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Abstract

In this paper we describe numerical investigations of definite integrals that
arise by considering the moments of multi-step uniform random walks in the
plane, together with a closely related class of integrals involving the elliptic
functions K,K ′, E and E′. We find that in many cases such integrals can be
“experimentally” evaluated in closed form or that intriguing linear relations ex-
ist within a class of similar integrals. Discovering these identities and relations
often requires the evaluation of integrals to extreme precision, combined with
large-scale runs of the “PSLQ” integer relation algorithm. This paper presents
details of the techniques used in these calculations and mentions some of the
many difficulties that can arise.

1 Introduction

In previous studies by the present authors and a number of collaborators [BBC2006,
BBC2007, BBC2007a, BBC2010], we have evaluated integrals to extreme precision,
identified these numerical values in analytic terms, then (in most cases) subsequently
proved the resulting experimentally discovered formulas. In some cases, we have had
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difficulty finding analytic evaluations for individual integrals, but nonetheless discov-
ered (and subsequently proved) intriguing linear relations within a class of integrals.
These studies have underscored the enormous power of the experimental method in
this arena, although many challenges (both mathematical and computational) must
be overcome to obtain reliable results.

2 Research problems

We present in this paper two new applications of this methodology, which, as it turns
out, are closely related at a basic mathematical level: (a) multi-step uniform random
walks in the plane, and (b) the theory of moments of elliptic integral functions. In
(a), earlier studies by one of the present authors and several other collaborators
have discovered some very interesting formulas for the resulting integrals, but it
is clear that much remains to be done. In (b), earlier studies have found some
interesting relations among sets of integrals. In both of these applications, we have
found that very high-precision numerical values (at least several hundred digits,
and in some cases several thousand digits) are required to provide high levels of
numerical confidence. Even so, as we will see below, some issues remain unresolved,
because even with well over 1000-digit precision, we still cannot definitively answer
some questions. We suspect that many marvelous results remain hidden due to the
inadequacy of our tools, which from a perspective ten years hence will doubtless
appear to be pathetically underpowered.

2.1 Ramble integrals

Continuing research commenced in [BNSW2009, BSW2010], for complex s, we con-
sider the n-dimensional integral

Wn(s) :=

∫
[0,1]n

∣∣∣∣∣
n∑
k=1

e2πxki,

∣∣∣∣∣
s

dx (1)

which occurs in the theory of uniform random walk integrals in the plane, where at
each step a unit-step is taken in a random direction. Integrals such as (1) are the
s-th moment of the distance to the origin after n steps. The study of such walks
largely originated with Karl Pearson more than a century ago [Pear1905, Pear1905b,
Pear1906], and in his honor we will call these ramble integrals. Such integrals can be
studied by a mixture of analytic, combinatoric, algebraic and probabilistic methods
and provide both numeric and symbolic computation challenges. Nearly all of the
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results cited in [BNSW2009, BSW2010] were initially discovered by experimental
explorations.

For n > 3, the integral (1) is well-defined and analytic for Re s > −2. Its
analytic continuation to the complex plane features poles at certain negative integers
[BNSW2009]. Figure 1 shows the continuations of W3 and W4 on the negative real
axis. W3 has poles at negative even integers. The graphs suggest that the functions
are zero at negative odd integers, but they are not.
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Figure 1: W3, W4 analytically continued to the real line.

It is easy to determine that W1(s) = 1, and W2(s) =
(
s
s/2

)
. Also, it is proven in

[BNSW2009] that, for k a nonnegative integer,

W3(k) = Re 3F2

(
1
2
,−k

2
,−k

2

1, 1

∣∣∣∣4) , (2)

where F denotes the generalized hypergeometric function. The following specific
values were also established in [BNSW2009]:

W3(1) =
4
√

3

3

(
3F2

(
−1

2
,−1

2
,−1

2

1, 1

∣∣∣∣14
)
− 1

π

)
+

√
3

24
3F2

(
1
2
, 1
2
, 1
2

2, 2

∣∣∣∣14
)

(3)

=
3

16

21/3

π4
Γ6

(
1

3

)
+

27

4

22/3

π4
Γ6

(
2

3

)
, (4)

W3(−1) = 2
√

3
K2 (k3)

π2
=

3

16

21/3

π4
Γ6

(
1

3

)
=

2
1
3

4π2
β2

(
1

3

)
, (5)

where β(x) = B(x, x) is a central Beta-function value [Borw1987]. Similar expres-
sions can be given for W3 evaluated at odd integers.
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When s is an even positive integer, the moments Wn(s) take explicit integer
values:

Wn(2k) =
∑

a1+···+an=k

(
k

a1, . . . , an

)2

. (6)

Based on these results and others, the following conjecture was first presented in
[BNSW2009]. A complete resolution when n = 2 is given in [BSWZ2010], and
progress was made on the general case in [BSW2010].

