2j)

jπ2j


ζ(2j)−

m∑

k=1

1

k2j


 x2j.

We have more compactly

fm(x) = −
∞∑

j=1

ajbj,mx2j,

where

aj =
(22j − 1)ζ(2j)

jπ2j
bj,m = ζ(2j)−

m∑

k=1

1/k2j. (12)
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With this evaluation scheme for f(x) in hand, the in-
tegral (8) can be computed using, for instance, the
tanh-sinh quadrature algorithm, which can be imple-
mented fairly easily on a personal computer or work-
station, and which is also well-suited for highly par-
allel processing .

• This algorithm approximates an integral f(x) on
[−1,1] by transforming it to an integral on (−∞,∞),
using the change of variable x = g(t), where
g(t) = tanh(π/2 · sinh t):

∫ 1

−1
f(x) dx =

∫ ∞
−∞

f(g(t))g′(t) dt

= h
∞∑

j=−∞
wjf(xj) + E(h). (13)

Here xj = g(hj) and wj = g′(hj) are abscissas
and weights for the tanh-sinh quadrature scheme
(which can be pre-computed), and E(h) is the
error in this approximation.

• The tanh-sinh quadrature algorithm is designed
for a finite integration interval. The simple sub-
stitution s = 1/(x+1) reduces again to an integral
from 0 to 1.
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In spite of the substantial precomputation required,

the calculation requires only about one minute, us-

ing Bailey’s ARPREC software package The first 100

digits of the result are:

0.39269908169872415480783042290993786052464543418723
1595926812285162093247139938546179016512747455366777

The Inverse Symbolic Calculator , e.g., suggests this

is likely π/8. But a careful comparison with π/8:

0.392699081698724154807830422909937860524646174921888
227621868074038477050785776124828504353167764633497...,

reveals they differ by approximately 7.407× 10−43.

• These two values are provably distinct. The rea-

son is governed by the fact that

55∑

n=1

1

2n + 1
> 2 >

54∑

n=1

1

2n + 1
.

m We do not know a concise closed-form evaluation

of this constant.
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Further History and Context

Recall the sinc function

sinc(x) :=
sin(x)

x
.

Consider, the seven highly oscillatory integrals below.

I1 :=
∫ ∞
0

sinc(x) dx =
π

2
,

I2 :=
∫ ∞
0

sinc(x)sinc
(

x

3

)
dx =

π

2
,

I3 :=
∫ ∞
0

sinc(x)sinc
(

x

3

)
sinc

(
x

5

)
dx =

π

2
,

. . .

I6 :=
∫ ∞
0

sinc(x)sinc
(

x

3

)
· · · sinc

(
x

11

)
dx =

π

2
,

I7 :=
∫ ∞
0

sinc(x)sinc
(

x

3

)
· · · sinc

(
x

13

)
dx =

π

2
.

However,

I8 :=
∫ ∞
0

sinc(x)sinc
(

x

3

)
· · · sinc

(
x

15

)
dx

=
467807924713440738696537864469

935615849440640907310521750000
π

≈ 0.499999999992646π.
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• When shown this, a friend using a well-known

computer algebra package, and the software ven-

dor concluded there was a “bug” in the software.

• Not so! It is easy to see that the limit of these

integrals is 2π1.

Fourier analysis, via Parseval’s theorem, links

IN :=
∫ ∞
0

sinc(a1x)sinc (a2x) · · · sinc (aNx) dx

with the volume of the polyhedron PN given by

PN := {x : |
N∑

k=2

akxk| ≤ a1, |xk| ≤ 1,2 ≤ k ≤ N},

where x := (x2, x3, · · · , xN).

If we let

CN := {(x2, x3, · · · , xN) : −1 ≤ xk ≤ 1,2 ≤ k ≤ N},
then

IN =
π

2a1

Vol(PN)

Vol(CN)
.
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• Thus, the value drops precisely when the con-

straint
N∑

k=2

akxk ≤ a1

becomes active and bites into the hypercube CN ;

this occurs exactly when
∑N

k=2 ak > a1.

• 1
3 + 1

5 + · · ·+ 1
13 < 1, but on addition of 1

15, the

sum exceeds 1, the volume drops, and IN = π
2 no

longer holds.

Before and after the bite

• A similar analysis applies to π2. Moreover, it is

fortunate that we began with π1 or the falsehood

of the identity analogous to that displayed above

would have been much harder to see.
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#10. History and Context

The integral arises in Gaussian and spherical models
of ferromagnetism and in the theory of random walks
(as in extensions of Trefethen #6). It leads to one
of the most impressive closed-form evaluations of an
equivalent integral due to G.N. Watson:

Ŵ =
∫ π

−π

∫ π

−π

∫ π

−π

1

3− cos (x)− cos (y)− cos (z)
dx dy dz

=
1

96
(
√

3− 1)Γ2
(

1

24

)
Γ2

(
11

24

)
(14)

= 4π
(
18 + 12

√
2− 10

√
3− 7

√
6

)
K2 (k6) ,

where k6 =
(
2−√3

) (√
3−√2

)
is the sixth singular

value.

The most self contained derivation of this very subtle
result is due to Joyce and Zucker.

Solution. We apply the formula

1

λ
=

∫ ∞
0

e−λt dt, Re(λ) > 0 (15)

to W3. The 3-dimension integral is reducible to a sin-
gle integral by using

1

π

∫ ∞
0

exp(t cos θ)dθ = I0(t) (16)

is the modified Bessel function of the first kind.
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It follows from this that

W3 =
∫ ∞
0

exp(−3t)I3
0(t)dt.

which evaluates to arbitrary precision giving:

W3 = 0.505462019717326006052004053227140 . . . .

Finally an integer relation hunt to express logW in

terms of logπ, log 2, logΓ(k/24) and log(
√

3− 1) will

produce (14).

• We may also write W3 only as a product of Γ−values.

This is what our Mathematician’s ToolKit returned:

0= -1.* log[w3] + -1.* log[gamma[1/24]] + 4.*log[gamma[3/24]] +
-8.*log[gamma[5/24]] + 1.* log[gamma[7/24]] +
14.*log[gamma[9/24]]+-6.*log[gamma[11/24]] +

-9.*log[gamma[13/24]] +18.*log[gamma[15/24]] +
-2.*log[gamma[17/24]] +-7.*log[gamma[19/24]]

• which is proven by comparing the result with (14)

and establishing the implicit Γ - representation of

(
√

3− 1)2/96.
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• Similar searches suggest there is no similar four
dimensional closed form.

• We found that W4 is not expressible as a product
of powers of Γ(k/120) (for 0 < k < 120) with
coefficients of less than 12 digits.

– This does not, of course, rule out the possibil-
ity of a larger relation, but it does cast doubt,
experimentally, that such a relation exists.

– enough to stop looking!

Advanced Collaborative Environment
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CONCLUSION

The many techniques and types of mathematics used
are a wonderful advert for multi-field, multi-person,
multi-computer, multi-package collaboration.

• Edwards comments in his recent Essays on Con-
structive Mathematics that his own preference for
constructivism was forged by experience of com-
puting in the fifties, when computing power was
as he notes “trivial by today’s standards”.

My similar attitudes were cemented primarily by the
ability in the early days of personal computers to
decode—with the help of APL—exactly the sort of
work by Ramanujan which finished #10.
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CARATHÉODORY and CHRÉTIEN

I’ll be glad if I have succeeded in impressing

the idea that it is not only pleasant to read

at times the works of the old mathematical

authors, but this may occasionally be of use

for the actual advancement of science. (Con-

stantin Carathéodory, 1936)

• Addressing the MAA (retro-digital data-mining?)

A proof is a proof. What kind of a proof? It’s

a proof. A proof is a proof. And when you

have a good proof, it’s because it’s proven.

(Jean Chrétien)

The then Prime Minister, explaining in 2002 how

Canada would determine if Iraq had WMDs, sounds

a lot like Bertrand Russell!
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APPENDIX I: INTEGER RELATIONS

The USES of LLL and PSLQ

I A vector (x1, x2, · · · , xn) of reals possesses an inte-

ger relation if there are integers ai not all zero with

0 = a1x1 + a2x2 + · · ·+ anxn.

PROBLEM: Find ai if such exist. If not, obtain

lower bounds on the size of possible ai.

• (n = 2) Euclid’s algorithm gives solution.

• (n ≥ 3) Euler, Jacobi, Poincare, Minkowski, Per-

ron, others sought method.

• First general algorithm in 1977 by Ferguson &

Forcade. Since ’77: LLL (in Maple), HJLS,

PSOS, PSLQ (’91, parallel ’99).
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I Integer Relation Detection was recently ranked among

“the 10 algorithms with the greatest influence on the

development and practice of science and engineering

in the 20th century.” J. Dongarra, F. Sullivan, Com-

puting in Science & Engineering 2 (2000), 22–23.

Also: Monte Carlo, Simplex, Krylov Subspace, QR

Decomposition, Quicksort, ..., FFT, Fast Multipole

Method.

A. ALGEBRAIC NUMBERS

Compute α to sufficiently high precision (O(n2)) and

apply LLL to the vector

(1, α, α2, · · · , αn−1).

• Solution integers ai are coefficients of a polyno-

mial likely satisfied by α.

• If no relation is found, exclusion bounds are ob-

tained.
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B. FINALIZING FORMULAE

I If we suspect an identity PSLQ is powerful.

• (Machin’s Formula) We try lin dep on

[arctan(1),arctan(
1

5
),arctan(

1

239
)]

and recover [1, -4, 1]. That is,

π

4
= 4arctan(

1

5
)− arctan(

1

239
).

[Used on all serious computations of π from 1706

(100 digits) to 1973 (1 million).]

• (Dase’s ‘mental‘ Formula) We try lin dep on

[arctan(1),arctan(
1

2
),arctan(

1

5
),arctan(

1

8
)]

and recover [-1, 1, 1, 1]. That is,

π

4
= arctan(

1

2
) + arctan(

1

5
) + arctan(

1

8
).

[Used by Dase for 200 digits in 1844.]
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C. ZETA FUNCTIONS

I The zeta function is defined, for s > 1, by

ζ(s) =
∞∑

n=1

1

ns
.

• Thanks to Apéry (1976) it is well known that

S2 := ζ(2) = 3
∞∑

k=1

1

k2
(
2k
k

)

A3 := ζ(3) =
5

2

∞∑

k=1

(−1)k−1

k3
(
2k
k

)

S4 := ζ(4) =
36

17

∞∑

k=1

1

k4
(
2k
k

)

I These results strongly suggest that

ℵ5 := ζ(5)/
∞∑

k=1

(−1)k−1

k5
(
2k
k

)

is a simple rational or algebraic number. Yet, PSLQ

shows: if ℵ5 satisfies a polynomial of degree ≤ 25

the Euclidean norm of coefficients exceeds 2× 1037.
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D. ZAGIER’S CONJECTURE

For r ≥ 1 and n1, . . . , nr ≥ 1, consider:

L(n1, . . . , nr;x) :=
∑

0<mr<...<m1

xm1

m
n1
1 . . . mnr

r
.

Thus

L(n;x) =
x

1n
+

x2

2n
+

x3

3n
+ · · ·

is the classical polylogarithm, while

L(n, m;x) =
1

1m

x2

2n
+ (

1

1m
+

1

2m
)

x3

3n
+ (

1

1m
+

1

2m
+

1

3m
)

x4

4n

+ · · · ,

L(n, m, l;x) =
1

1l

1

2m

x3

3n
+ (

1

1l

1

2m
+

1

1l

1

3m
+

1

2l

1

3m
)

x4

4n
+ · · · .

• The series converge absolutely for |x| < 1 and

conditionally on |x| = 1 unless n1 = x = 1.
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These polylogarithms

L(nr, . . . , n1;x) =
∑

0<m1<...<mr

xmr

mnr
r . . . m

n1
1

,

are determined uniquely by the differential equa-

tions

d

dx
L(nr, . . . , n1;x) =

1

x
L(nr − 1, . . . , n2, n1;x)

if nr ≥ 2 and

d

dx
L(nr, . . . , n2, n1;x) =

1

1− x
L(nr−1, . . . , n1;x)

if nr = 1 with the initial conditions

L(nr, . . . , n1; 0) = 0

for r ≥ 1 and

L(∅;x) ≡ 1.
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Set s := (s1, s2, . . . , sN). Let {s}n denotes concate-

nation, and w :=
∑

si.

Then every periodic polylogarithm leads to a function

Ls(x, t) :=
∑
n

L({s}n;x)twn

which solves an algebraic ordinary differential equa-

tion in x, and leads to nice recurrences.

A. In the simplest case, with N = 1, the ODE is

DsF = tsF where

Ds :=
(
(1− x)

d

dx

)1 (
x

d

dx

)s−1

and the solution (by series) is a generalized hyperge-

ometric function:

Ls(x, t) = 1 +
∑

n≥1

xn ts

ns

n−1∏

k=1

(
1 +

ts

ks

)
,

as follows from considering Ds(xn).
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B. Similarly, for N = 1 and negative integers

L−s(x, t) := 1 +
∑

n≥1

(−x)n ts

ns

n−1∏

k=1

(
1 + (−1)k ts

ks

)
,

and L−1(2x− 1, t) solves a hypergeometric ODE.

I Indeed

L−1(1, t) =
1

β(1 + t
2, 1

2 − t
2)

.