Conjecture 1. For positive integers n and complex s,

W2n(s)
?
=
∑
j>0

(
s/2

j

)2

W2n−1(s− 2j). (7)

It was shown in 1906 by Kluyver, see [BNSW2009], that the probability that an
n-step walk ends up within a disc of radius α is given by

Pn(α) = α

∫ ∞
0

J1(αx)Jn0 (x) dx. (8)

Using this result, David Broadhurst [Broad2009] established

Wn(s) = 2s+1−k Γ(1 + s
2
)

Γ(k − s
2
)

∫ ∞
0

x2k−s−1
(
−1

x

d

dx

)k
Jn0 (x) dx, (9)

which is valid whenever 2k > s > −n
2
. Here Jν(z) denotes the Bessel function of

the first kind [AS1970, Ch. 9]. This representation allowed Broadhurst to provide
confirmation of Conjecture 1 to 50 places for n 6 13.

Reasoning from the above results and applying a number of other results, the
authors of [BSW2010] deduced a large number of intriguing results, including the
following items (here Cl denotes the Clausen function, and γ denotes the Euler-
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Mascheroni constant = 0.5772156649015. . . ):

Res−2(W3) =
8 + 12W ′

3(0)− 4W ′
3(2)

9
=

2√
3π

(10)

W ′
3(0) =

1

2

∫ 1

0

∫ 1

0

log(4 sin(πy) cos(2πx) + 3− 2 cos(2πy)) dx dy

=

∫ 5/6

1/6

log(2 sin(πy)) dy =
1

π
Cl
(π

3

)
(11)

W ′
3(2) = 2 +

3

π
Cl
(π

3

)
− 3
√

3

2π
(12)

W ′
4(0) =

3

8π2

∫ π

0

∫ π

0

log (3 + 2 cosx+ 2 cos y + 2 cos(x− y)) dx dy

=
7

2

ζ(3)

π2
(13)

Res−2(W5) =
16 + 1140W ′

5(0)− 804W ′
5(2) + 64W ′

5(4)

225
(14)

=

√
5/3

π
2F1

(
1
3
, 2
3

1

∣∣∣∣1−√5

2

)2

(15)

Res−4(W5) =
26 Res−2(W5)− 16− 20W ′

5(0) + 4W ′
5(2)

225
(16)

W ′
n(0) = log(2)− γ −

∫ 1

0

(Jn0 (x)− 1)
dx

x
−
∫ ∞
1

Jn0 (x)
dx

x
(17)

= log(2)− γ − n
∫ ∞
0

log(x)Jn−10 (x)J1(x) dx (18)

W ′′
n (0) = n

∫ ∞
0

(
log

(
2

x

)
− γ
)2

Jn−10 (x)J1(x) dx (19)

W ′
n(−1) = (log 2− γ)Wn(−1)−

∫ ∞
0

log(x)Jn0 (x) dx (20)

W ′
n(1) =

∫ ∞
0

n

x
Jn−10 (x)J1(x) (1− γ − log(2x)) dx (21)

While these and other evaluations have been confirmed, and all — most recently
(15) in [BSWZ2010] — are now proven, there is continuing interest in extending
these results to larger specific values of n and s.
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2.2 Elliptical function integrals

In another very recent study of moments of elliptic integral functions, we examined
integrals of the form

I(n0, n1, n2, n3, n4) :=

∫ 1

0

xn0Kn1(x)K ′n2(x)En3(x)E ′n4(x) dx, (22)

where the elliptic functions K,E and their complementary versions are given by:

K(x) :=

∫ 1

0

dt√
(1− t2)(1− x2t2)

K ′(x) := K(
√

1− x2)

E(x) :=

∫ 1

0

√
1− x2t2√
1− t2

dt

E ′(x) := E(
√

1− x2). (23)

The motivation for this study was the discovery in [BSW2010] of the following
elliptic integral representations for the moments of a 4-step walk. We found that

W4(−1) =
8

π3

∫ 1

0

K2(x) dx (24)

W4(1) =
96

π3

∫ 1

0

E ′(x)K ′(x) dx− 8W4(−1), (25)

and, inter alia, that

2

∫ 1

0

K(x)2dx =

∫ 1

0

K ′(x)2dx =
(π

2

)4
7F6

( 5
4
, 1
2
, 1
2
, 1
2
, 1
2
, 1
2
, 1
2

1
4
, 1, 1, 1, 1, 1

∣∣∣∣1) , (26)

while

2

∫ 1

0

K ′(x)E ′(x) dx =

∫ 1

0

(1− x2)K ′(x)2 dx. (27)

These last two equations were unfamiliar to us and our colleagues, and so we deter-
mined to see what other such relations held. This investigation has led us to the
need for systematic exploration, via high-precision numerical computation, of a large
collection of these integrals.
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3 High-precision numerical integration

In several previous studies [BBC2006, BBC2007, BBC2007a, BBC2010], we have
relied heavily on an experimental approach, wherein we compute integrals to very
high precision and then use tools such as the PSLQ algorithm [FBA1999, BB2000]
to identify the resulting numerical values. But in contrast to the majority of the
integrals we computed in the earlier studies, integrals such as∫ ∞

0

log(x)Jn−10 (x)J1(x) dx dt, (28)

which we mentioned in (18) above, present considerable challenges.