C. We may obtain ODEs for eventually periodic Euler

sums. Thus, L−2,1(x, t) is a solution of

t6 F = x2(x− 1)2(x + 1)2 D6F

+ x(x− 1)(x + 1)(15x2 − 6x− 7)D5F

+ (x− 1)(65x3 + 14x2 − 41x− 8)D4F

+ (x− 1)(90x2 − 11x− 27)D3F

+ (x− 1)(31x− 10)D2F + (x− 1)DF.
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• This leads to a four-term recursion for F =
∑

cn(t)xn

with initial values c0 = 1, c1 = 0, c2 = t3/4, c3 =

−t3/6, and the ODE can be simplified.

We are now ready to prove Zagier’s conjecture. Let

F (a, b; c;x) denote the hypergeometric function. Then:

Theorem 1 (BBGL) For |x|, |t| < 1 and integer n ≥
1

∞∑

n=0

L(3,1,3,1, . . . ,3,1︸ ︷︷ ︸
n−fold

;x) t4n

= F

(
t(1 + i)

2
,
−t(1 + i)

2
; 1;x

)
(17)

× F

(
t(1− i)

2
,
−t(1− i)

2
; 1;x

)
.
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Proof. Both sides of the putative identity start

1 +
t4

8
x2 +

t4

18
x3 +

t8 + 44t4

1536
x4 + · · ·

and are annihilated by the differential operator

D31 :=
(
(1− x)

d

dx

)2 (
x

d

dx

)2
− t4 .

QED

• Once discovered — and it was discovered af-

ter much computational evidence — this can be

checked variously in Mathematica or Maple (e.g.,

in the package gfun)!

Corollary 2 (Zagier Conjecture)

ζ(3,1,3,1, . . . ,3,1︸ ︷︷ ︸
n−fold

) =
2π4n

(4n + 2)!
(18)
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Proof. We have

F (a,−a; 1; 1) =
1

Γ(1− a)Γ(1 + a)
=

sinπa

πa

where the first equality comes from Gauss’s evalua-

tion of F (a, b; c; 1).

Hence, setting x = 1, in (17) produces

F

(
t(1 + i)

2
,
−t(1 + i)

2
; 1; 1

)
F

(
t(1− i)

2
,
−t(1− i)

2
; 1; 1

)

=
2

π2t2
sin

(
1 + i

2
πt

)
sin

(
1− i

2
πt

)

=
coshπt− cosπt

π2t2
=

∞∑

n=0

2π4nt4n

(4n + 2)!

on using the Taylor series of cos and cosh. Comparing

coefficients in (17) ends the proof. QED
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I What other deep Clausen-like hypergeometric fac-

torizations lurk within?

• If one suspects that (2) holds, once one can com-

pute these sums well, it is easy to verify many

cases numerically and be entirely convinced.

♠ This is the unique non-commutative analogue of

Euler’s evaluation of ζ(2n).
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APPENDIX II. MATHEMATICAL MODELS

Felix Klein’s heritage

Considerable obstacles generally present them-
selves to the beginner, in studying the ele-
ments of Solid Geometry, from the practice
which has hitherto uniformly prevailed in this
country, of never submitting to the eye of the
student, the figures on whose properties he is
reasoning, but of drawing perspective repre-
sentations of them upon a plane. . . .
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I hope that I shall never

be obliged to have recourse

to a perspective drawing of

any figure whose parts are

not in the same plane. Au-

gustus de Morgan (1806–

71).

• First President of the LMS, he was equally influ-

ential as an educator and a researcher

• There is evidence young children see more natu-

rally in three than two dimensions

Donald Coxeter’s

(1907–2003)

octahedral

kaleidoscope

built in Liverpool

(circa 1925)
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4D

Coxeter

polytope

with 120

do-

decahedral

faces

• In a 1997 paper, Coxeter showed his friend M.C.

Escher, knowing no math, had achieved “math-

ematical perfection” in etching Circle Limit III.

“Escher did it by instinct,” Coxeter wrote, “I did

it by trigonometry.”

David Mumford recently noted that Donald Coxeter

placed great value on working out details of compli-

cated explicit examples:
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In my book, Coxeter has been one of the

most important 20th century mathematicians

—not because he started a new perspective,

but because he deepened and extended so

beautifully an older esthetic. The classical

goal of geometry is the exploration and enu-

meration of geometric configurations of all

kinds, their symmetries and the constructions

relating them to each other. The goal

is not especially to prove theorems but to

discover these perfect objects and, in doing

this,theorems are only a tool that imperfect

humans need to reassure themselves that they

have seen them correctly. (David Mumford,

2003)
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20th C. MATHEMATICAL MODELS

Ferguson’s “Eight-Fold Way” sculpture
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The Fergusons won the 2002 Communications Award,

of the Joint Policy Board of Mathematics. The cita-

tion runs:

They have dazzled the

mathematical community

and a far wider public

with exquisite sculptures

embodying mathematical

ideas, along with artful

and accessible essays and

lectures elucidating the

mathematical concepts.

It has been known for some time that the hyperbolic

volume V of the figure-eight knot complement is

V = 2
√

3
∞∑

n=1

1

n
(
2n
n

)
2n−1∑

k=n

1

k

= 2.029883212819307250042405108549 . . .
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Ferguson’s “Figure-Eight Knot Complement”

sculpture
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In 1998, British physicist David Broadhurst conjec-

tured V/
√

3 is a rational linear combination of

Cj =
∞∑

n=0

(−1)n

27n(6n + j)2
. (19)

Ferguson’s

subtractive image

of the

BBP Pi formula

Indeed, as Broadhurst found, using PSLQ (Fergu-

son’s Integer Relation Algorithm):

V =

√
3

9

∞∑

n=0

(−1)n

27n
×

{
18

(6n + 1)2
− 18

(6n + 2)2
− 24

(6n + 3)2

− 6

(6n + 4)2
+

2

(6n + 5)2

}
.
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• Entering the following code in the Mathemati-

cian’s Toolkit, at www.expmath.info:

v = 2 * sqrt[3] * sum[1/(n*binomial[2*n,n])

* sum[1/k,{k, n,2*n-1}], {n, 1, infinity}]

pslq[v/sqrt[3],

table[sum[(-1)^n/(27^n*(6*n+j)^2),

{n, 0, infinity}], {j, 1, 6}]]

recovers the solution vector

(9, -18, 18, 24, 6, -2, 0)

• The first proof that this formula holds is given in

our recent book

• The formula is inscribed on each cast of the sculpture—

marrying both sides of Helaman!
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21st C. MATHEMATICAL MODELS

Knots 10161 (L) and 10162 (C) agree (R)∗

In a NewMedia Cave or Plato’s?

∗KnotPlot: from Little (1899) to Perko (1974) and on
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Experimental Mathematics:

Apéry-Like Identities for ζ(n)

Jonathan M. Borwein, FRSC

Research Chair in IT
Dalhousie University

Halifax, Nova Scotia, Canada

2005 Clifford Lecture IV

Tulane, March 31–April 2, 2005

We wish to consider one of the most fasci-
nating and glamorous functions of analysis,
the Riemann zeta function. (R. Bellman)

Siegel found several pages of ... numeri-
cal calculations with ... zeroes of the zeta
function calculated to several decimal places
each. As Andrew Granville has observed “So
much for pure thought alone.” (JB & DHB)

www.cs.dal.ca/ddrive

AK Peters 2004 Talk Revised: 03–29–05
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Jon Borwein
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Apéry-Like Identities for ζ(n)

The final lecture comprises a research level

case study of generating functions for zeta

functions. This lecture is based on past re-

search with David Bradley and current re-

search with David Bailey.

One example is

Z(x) := 3
∞∑

k=1

1(
2k
k

)
(k2 − x2)

k−1∏

n=1

4x2 − n2

x2 − n2

=
∞∑

n=1

1

n2 − x2
(1)


=

∞∑

k=0

ζ(2k + 2)x2 k =
1− πx cot(πx)

2x2


 .

Note that with x = 0 this recovers

3
∞∑

k=1

1(
2k
k

)
k2

=
∞∑

n=1

1

n2
= ζ(2) (2)
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Riemann’s Original 1859 Manuscript

• Showing the Euler product and the reflection
formula (s 7→ 1 − s). Even the notation is as
today.

– As seen recently on Numb3rs and Law and
Order—ζ is starting to compete with π.

3



George
Friedrich
Bernard
Riemann

(1826-1866)
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The Riemann Hypothesis

$∨£∨ ... The only Millennium and Hilbert Problem
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Curves at

and around

the 1st zero

· · · · · · · · ·
All non-real zeros have real part ‘one half’

FF Note the monotonicity of x 7→ |ζ(x + iy)|.
This is equivalent to (RH) as discovered in 2002∗.

∗By Zvengerowski and Saidal in a complex analysis class.
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ODLYZKO and the NON-TRIVIAL ZEROS

Andrew Odlyzko: Tables of zeros of the Riemann zeta function

l The first 100,000 zeros of the Riemann zeta function, accurate to within 3*10^(-9). [text, 1.8 

MB] [gzip'd text, 730 KB]

l The first 100 zeros of the Riemann zeta function, accurate to over 1000 decimal places.

[text]

l Zeros number 10^12+1 through 10^12+10^4 of the Riemann zeta function. [text]

l Zeros number 10^21+1 through 10^21+10^4 of the Riemann zeta function. [text]

l Zeros number 10^22+1 through 10^22+10^4 of the Riemann zeta function. [text]

Up [ Return to home page ]

14.13472514221.02203963925.01085758030.424876126

32.935061588 37.58617815940.91871901243.327073281

1

20 25
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5

t

2

10 15
0

I The imaginary parts of the

first 8 zeroes; they do lie on

the critical line.

I At 1022 the Law of small

numbers still rules.

I Real zeroes are at −2N
/www.dtc.umn.edu/∼odlyzko/
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An ELEMENTARY WARMUP

The well known series for arcsin2 generalizes fully:

Theorem. For |x| ≤ 2 and N = 1,2, . . .

arcsin2N
(

x
2

)

(2N)!
=

∞∑

k=1

HN(k)(
2 k
k

)
k2

x2 k, (3)

where H1(k) = 1/4 and

HN+1(k) :=
k−1∑
n1=1

1

(2n1)2

n1−1∑
n2=1

1

(2n2)2
· · ·

nN−1−1∑
nN=1

1

(2nN)2
,

and

arcsin2N+1
(

x
2

)

(2N + 1)!
=

∞∑

k=0

GN(k)
(
2 k
k

)

2(2k + 1)42k
x2k+1, (4)

where G0(k) = 1 and

GN(k) :=
k−1∑
n1=0

1

(2n1 + 1)2

n1−1∑
n2=0

1

(2n2 + 1)2
· · ·

nN−1−1∑
nN=0

1

(2nN + 1)2
.

I Thus, for N = 1,2, . . . [N = 1 recovers (2)]

∞∑

k=1

HN(k)(
2 k
k

)
k2

=
π2N

62N (2N)!
.

[ 1
72 π2, 1

31104 π4, 1
33592320 π6, 1

67722117120 π8]
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BINOMIAL SUMS and PSLQ

I Any relatively prime integers p and q such that

ζ(5)
?
=

p

q

∞∑

k=1

(−1)k+1

k5
(
2k
k

)

have q astronomically large (as “lattice basis reduc-

tion” shows).

I But · · · PSLQ yields in polylogarithms:

A5 =
∞∑

k=1

(−1)k+1

k5
(
2k
k

) = 2ζ(5)

− 4
3L5 + 8

3L3ζ(2) + 4L2ζ(3)

+ 80
∑

n>0

(
1

(2n)5
− L

(2n)4

)
ρ2n

where

L := log(ρ)

and

ρ := (
√

5− 1)/2

with similar formulae for A4, A6, S5, S6 and S7.
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• A less known formula for ζ(5) due to Koecher

suggested generalizations for ζ(7), ζ(9), ζ(11) . . .

• Again the coefficients were found by integer re-

lation algorithms. Bootstrapping the earlier pat-

tern kept the search space of manageable size.

• For example, and simpler than Koecher:

ζ(7) =
5

2

∞∑

k=1

(−1)k+1

k7
(
2k
k

) (5)

+
25

2

∞∑

k=1

(−1)k+1

k3
(
2k
k

)
k−1∑

j=1

1

j4

I We were able – by finding integer relations for

n = 1,2, . . . ,10 – to encapsulate the formulae

for ζ(4n + 3) in a single conjectured generating

function, (entirely ex machina).

9



I The discovery was:

Theorem 1 For any complex z,

∞∑

n=0

ζ(4n + 3)z4n

=
∞∑

k=1

1

k3(1− z4/k4)
(6)

=
5

2

∞∑

k=1

(−1)k−1

k3
(
2k
k

)
(1− z4/k4)

k−1∏

m=1

1 + 4z4/m4

1− z4/m4
.

• The first ‘=‘ is easy. The second is quite unex-

pected in its form.

• Setting z = 0 yields Apéry’s formula for ζ(3)

and the coefficient of z4 is (14).

∞∑

k=1

(−1)k−1

k
(
2k
k

) =
2√
5

log

(
1 +

√
5

2

)
(7)
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HOW IT WAS FOUND

I The first ten cases show (6) has the form

5

2

∑

k≥1

(−1)k−1

k3
(
2k
k

) Pk(z)

(1− z4/k4)

for undetermined Pk; with abundant data to

compute

Pk(z) =
k−1∏

m=1

1 + 4z4/m4

1− z4/m4
.