3.1 Gaussian quadrature

In our previous studies, we have used either Gaussian quadrature or the “tanh-
sinh” quadrature scheme due to Takahasi and Mori [TM1974]. Gaussian quadrature

approximates
∫ 1

−1 f(x) dx as the sum
∑

0≤j<N wjf(xj), where the abscissas xj are
the roots of the N -th degree Legendre polynomial PN(x) on [−1, 1], and the weights
wj are

wj :=
−2

(N + 1)P ′N(xj)PN+1(xj)
,

see [Atkin1993, pg. 187]. The abscissas and weights are independent of f(x).
In our high-precision implementations, we compute an individual abscissa by us-

ing a Newton iteration root-finding algorithm with a dynamic precision scheme. The
starting value for xj in these Newton iterations is given by cos[π(j−1/4)/(N+1/2)],
which may be calculated using ordinary 64-bit floating-point arithmetic [Press1986,
pg. 125]. We compute the Legendre polynomial function values using an N -long
iteration of the recurrence P0(x) = 0, P1(x) = 1 and

(k + 1)Pk+1(x) = (2k + 1)xPk(x)− kPk−1(x)

for k ≥ 2. The derivative is computed as P ′N(x) = N(xPN(x) − PN−1(x))/(x2 − 1).
Full details are given in [BLJ2005].

For completely regular integrand functions, Gaussian quadrature is typically
the fastest quadrature scheme for numerical integration, although it behaves rather
poorly in other cases, such as when the integrand function has a singularity at an
endpoint. One disadvantage of Gaussian quadrature is that the cost of computing a
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set of abscissas and weights increases quadratically with N (assuming constant pre-
cision level). For many problems of interest, the precision level also increases roughly
linearly with N , so this means that the full computational cost typically increases
as N4 or N3 logN , depending on whether or not FFT-based multiplication is used.
Thus for very high precision integral evaluations, the cost of computing abscissas
and weights is typically hundreds of times greater than the cost of actually calculat-
ing a definite integral using these abscissas and weights. Fortunately, the abscissas
and weights for a given N and precision level can be computed once, then saved in
memory or on disk.

3.2 Doubly-exponential quadrature

The tanh-sinh quadrature scheme is an example of the class of doubly-exponential
schemes. They are based on the observation, rooted in the Euler-Maclaurin sum-
mation formula, that for certain bell-shaped integrands (namely those where the
function and all higher derivatives rapidly approach zero at the endpoints of the
interval), a simple block-function or trapezoidal approximation to the integral is re-
markably accurate [Atkin1993, pg. 180]. This principle is exploited in the tanh-sinh
scheme by transforming the integral of a given function f(x) on a finite interval such
as [−1, 1] to an integral on (−∞,∞), by using the change of variable x = g(t), where
g(t) = tanh(π/2·sinh t). The function g(t) has the property that g(x)→ 1 as x→∞
and g(x) → −1 as x → −∞, and also that g′(x) and all higher derivatives rapidly
approach zero for large positive and negative arguments. Thus one can write, for
h > 0, ∫ 1

−1
f(x) dx =

∫ ∞
−∞

f(g(t))g′(t) dt ≈ h
N∑

j=−N

wjf(xj), (29)

where the abscissas xj and weights wj are given by

xj = g(hj) = tanh (π/2 · sinh(hj))

wj = g′(hj) = π/2 · cosh(hj)/ cosh (π/2 · sinh(hj))2 , (30)

and where N is chosen large enough that terms beyond N (positive or negative) are
smaller than the “epsilon” of the numeric precision being used. Full details are given
in [BLJ2005].

The tanh-sinh algorithm has two key advantages over classical schemes such as
Gaussian quadrature. First of all, tanh-sinh often can be applied even when f(x) has
an infinite derivative or an integrable singularity at one or both endpoints. Also, the
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Figure 2: Plot of f(x) = sinp(πx)ζ(p, x) on [0, 1] for p = 3 (solid) and p = 3.5
(dashed).

cost of computing abscissas and weights increases only linearly with N (assuming
constant precision level). Even if the precision level is assumed to increase linearly
with N , this still leaves a N3 or N2 logN scaling factor. Thus for very high preci-
sion levels, the cost of computing abscissas and weights for tanh-sinh quadrature is
many times less than that of Gaussian quadrature. On the other hand, the actual
computation of an integral using tanh-sinh is typically more costly than Gaussian
quadrature when the integrand function is regular.