• We found many reformulations of (6), including

a marvellous finite sum:

n∑

k=1

2n2

k2

∏n−1
i=1(4k4 + i4)

∏n
i=1, i 6=k(k

4 − i4)
=

(2n

n

)
. (8)

• Obtained via Gosper’s (Wilf-Zeilberger type) tele-

scoping algorithm after a mistake in an elec-

tronic Petri dish (‘infty’ 6= ‘infinity’).
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I This finite identity was subsequently proved by

Almkvist and Granville (Experimental Math, 1999)

thus finishing the proof of (6) and giving a rapidly

converging series for any ζ(4N + 3) where N is

positive integer.

F Perhaps shedding light on the irrationality of

ζ(7)?

Recall that ζ(2N + 1) is not proven irrational

for N > 1. One of ζ(2n + 3) for n = 1,2,3,4 is

irrational (Rivoal et al).

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Kakeya’s needle

was an excellent

false conjecture

12



PAUL ERDŐS (1913-1996)

Paul Erdős, when shown (8) shortly before his death,

rushed off.

Twenty minutes later he returned saying he did not

know how to prove it but if proven it would have

implications for Apéry’s result (‘ζ(3) is irrational’).
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The CURRENT RESEARCH

• We now document the discovery of two gen-
erating functions for ζ(2n + 2), analogous to
earlier work for ζ(2n + 1) and ζ(4n + 3), initi-
ated by Koecher and completed by various other
authors.

Recall: an integer relation relation algorithm is an
algorithm that, given n real numbers
(x1, x2, · · · , xn), finds integers ai such that

a1x1 + a2x2 + · · ·+ anxn = 0,

at least to within available numerical precision, or
else establishes that there are no integers ai within
a ball of radius A—in the Euclidean norm:

A = (a2
1 + a2

2 + · · ·+ a2
n)

1/2.

• Helaman Ferguson’s “PSLQ” is the most widely
known integer relation algorithm, although vari-
ants of the “LLL” algorithm are also well used.

c© Such algorithms are now the basis of the the
“Recognize” function in Mathematica and of
the “identify” function in Maple, and form the
basis of our work.
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• The existence of series formulas involving cen-
tral binomial coefficients in the denominators for
the ζ(2), ζ(3), and ζ(4)—and the role of the for-
mula for ζ(3) in Apéry’s proof of its irrationality
—has prompted considerable effort to extend
these results to larger integer arguments.

The formulas in question are

ζ(2) = 3
∞∑

k=1

1

k2
(
2k
k

), (9)

ζ(3) =
5

2

∞∑

k=1

(−1)k−1

k3
(
2k
k

) , (10)

ζ(4) =
36

17

∞∑

k=1

1

k4
(
2k
k

). (11)

(9) has been known since the 19C—it relates to
arcsin2(x)—while (10) was variously discovered in
the 20C and (11) was proved by Comptet. These
three are the only single term identities or “seeds”.

• A coherent proof of all three was provided by
Borwein-Broadhurst-Kamnitzer in course of a
more general study of such central binomial se-
ries and so called multi-Clausen sums.
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These results make it tempting to conjecture

Q5 = ζ(5)/
∞∑

k=1

(−1)k−1

k5
(
2k
k

)

is a simple rational or algebraic number.

Example. Integer relation shed light on Q5.

1997 If Q5 is algebraic of degree 24 then the Euclid-
ean norm of coefficients exceeds 2× 1037.

2005 Using 10,000-digit precision, the norm exceeds
1.24× 10383.

2005 If ζ(5) is algebraic of degree 24 its norm exceeds
1.98× 10380. 2

Moreover, a study of polylogarithmic ladders in the
golden ratio (BBK), produced

2 ζ(5)−
∞∑

k=1

(−1)k+1

k5
(2k

k

) =
5

2
Li5 (ρ)− 5

2
Li4 (ρ) ln ρ + ζ (3) log2 ρ

− 1

3
ζ(2) log3 ρ− 1

24
log5 ρ, (12)

where ρ = (3−√5)/2 and where LiN(z) =
∑∞

k=1 zk/kN

is the polylogarithm of order N .
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• Since the terms on the right hand side are al-

most certainly algebraically independent, we see

how unlikely it is that Q5 is rational.

• We note that at present it is proven only that

one of ζ(5), ζ(7), ζ(9), ζ(11) is irrational; and

that a nontrivial density of all odd values is.

Given the negative result from PSLQ computations

for Q5, Bradley and JMB systematically investigated

the possibility of a multi-term identity of this general

form for ζ(2n + 1).

The following was then recovered early in experi-

mental searches using computer-based integer rela-

tion tools:

ζ(5) = 2
∞∑

k=1

(−1)k+1

k5
(
2k
k

) − 5

2

∞∑

k=1

(−1)k+1

k3
(
2k
k

)
k−1∑

j=1

1

j2
(13)

I In a similar way, identities were found for ζ(7), ζ(9)

and ζ(11) (the identity for ζ(9) is listed later):
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ζ(7) =
5

2

∞∑

k=1

(−1)k+1

k7
(
2k
k

) +
25

2

∞∑

k=1

(−1)k+1

k3
(
2k
k

)
k−1∑

j=1

1

j4

(14)

ζ(11) =
5

2

∞∑

k=1

(−1)k+1

k11
(
2k
k

) +
25

2

∞∑

k=1

(−1)k+1

k7
(
2k
k

)
k−1∑

j=1

1

j4

− 75

4

∞∑

k=1

(−1)k+1

k3
(
2k
k

)
k−1∑

j=1

1

j8

+
125

4

∞∑

k=1

(−1)k+1

k3
(
2k
k

)
k−1∑

j=1

1

j4

k−1∑

i=1

1

i4
. (15)

• Note that the formulas for ζ(7) and ζ(11) in-

clude, as the first term, a close analogue of the

formula for ζ(3) given above, and the first two

coefficients in (15) clearly repeat those in (14).

– this suggested that a “bootstrap” approach

might allow production of enough higher-level

formulas for ζ(4n+3) for m = 2,3, · · · to de-

termine the closed form:
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• Indeed, this was the case; in fact, such “boot-

strapping” helped by restricting the number of

multiple relations that otherwise makes the analy-

sis difficult or impossible.

– we were able to sum all higher variables up to

k−1 which significantly speeds up numerical

computation

• such issues have, so far, prevented the gener-

alization of formulas such as the one above for

ζ(5) to the general case of ζ(4n + 1)

The following general formula, due to Koecher fol-

lowing techniques of Knopp and Schur,

1

2

∞∑

k=1

(−1)k+1
(
2 k
k

)
k3

5 k2 − x2

k2 − x2

k−1∏

n=1

(
1− x2

n2

)

=
∞∑

n=1

1

n
(
n2 − x2

). (16)

gives (13) as its second term but more complicated

expressions for ζ(7) and ζ(11) than (14) and (15).
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After bootstrapping, an application of the “Pade”
function, which in both Mathematica and Maple
produces Padé approximations to a rational func-
tion satisfied by a truncated power series, produced
the following remarkable result:

5

2

∞∑

k=1

(−1)k−1

k3
(
2k
k

)
(1− x4/k4)

k−1∏

m=1

(
1 + 4x4/m4

1− x4/m4

)

=
∞∑

n=0

ζ(4n + 3)x4n =
∞∑

k=1

1

k3(1− x4/k4)
(17)

• rigorously established by Almkvist-Granville, it
can now be handled in part symbolically by Wilf-
Zeilberger (WZ) methods

It is also the x = 0 case of the unified formula con-
jectured by Cohen after much experiment (Rivoal,
2005):

1

2

∞∑

k=1

(−1)k+1

k
(
2 k
k

) 5 k2 − x2

k4 − x2k2 − y4
×

k−1∏

n=1

(
n2 − x2

)2
+ 4 y4

n4 − x2n2 − y4

=
∞∑

n=1

n

n4 − x2n2 − y4

(18)

in which setting y = 0 recovers (16).
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• Stimulated by Rivoal’s paper, we decided to re-

visit the even ζ-values.

An analogous, but more deliberate, experimental

procedure, as detailed below yielded a formula for

ζ(2n + 2) that is pleasingly parallel to (17):

3
∞∑

k=1

1

k2
(
2 k
k

) (
1− x2/k2

)
k−1∏

m=1

(
1− 4x2/m2

1− x2/m2

)

=
∞∑

n=0

ζ (2n + 2)x2n =
∞∑

m=1

1(
m2 − x2

) (19)

=
π cot(πx)x− 1

x2
.

OCR and Touch

¤ We finish by discussing the existence of a for-

mula based on the seed ζ(4), and like questions.
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The Details for ζ(2n + 2)

¤ We applied a similar though distinct experimen-
tal approach to produce a generating function
for ζ(2n + 2). We describe this process of dis-
covery in some detail as the general technique
appears to be quite fruitful.

Conjecture: ζ(2n + 2) is a rational combi-
nation of terms of the form

σ(2r; [2a1, · · · ,2aN ]) :=
∑

k>ni>0

1

k2r
(
2k
k

) ∏N
i=1 n

2ai
i

,

(20)

where r +
∑N

i=1 ai = n + 1, and the ai are
listed in nonincreasing order

- RHS is independent of the order of the ai

One can then write

Z(x) :=
∞∑

n=0

ζ(2n + 2)x2n (21)

=
∞∑

n=0

∞∑

r=1

∑

π∈Π(n−r)

α(k, π)σ(2r; 2π)x2r+2(n−r),

as Π(m) ranges over additive partitions of m.
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Write α(π) := α(0, π) and define σ̂k([·]) := 1 for the
null partition [·], and, for a partition π = (π1, π2, . . . , πN)
of m > 0, written in nonincreasing order,

σ̂k(π) :=
∑

k>ni>0

1

n
2π1
i · · ·n2πN

N

. (22)

I The α’s appear to be independent of k:

Z(x) =
∞∑

n=0

∞∑

r=1

∑

π∈Π(n−r)

α(π)σ(2r; 2π)x2r+2(n−r)

=
∞∑

k=1

1(
2k
k

)
∞∑

r=0

x2r

k2r+2

n−1∑

m=0

∑

Π(m)

α(π)σ̂k(π)x2m

=
∑

k≥1

1(
2k
k

)
(k2 − x2)

Pk(x)

for functions P1, P2, . . . , Pk, . . . whose form must
be determined.

• Crucially we compute that for some γk,m

Pk(x) =
∑

m≥0

γk,m x2m (23)

=
∞∑

m=0





∑

π∈Π(m)

α(π)
∑

ni<k

1

n
2π1
i · · ·n2πN

N





x2m.
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F Our strategy is to compute the first few ex-

plicit cases of Pk(x), and hope they permit us

to extrapolate the closed form, much as in the

case of ζ(4n + 3).

• Some examples we produced are shown below.

At each step we “bootstrapped,” noting that

certain coefficients of the current result are the

coefficients of the previous result.

– we found the remaining coefficients by inte-

ger relation computations

• In particular, we computed high-precision (200-

digit) numerical values of the assumed terms

and the left-hand-side zeta value, and then ap-

plied PSLQ to find the rational coefficients.

– in each case we “hard-wired” the first few

coefficients to agree with the coefficients of

the preceding formula
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• Note below that in the sigma notation, the first

few coefficients of each expression are simply

the previous step’s terms, where the first ar-

gument of σ (corresponding to r) has been in-

creased by two.

• These terms (with coefficients in bold) are fol-

lowed by terms for the other partitions

– with all terms ordered lexicographically by

partition

– shorter partitions are listed before longer par-

titions, and, within a partition of a given

length, larger entries are listed before smaller

entries in the first position where they differ

(the integers in brackets are nonincreasing):
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ζ(2) = 3
∞∑

k=1

1(2k
k

)
k2

= 3σ(2, [0]),

ζ(4) = 3
∞∑

k=1

1(2k
k

)
k4
− 9

∞∑

k=1

∑k−1
j=1 j−2

(2k
k

)
k2

= 3σ(4, [0])− 9σ(2, [2])

ζ(6) = 3
∞∑

k=1

1(2k
k

)
k6
− 9

∞∑

k=1

∑k−1
j=1 j−2

(2k
k

)
k4

− 45

2

∞∑

k=1

∑k−1
j=1 j−4

(2k
k

)
k2

+
27

2

∞∑

k=1

k−1∑

j=1

∑k−1
i=1 i−2

j2
(2k

k

)
k2

,

= 3σ(6, [])− 9σ(4, [2])− 45

2
σ(2, [4]) +

27

2
σ(2, [2,2])

ζ(8) = 3σ(8, [])− 9σ(6, [2])− 45

2
σ(4, [4]) +

27

2
σ(4, [2,2])

−63σ(2, [6]) +
135

2
σ(2, [4,2])− 27

2
σ(2, [2,2,2])

ζ(10) = 3σ(10, [])− 9σ(8, [2])− 45

2
σ(6, [4]) +

27

2
σ(6, [2,2])

−63σ(4, [6]) +
135

2
σ(4, [4,2])− 27

2
σ(4, [2,2,2])

−765

4
σ(2, [8]) + 189σ(2, [6,2]) +

675

8
σ(2, [4,4])

−405

4
σ(2, [4,2,2]) +

81

8
σ(2, [2,2,2,2]),
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• From the above results, one can immediately

read that α([·]) = 3, α([1]) = −9, α([2]) =

−45/2, α([1,1]) = 27/2, and so forth.

Table 1 presents the values of α that we obtained

in this manner.