It is not always obvious, just by visual inspection of the integrand function,
to determine whether a given integrand function is regular. Consider the function
f(x) = sinp(πx)ζ(p, x) for various p. When p = 3, for instance, this function and all
of its higher derivatives are regular on the integral [0, 1]. But when p = 3.5, even
though the plot of the function itself looks entirely unremarkable, the plot of its
fourth derivative has severe blow-up singularities at 0 and 1. This is illustrated in
Figures 2 and 3. Because of these singularities in the fourth and higher derivatives,
Gaussian quadrature gives very poor results for this integrand function when p = 3.5,
even though it works quite well when p = 3. The tanh-sinh scheme, in contrast, is
not bothered by these singularities and gives high-precision results in both cases
(although it is slower than Gaussian quadrature for the p = 3 case).

4 Numerical integration of oscillatory functions

Both Gaussian quadrature and the tanh-sinh scheme are defined for the finite interval
[−1, 1]. Functions on other finite intervals can be integrated simply by an appropriate
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Figure 3: Plot of fourth derivative of f(x) = sinp(πx)ζ(p, x) on [0, 1] for p = 3 (solid)
and p = 3.5 (dashed).

linear scaling of the abscissas. Functions on a semi-infinite interval such as [0,∞)
can be handled by a simple transformation such as:∫ ∞

0

f(t) dt =

∫ 1

0

f(t) dt+

∫ 1

0

f(1/t) dt

t2
. (31)

Unfortunately, due to the oscillatory nature of Bessel functions, neither Gaussian
quadrature nor tanh-sinh quadrature is effective for high-precision integration of
functions involving Bessel functions over a half infinite interval.

Some integrals involving oscillatory integrands with trigonometric functions, such
as
∫∞
0

(1/x sinx)p dx, can be efficiently evaluated by applying a clever technique
introduced by Ooura and Mori in 1991 [Ooura1991]. For other oscillatory integrands,
such as those that arose in a previous study of p-norms of the sinc function, it is
possible to convert the integral into an infinite summation [BB2010]. But neither
this scheme nor the Ooura scheme is effective for integrating expressions with Bessel
functions.

4.1 The Sidi mW algorithm

The approach that we have found effective for Bessel functions is known as the
Sidi mW extrapolation algorithm, as described in a 1994 paper by Lucas and Stone
[LS1994], which in turn is based on two earlier papers by Sidi [Sidi1982, Sidi1988].

This algorithm evaluates an integral on a semi-infinite integral, such as
∫∞
a
f(x) dx,
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as follows. Initialize

x0 = π

S0 =

∫ x0

a

f(x) dx

T0 =

∫ x0+π

x0

f(x) dx

M0,−1 = S0/T0

N0,−1 = 1/T0. (32)

Then iterate the following calculations, for t = 0, 1, 2, · · · , until successive values of
Wt are equal to within a specified tolerance:

xt+1 = (t+ 2)π

St+1 = St + Tt =

∫ xt+1

0

f(x) dx

Tt+1 =

∫ xt+1+π

xt+1

f(x) dx,

Mt+1,−1 = St+1/Tt+1

Nt+1,−1 = 1/Tt+1, (33)

and, for s = t, t− 1, t− 2, · · · , 2, 1, 0,

Ms,t−s =
Ms,t−s−1 −Ms+1,t−s−1

1/xs − 1/xt+1

Ns,t−s =
Ns,t−s−1 −Ns+1,t−s−1

1/xs − 1/xt+1

, (34)

and, finally,

Wt =
M0,t

N0,t

. (35)

Successive values of Wt are the successive best estimates of the integral
∫∞
a
f(x) dx.

From a computer programming perspective, it should be pointed out that it is not
necessary to store the entire M and N arrays in memory. As we will mention in more
detail below, this is a crucial consideration in the actual computations described
in this paper. Instead, one can define the one-dimensional arrays M̂t and N̂t for
t = 0, 1, · · · , L, where L is some maximum anticipated iteration count. Then the
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algorithm above can be performed as stated with M̂ and N̂ in place of M and N ,
ignoring the second subscripts, where the formulas in (34) are replaced by

M̂s ←
M̂s − M̂s+1

1/xs − 1/xt+1

N̂s ←
N̂s − N̂s+1,

1/xs − 1/xt+1

. (36)

These formulas must be performed for indices s in reverse order: s = t, t − 1, t −
2, · · · , 2, 1, 0.

Note that in the above, we are taking the abscissas xt = (t+ 1)π. A spacing of π
is convenient for integrals involving Bessel functions, but another spacing might be
better for other functions. In some other formulations of this technique, xt are taken
to be the successive zeroes of the function f(x).

5 Computation of Bessel function integrals

As we mentioned above, one of our goals in this study was to compute the ramble
integrals W ′

n(0) to very high precision, for various integers n, not only so that we can
verify analytic results but also so that we can we experimentally “recognize” these
numerical values using PSLQ or similar tools (see the next section). Such derivative
values also yield logarithmic Mahler measures; see [BSWZ2010].