Partition α Partition α Partition α
[empty] 3/1 1 -9/1 2 -45/2
1,1 27/2 3 -63/1 2,1 135/2
1,1,1 -27/2 4 -765/4 3,1 189/1
2,2 675/8 2,1,1 -405/4 1,1,1,1 81/8
5 -3069/5 4,1 2295/4 3,2 945/2
3,1,1 -567/2 2,2,1 -2025/8 2,1,1,1 405/4
1,1,1,1,1 -243/40 6 -4095/2 5,1 9207/5
4,2 11475/8 4,1,1 -6885/8 3,3 1323/2
3,2,1 -2835/2 3,1,1,1 567/2 2,2,2 -3375/16
2,2,1,1 6075/16 2,1,1,1,1 -1215/16 1 ... 1 243/80
7 -49149/7 6,1 49140/8 5,2 36828/8
5,1,1 -27621/10 4,3 32130/8 4,2,1 -34425/8
4,1,1,1 6885/8 3,3,1 -15876/8 3,2,2 -14175/8
3,2,1,1 17010/8 3,1,1,1,1 -1701/8 2,2,2,1 10125/16
2,2,1,1,1 -6075/16 2,1,1,1,1,1 729/16 1 ... 1 -729/560
8 -1376235/56 7,1 1179576/56 6,2 859950/56
6,1,1 -515970/56 5,3 902286/70 5,2,1 -773388/56
5,1,1,1 193347/70 4,4 390150/64 4,3,1 -674730/56
4,2,2 -344250/64 4,2,1,1 413100/64 4,1,1,1,1 -41310/64
3,3,2 -277830/56 3,3,1,1 166698/56 3,2,2,1 297675/56
3,2,1,1,1 -119070/56 3,1,1,1,1,1 10206/80 2,2,2,2 50625/128
2,2,2,1,1 -60750/64 2,2,1,1,1,1 18225/64 2,1 ... 1 -1458/64
1 ... 1 2187/4480

Alpha coefficients found by PSLQ
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• Using these results, we use formula (23) to cal-

culate series approximations—to order 17— for

the functions Pk(x):

P3(x) ≈ 3− 45

4
x2 − 45

16
x4 − 45

64
x6 − 45

256
x8 − 45

1024
x10 − 45

4096
x12 − 45

16384
x14

− 45

65536
x16

P4(x) ≈ 3− 49

4
x2 +

119

144
x4 +

3311

5184
x4 +

38759

186624
x6 +

384671

6718464
x8

+
3605399

241864704
x10 +

33022031

8707129344
x12 +

299492039

313456656384
x14

P5(x) ≈ 3− 205

16
x2 +

7115

2304
x4 +

207395

331776
x6 +

4160315

47775744
x8 +

74142995

6879707136
x10

+
1254489515

990677827584
x12 +

20685646595

142657607172096
x14

+
336494674715

20542695432781824
x16

P6(x) ≈ 3− 5269

400
x2 +

6640139

1440000
x4 +

1635326891

5184000000
x6 − 5944880821

18662400000000
x8

− 212874252291349

67184640000000000
x10 − 141436384956907381

241864704000000000000
x12

− 70524260274859115989

870712934400000000000000
x14

− 31533457168819214655541

3134566563840000000000000000
x16

P7(x) ≈ 3− 5369

400
x2 +

8210839

1440000
x4 − 199644809

5184000000
x6 − 680040118121

18662400000000
x8

− 278500311775049

67184640000000000
x10 − 84136715217872681

241864704000000000000
x12

− 22363377813883431689

870712934400000000000000
x14

− 5560090840263911428841

3134566563840000000000000000
x16.

28



• With these approximations in hand, we attempt
to determine closed-form expressions for Pk(x).

This can be done by using either “Pade” func-
tion in either Mathematica or Maple.

We obtained the following values∗:

P1(x) = 3

P2(x) =
3(4x2 − 1)

(x2 − 1)

P3(x) =
12(4x2 − 1)

(x2 − 4)

P4(x) =
12(4x2 − 1)(4x2 − 9)

(x2 − 4)(x2 − 9)

P5(x) =
48(4x2 − 1)(4x2 − 9)

(x2 − 9)(x2 − 16)

P6(x) =
48(4x2 − 1)(4x2 − 9)(4x2 − 25)

(x2 − 9)(x2 − 16)(x2 − 25)

P7(x) =
192(4x2 − 1)(4x2 − 9)(4x2 − 25)

(x2 − 16)(x2 − 25)(x2 − 36)

¨ These results immediately predict the general
form of a generating function identity:

∗A bug in first alpha run gave a more complicated numerator
for P5 !

29



Z(x) = 3
∞∑

k=1

1(
2k
k

)
(k2 − x2)

k−1∏

n=1

4x2 − n2

x2 − n2
(24)

=
∞∑

k=0

ζ(2k + 2)x2 k =
∞∑

n=1

1

n2 − x2

=
1− πx cot(πx)

2x2
(25)

We have confirmed this result in several ways:

1. Symbolically computing the series coefficients
of the LHS and the RHS of (25), and have ver-
ified that they agree up to the term with x100.

2. We verified that Z(1/6), computing using (24),
agrees with 18−3

√
3π, computed using (25), to

over 2,500 digit precision; likewise for Z(1/2) =
2, Z(1/3) = 9/2 − 3π/(2

√
3), Z(1/4) = 8 − 2π

and Z(1/
√

2) = 1− π/
√

2 · cot(π/
√

2).

3. We then checked that formula (24) gives the
same numerical value as (25) for the 100 pseudo-
random values {mπ}, for 1 ≤ m ≤ 100, where
{·} denotes fractional part.
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A Computational Proof

• Identity (24)–(25) can be proven by the meth-
ods of Rivoal’s recent paper, which combine
those in Borwein-Bradley and Almkvist-Granville.
This relies on the equivalent finite identity:

3n2
2n∑

k=n+1

∏k−1
m=n+1

4n2−m2

n2−m2(
2 k
k

) (
k2 − n2

) =
1(
2n
n

) − 1(
3n
n

)

– we rewrite (26) as

3F2

(
3n, n + 1,−n

2n + 1, n + 1/2
;
1

4

)
=

(
2n
n

)
(
3n
n

). (26)

and set P (n) = 3F2

(
3n,n+1,−n

2n+1,n+1/2;
1
4

)
, R(n) =

(
2n
n

)
/
(
3n
n

)
. Then P (0) = 1 = R(0) while

P (n + 1)

P (n)
=

4 (2n + 1)2

3 (3n + 2)(3n + 1)
=

R(n + 1)

R(n)
,

where Maple or WZ gives the simplification.

– thus, inductively P (n) = R(n) for all n.

• We have proven (26). QED
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The Details for ζ(2n + 4)

We have likewise now obtained for the third seed:

ζ(4) =
36

17

∞∑

k=1

1

k4
(
2k
k

),

the generating function

W(x) =
∞∑

k=1

1(
2 k
k

)
k2

1

k2 − x2

k−1∏

n=1

(
1− x2

n2

)

=
∞∑

k=1

1

(2k)!

∏k−1
n=1

(
n2 − x2

)

k2 − x2
(27)

=
∞∑

n=0

γn ζ(2n + 4)x2n (28)

?
= α0

∞∑

n=1

1

n4
R

(
x2

n2

)

(29)

where the coefficients γn are again computable ra-

tional numbers:
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W(x) =
17

36
ζ(4) +

313

648
ζ(6)x2 +

23147

46656
ζ(8)x4

+
1047709

2099520
ζ(10)x6 + O

(
x8

)
.

• We observe that for integers, η2n,

γ2n =
η2n

62n−2numer(B2n)
.

– this suggest that perhaps we are looking at

multiples of arcsin(1/2) not Zeta values.

Indeed,

σ(2; [2, · · · ,2︸ ︷︷ ︸
N−1

]) =
(π/3)2N

(2N)!
,

for N ≥ 1.

• The η2n values begin

17,626,23147,4190836,20880863207 . . .

We aim so to determine the form of the function

R. The anticipated form is along the lines of

(16), (18), and (19).

33



1. First, suppose R is rational of degree N in x2:

RN(x) =
2N∑

m=1

αm

βm − x
, R(j)

N (0) =
2N∑

m=1

j!αm

(βm)j+1
,

having RN(0) = 1, and with coefficients deter-
mined by

W(2j)(0) = (2j − 1)! γ2j ζ(2j + 4)

= α0R(2j)
N (0) ζ(2j + 4).

Thus, α0 = 17/36 and the conditions to be met
are that for some N

γj =
17

36

2N∑

m=1

αm

(βm)j+1

for j = 1,2, .., N with γ2j+1 ≡ 0.

• this does not appear to be solvable

2. We next look for a rational poly-exponential
generating function in which

RN(x) =

∑N
i=1 pi(x)e

λix

∑N
i=1 qi(x)eµix

,

for polynomials pi, qi and scalars λi, µi, as is the
case for the Bernoulli numbers (t/(exp(t)− 1)),
Euler numbers (2 sech(x)) and on.
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CONCLUDING COMMENTS

We believe that this general experimental procedure

will ultimately yield results for yet other classes of

arguments, such as for ζ(4n+m), m = 0 or m = 1,

but our current experimental results are negative.

I. Considering ζ(4n + 1), for n = 9 the simplest

evaluation we know is

ζ(9) =
9

4

∞∑

k=1

(−1)k+1

k9
(2k

k

) − 5

4

∞∑

k=1

(−1)k+1

k7
(2k

k

)
k−1∑

j=1

1

j2

+ 5
∞∑

k=1

(−1)k+1

k5
(2k

k

)
k−1∑

j=1

1

j4

+
45

4

∞∑

k=1

(−1)k+1

k3
(2k

k

)
k−1∑

j=1

1

j6
− 25

4

∞∑

k=1

(−1)k+1

k3
(2k

k

)
k−1∑

j=1

1

j4

k−1∑

j=1

1

j2
,

This is one term shorter than the ‘new’ iden-

tity for ζ(9) given by Rivoal, which comes from

taking the coefficient of x2 y4 in (18).
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II. For ζ(2n + 4) (and ζ(4n)) starting with (11)

which we again recall:

ζ(4) =
36 · 1
17

∞∑

k=1

1

k4
(
2k
k

),

the identity for ζ(6) most susceptible to boot-

strapping is

ζ(6) =
36 · 8
163



∞∑

k=1

1

k6
(
2k
k

) +
3

2

∞∑

k=1

1

k2
(
2k
k

)
k−1∑

j=1

1

j4




• For ζ(8)—and ζ(10)—we have enticingly found:

ζ(8) =
36 · 64

1373

[ ∞∑
k=1

1

k8
(
2k
k

) +
9

4

∞∑
k=1

1

k4
(
2k
k

)
k−1∑
j=1

1

j4
+

3

2

∞∑
k=1

1

k2
(
2k
k

)
k−1∑
j=1

1

j6

]

– but this pattern is not fruitful; it stops after

one more case (n = 10).
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Enter RAMANUJAN Again

Hyperbolic series connect ζ(2N + 1) and π2N+1

• For M ≡ −1 (mod 4)

ζ(4N + 3) = −2
∑

k≥1

1

k4N+3
(
e2πk − 1

)

+
2

π

{
4N + 7

4
ζ(4N + 4)−

N∑

k=1

ζ(4k)ζ(4N + 4− 4k)

}

where the interesting term is the hyperbolic series.

• Correspondingly, for M ≡ 1 (mod 4)

ζ(4N + 1) = − 2

N

∑

k≥1

(πk + N)e2πk −N

k4N+1(e2πk − 1)2

+
1

2Nπ

{
(2N+1)ζ(4N+2)+

∑2N
k=1(−1)k2kζ(2k)ζ(4N+2−2k)

}
.

• Only a finite set of ζ(2N) values is required and
the full precision value eπ is reused throughout.

¦ eπ is the easiest transcendental to fast compute
(by elliptic methods). One “differentiates” e−sπ

to obtain π (via the AGM iteration).
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• For ζ(4N + 1), I decoded “nicer” series from a

couple of PSLQ observations by Simon Plouffe.

THEOREM. For N = 1,2, . . .

{
2− (−4)−N

} ∞∑

k=1

coth(kπ)

k4N+1
− (−4)−2N

∞∑

k=1

tanh(kπ)

k4N+1

= QN × π4N+1, (30)

where the quantity QN in (30) is an explicit rational:

QN : =
2N+1∑

k=0

B4N+2−2kB2k

(4N + 2− 2k)!(2k)!

×
{
(−1)(

k
2) (−4)N2k + (−4)k

}
.

• On substituting

tanh(x) = 1− 2

exp(2x) + 1

and

coth(x) = 1 +
2

exp(2x)− 1

one may solve for

ζ(4N + 1).
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FF We finish with two examples:

ζ(5) =
1

294
π5

− 2

35

∞∑

k=1

1

(1 + e2kπ)k5
+

72

35

∞∑

k=1

1

(1− e2kπ)k5
.

and

ζ(9) =
125

3704778
π9

− 2

495

∞∑

k=1

1

(1 + e2kπ)k9
+

992

495

∞∑

k=1

1

(1− e2kπ)k9
.

• Will we ever identify universal formulae like (30)
automatically? My work was highly human aided.

• How do we connect these to the binomial sums?

Knots, Pens and Cameras
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CARL FRIEDRICH GAUSS

I Boris Stoicheff’s often enthralling biography of

Herzberg∗ records Gauss writing:

It is not knowledge, but the act of

learning, not possession but the

act of getting there which gener-

ates the greatest satisfaction.

Carl Friedrich Gauss (1777-1855)

Fractals in

Gauss’ discovery

of modularity

in theta functions

(k=k(q))

∗Gerhard Herzberg (1903-99) fled Germany for Saskatchewan
in 1935 and won the 1971 Chemistry Nobel
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