We found that the Sidi mW scheme described in the previous section was an
excellent solution for the case where n is an odd integer. We applied this scheme to
formulas (17) and (18) of Section 1, which we re-list here:

W ′
n(0) = log(2)− γ −

∫ 1

0

(Jn0 (x)− 1)
dx

x
−
∫ ∞
1

Jn0 (x)
dx

x
(37)

= log(2)− γ − n
∫ ∞
0

log(x)Jn−10 (x)J1(x) dx (38)

The first integral of (37) is on a finite interval and can be evaluated by tanh-sinh.
The second integral of (37) involves an oscillatory integrand with Bessel functions
on a semi-infinite interval. Here we took a = 1 in the initialization of the Sidi mW
scheme (i.e., in (32)). For the integral in (38), which also involves an oscillatory
function on a semi-infinite interval, we took a = 0 in the initialization. In both
of these cases, we used tanh-sinh quadrature to compute the two integrals in (32),
since the integrand of the first integral in particular is singular at zero. For all the
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remaining integrals (33), we employed Gaussian quadrature, since these integrals are
completely regular. However, this required the computation of a complete set of
1000-digit values of Gaussian abscissas and weights, for the abscissa-weight set sizes
N = 6, 12, 24, · · · , 3 · 211, which computation required over one hour run time.

All of these computations, except where noted specifically below, were performed
using the ARPREC arbitrary precision computation software [BHLT2002], which
is freely available from the first author’s website. ARPREC consists of a set of
C++ routines that perform basic arithmetic routines and numerous transcendental
functions, together with C++ and Fortran-90 translation modules. These translation
modules permit one to perform a calculation, such as Gaussian quadrature with Sidi
mW extrapolation, merely by changing the type statements of those variables that
one wishes to be treated as high precision. Then when one or more of these variables
appears in an expression, the compiler generates references to the appropriate low-
level arbitrary precision library routines.

To compute Bessel functions, we used the following formulas [AS1970, Sec 9.1,
9.2]:

Jn(z) =
(z

2

)n ∞∑
n=0

(−z2/4)k

k!Γ(n+ k + 1)
(39)

and

Jn(z) =

√
2

πz
[Pn(z,∞) cosχ−Qn(z,∞) sinχ]

Pn(z,D) := 1 +
D∑
k=1

(−1)k
(µ− 1)(µ− 32) · · · (µ− (4k − 1)2)

(2k)!(8z)2k

Qn(z,D) :=
D∑
k=0

(−1)k
(µ− 1)(µ− 32) · · · (µ− (4k + 1)2)

(2k + 1)!(8z)2k+1
, (40)

where χ := z − (n/2 + 1/4)π, µ := 4n2 and Pn(z,D), Qn(z,D) give genuine asymp-
totic expansions. The first formula (39) for Jn(z) is used for modest-sized values of
z, whereas the second set of formulas (40) is used for large values. In our imple-
mentation, we use the first formula for |z| < 1.25d, where d is the number of digits
of precision, and the second for larger values. One other possibility for the Bessel
function is a technique described in [BBC2008], which uses the error function to pro-
duce a uniformly convergent formula for the Bessel functions that avoids the need
for different schemes in different regions. This may be worthy of further research if
even higher precision is required.
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5.1 Odd values of W ′
n(0)

We found that based on our implementations of these algorithms, formula (17) is
faster than (18) for computing W ′

n(0). Using formula (17), we were able to compute
W ′
n(0), for n = 3, 5, 7, · · · , 17, up to 1000-digit accuracy, although in each case

hundreds of iterations of the Sidi mW scheme (and, thus, hundreds of individual
quadratures) were required. We believe our final results are accurate to 1000-digit
precision, because after several hundred iterations, the extrapolated integral results
agreed to this level. Run times (in seconds), iteration counts and 30-digit numerical
values are shown in Table 1. These calculations were performed on an eight-core 2
Ghz Apple workstation. The full 1000-digit values are available from the authors.

5.2 Even values of W ′
n(0)

For even n, we found that even the extrapolation scheme described in the previous
section was not able to produce a highly accurate value of the respective integrals.
We do not yet have a satisfactory explanation for this, but doubtless it is due to the
behavior of high-order derivatives of these integrand functions.

However, we were able to compute modestly high precision (80-digit) numerical
values in Maple by applying the asymptotic formulas for the Bessel function men-
tioned above (39). In particular, we used (17) and (39) to write

W ′
n(0) ≈ −

∫ 1

0

(Jn0 (x)− 1)
dx

x
+ log(2)− γ −

∫ C

1

Jn0 (x)
dx

x
(41)

−
∫ ∞
C

{√
2

πx
[P0(x,D) cos(x− π/4)−Q0(x,D) sin(x− π/4)]

}n
dx

x
.

For n = 4, 6, 8, 10 we set C = 1000 and D = 100, which is based on a rough
Stirling estimate of the error in truncation after D terms. We applied (31) to the
final integral on an infinite interval and then applied a Gaussian rule to all integrals.
Each computation took of the order of 20 minutes on a modern laptop, with no
serious attempt to optimize the code. Fifty-digit numerical values1 of W ′

n(0) for even
integers n are given in Table 2.

We are quite confident in these numerical results, since we have checked them in
several ways. For instance, the result of (41) for n = 6 matched to 80-digit precision

1For n = 10, attempts to use variants of (41) to higher precision than 50 places using Maple
exhausted the available memory on the system being employed.
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n Precision Iterations Time 30-digit numerical values
3 200 159 123 0.3230659472194505140936365107238 . . .

400 320 2046
1000 802 106860

5 200 159 249 0.5444125617521855851958780627450 . . .
400 319 2052

1000 801 106860
7 200 157 249 0.7029262924769672667878239443952 . . .

400 318 2050
1000 800 106860

9 200 156 248 0.8241562395323886948205228248496 . . .
400 317 2120

1000 799 106800
11 200 155 247 0.9218508867326536975658915279703 . . .

400 316 4123
1000 796 213480

13 200 154 246 1.0035835304893201106044538743208 . . .
400 314 4113

1000 796 213540
15 200 152 245 1.0738262172568560361842527815003 . . .

400 313 4096
1000 795 213480

17 200 151 244 1.1354107037674110729532392500429 . . .
400 312 4104

1000 794 213360

Table 1: Precision levels (in digits), Sidi mW iteration counts, run times (in seconds)
and approximate numerical values for W ′

n(0) calculations, for odd integers n.

n 50-digit numerical values
4 0.4262783988175057909235214265961668730580067696296 . . .
6 0.6273170748369098071835866494046171525147554381078 . . .
8 0.7668310880696127570140517561667778631259995833027 . . .

10 0.8753286581144845340849582179504496846869947755865 . . .

Table 2: Approximate numerical values of W ′
n(0), for even integers n.
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a computation based on a conjecture due to Villegas [BSWZ2010],2 which, when cast
in our terms, is:

W
′

6(0)
?
=

(
3

π2

)3 ∫ ∞
0

η2(e−t)η2(e−2t)η2(e−3t)η2(e−6t) t4 dt, (42)

where

η(q) := q1/24
∏
n>1

(1− qn) = q1/24
∞∑

n=−∞

(−1)nqn(3n+1)/2. (43)

Similarly, for n = 4 our 80-digit result agrees to full precision with the closed form
given in (13). Moreover, for odd n ≤ 9, formula (41) was confirmed to 80-digit
precision by comparing with the 1000-digit results obtained using the scheme of
subsection 5.1. Finally, the exact form (11) was used to verify the value of W ′

3(0),
computed as described in subsection 5.1, to 1000-digit precision.

Along this line, we also confirmed, to 600-digit precision, the following conjecture
from [BSWZ2010]:

W
′

5(0)
?
=

(
15

4π2

)5/2 ∫ ∞
0

{
η3(e−3t)η3(e−5t) + η3(e−t)η3(e−15t)

}
t3 dt. (44)

6 Computation of elliptical function integrals

As we briefly mentioned above, our research on ramble integrals led us to examine
moments of elliptic integral functions of the form

I(n0, n1, n2, n3, n4) :=

∫ 1

0

xn0Kn1(x)K ′n2(x)En3(x)E ′n4(x) dx, (45)

where the elliptic functions K,E and their complementary versions are given by:

K(x) :=

∫ 1

0

dt√
(1− t2)(1− x2t2)

K ′(x) := K(
√

1− x2)

E(x) :=

∫ 1

0

√
1− x2t2√
1− t2

dt

E ′(x) := E(
√

1− x2). (46)

2W ′n(0) = µ(1 +
∑n−1

k=1 xk) is the logarithmic Mahler measure of the polynomial on the right.
For n = 5, 6 it is conjectured to agree with the eta integrals displayed in (44) and (42) respectively.
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To better understand these integrals, we computed a large number of them (4389
individual integrals in total) to extreme precision: 1500-digit precision in most cases,
with some to 3000-digit precision. We employed the tanh-sinh scheme here, because
most of these integrands have singularities at the endpoints. In contrast to the
random walk integrals, each of which required many hours run time, most of the
1500-digit integrals were dispatched in less than one minute, and most of the 3000-
digit integrals were dispatched in less than 10 minutes. But with so many integrals
to be computed, over 300 CPU-hours of computation were required in total.

We then discovered, using the PSLQ integer relation algorithm [FBA1999], thou-
sands of intriguing relations between these numerical values. Given an input vector
of real numbers (x1, x2, · · · , xn), the PSLQ algorithm finds integers (a1, a2, · · · , an),
not all zero, such that a1 x1 + a2 x2 + · · ·+ an xn = 0, or determines that there is no
such vector of integers whose Euclidean norm is less than a certain bound. Several
variants of PSLQ, even more efficient than the original algorithm, are described in
[BB2000]. In order to obtain numerically meaningful results with PSLQ or any other
integer relation scheme, very high precision arithmetic (typically several hundred or
a few thousand digits) is required.

As a single example of our results, when we examined the set of all integrals (45)
with n0 ≤ D1 = 4 and n1 + n2 + n3 + n4 = D2 = 3 (a total of 100 integrals), we
found, using PSLQ, that all such integrals can be expressed in terms of a “basis” set
of eight integrals, which are:∫ 1

0

K3(x) dx,

∫ 1

0

x2K3(x) dx,∫ 1

0

x3K3(x) dx,

∫ 1

0

x4K3(x) dx,∫ 1

0

x2K2(x)K ′(x) dx,

∫ 1

0

K(x)E(x)K ′(x) dx,∫ 1

0

xK(x)E(x)K ′(x) dx,

∫ 1

0

E(x)K ′2(x) dx. (47)

In other words, we found that the other 92 integrals in the set defined by D1 = 4
and D2 = 3 can each be expressed in terms of an integer linear combination of these
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eight integrals. Among the 92 experimental relations we discovered for this set are:

81

∫ 1

0

x3K2(x)E(x) dx
?
= −6

∫ 1

0

K3(x) dx− 24

∫ 1

0

x2K3(x) dx

+51

∫ 1

0

x3K3(x) dx+ 32

∫ 1

0

x4K3(x) dx (48)

−243

∫ 1

0

x3K(x)E(x)K ′(x) dx
?
= −59

∫ 1

0

K3(x) dx+ 468

∫ 1

0

x2K3(x) dx

+156

∫ 1

0

x3K3(x) dx− 624

∫ 1

0

x4K3(x) dx− 135

∫ 1

0

xK(x)E(x)K ′(x) dx

(49)

−20736

∫ 1

0

x4E2(x)K ′(x) dx
?
= 3901

∫ 1

0

K3(x) dx− 3852

∫ 1

0

x2K3(x) dx

−1284

∫ 1

0

x3K3(x) dx+ 5136

∫
x4K3(x) dx− 2592

∫ 1

0

x2K2(x)K ′(x) dx

−972

∫ 1

0

K(x)E(x)K ′(x) dx− 8316

∫ 1

0

xK(x)E(x)K ′(x) dx. (50)

6.1 Numerical results

The tabulations in Table 3 summarize very briefly the many results that we have
found to date, the full details of which, including high-precision numerical values,
are available from the authors if desired. The parameters D1 and D2 are, as defined
above, the upper limit on the power of x, and the sum of the powers of K,K ′, E, E ′,
respectively. The column labeled “Relations” gives the number of integer relations
found in the set of integrals defined by the parameters D1 and D2. The column
labeled “Basis” gives the size of the basis for this set of integrals. The column
labeled “Total” gives the total number of integrals in the set (which is the sum
of the two previous columns). The column labeled “Precision” gives the numeric
precision that was used both to compute the integrals in the given set and to analyze
them using PSLQ. The column labled “Basis norm bound” gives the exclusion bound
found by PSLQ for the given basis set—in other words, PSLQ certified that there
is no integer relation among the elements of the experimentally determined basis
set whose Euclidean norm is less than the stated bound. The column labeled “Max
relation norm” gives the largest Euclidean norm of any of the relations that were
found in the entire set of integrals defined by D1 and D2.
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D1 D2 Relations Basis Total Precision Basis norm bound Max relation norm
0 1 1 3 4 1500 1.582082× 10298 2.236068× 100

1 1 5 3 8 1500 2.155768× 10297 3.605551× 100

2 1 9 3 12 1500 2.155768× 10297 5.916080× 100

3 1 13 3 16 1500 2.155768× 10297 1.679286× 101

4 1 17 3 20 1500 2.155768× 10297 6.592420× 101

5 1 21 3 24 1500 2.155768× 10297 2.419628× 102

0 2 4 6 10 1500 5.609665× 10261 2.109502× 101

1 2 12 8 20 1500 4.877336× 10196 5.744563× 100

2 2 22 8 30 1500 6.109876× 10195 2.293469× 101

3 2 32 8 40 1500 6.109876× 10195 2.293469× 101

4 2 42 8 50 1500 6.109876× 10195 1.639153× 103

5 2 52 8 60 1500 6.109876× 10195 2.428260× 103

0 3 14 6 20 1500 3.871282× 10262 2.664001× 102

1 3 34 6 40 1500 2.164052× 10261 8.960469× 101

2 3 52 8 60 1500 1.496420× 10197 9.666276× 102

3 3 72 8 80 1500 2.829003× 10196 2.291372× 103

4 3 92 8 100 1500 8.853827× 10195 5.860112× 103

5 3 112 8 120 1500 8.853827× 10195 9.240898× 104

0 4 20 15 35 1500 2.689124× 10104 1.963656× 104

1 4 53 17 70 1500 6.195547× 1091 2.186030× 103

2 4 88 17 105 1500 4.059577× 1091 2.970026× 104

3 4 121 19 140 1500 8.856138× 1081 5.658994× 105

4 4 156 19 175 1500 2.759846× 1082 5.571466× 106

5 4 191 19 210 1500 1.663418× 1082 1.857555× 105

0 5 45 11 56 1500 1.256977× 10142 1.061532× 105

1 5 101 11 112 1500 2.602478× 10142 1.025453× 105

2 5 155 13 168 1500 2.151577× 10120 3.953731× 105

3 5 211 13 224 1500 1.314945× 10120 3.728547× 105

4 5 265 15 280 1500 5.040597× 10104 8.658997× 106

5 5 321 15 336 1500 4.186191× 10104 3.954175× 1011

0 6 56 28 84 3000 2.958413× 10105 1.748907× 106

1 6 138 30 168 3000 2.018080× 1098 2.219430× 106

2 6 222 30 252 3000 3.089318× 1098 6.301251× 108

3 6 304 32 336 3000 1.324953× 1092 2.929549× 1010

4 6 388 32 420 3000 9.312061× 1091 6.168516× 1012

5 6 470 34 504 3000 6.616755× 1086 7.199329× 1013

Table 3: Summary of relations found in elliptic integral study

19



In this table, it is worth comparing the last two columns. In each case, our
confidence that we have identified a true Z-linearly independent basis set is founded,
experimentally speaking, on our observation that the basis norm bound (in the next-
to-last column) is, in most cases, enormously larger than the corresponding maximum
relation norm (in the last column), suggesting that it is exceedingly unlikely that
there are any additional relations among the integrals in the basis set. Indeed, from
this data, it appears fairly clear that the basis sets we found are, almost certainly,
true basis sets for all cases with D2 ≤ 5. For the D2 = 6 cases, however, based
on our original 1500-digit calculations, this conclusion was less compelling, since, for
instance, when D1 = 5 and D2 = 6, the basis norm bound was “only” 2.243721×1045,
which was uncomfortably close to the maximum relation norm, namely 7.199329 ×
1013. Thus we re-ran the last set of results, namely the six D2 = 6 cases, with
3000-digit precision, in order to obtain stronger basis norm bounds. These 3000-
digit computations, which are listed at the end of Table 3, were nearly ten times as
expensive as the same computations with 1500-digit precision (which are not listed),
and required a total of 252 CPU-hours run time. This was more than three times
the total of all other cases combined.

In all of the computer runs that were performed in this study, over 99% of the
run time was for quadrature calculations. By comparison, the PSLQ runs performed
on the resulting numerical values to find underlying relations ran very fast.

These tables have been carefully analyzed and many proofs and extensions have
been provided by James Wan in a recent study [Wan2010]. For example, he evaluates

the moments
∫ 1

0
xnK ′(x)E ′(x) dx as 7F6 hypergeometric functions, as in (26), with

similar formulas for the moments of K ′2 and E ′2. However, as seems to be more and
more the case as experimental computational tools improve, our ability to discover
outstrips our ability to prove.

7 Computational experience

In the process of computing these integrals, we encountered numerous difficulties,
which, in our experience, are entirely typical of the challenge of computing and
analyzing extreme precision numerical values. Some of these difficulties include:

1. Difficulties in computing the integrand function to very high precision, as
rapidly as possible, over a wide range of arguments. Computing with 1000-
digit precision magnifies run times by at least a factor of 1000, compared with
standard 64-bit computations, so highly efficient algorithms are essential.
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2. Difficulties in managing working precision level. For example, in the compu-
tation of the Bessel function using the first of the formulas above (39), we
found that it was necessary to employ double the internal working precision
(i.e., 2000-digit arithmetic) for this part, because of severe precision loss when
positive and negative terms are summed. In our experience, numerical anoma-
lies of this sort that are minor nuisances with, say, double precision arithmetic
often are magnified to monumental levels in extreme precision calculations.

3. Difficulties in managing memory. For example, until we discovered the “trick”
to avoid storing the entire matrix in (36), we had frequent problems with
system errors, because the total size of our arrays was 229 Gbyte (when the Sidi
mW iteration limit L = 10, 000) or 2.2 Gbyte (when L = 1000), whereas our
system (an 8-core Apple workstation) only had 8 Gbyte real DRAM memory.
Even a 2 Gbyte memory requirement causes problems when trying to run eight
such calculations simultaneously on eight cores, or when running a single job
in parallel using the Message Passing Interface (MPI), since data arrays are
replicated in each of the eight tasks.

4. Enormous run times. As can be seen from Table 1, run times for W ′
n(0) calcu-

lations increase very rapidly with precision level. Run times for the 1000-digit
calculations were as high as 59 hours, which is approximately 52 times greater
than the 400-digit calculations, and up to 870 times greater than the 200-digit
calculations. We converted our program to run in parallel, using MPI, but
instead decided to run the eight calculations listed in Table 1 as eight jobs
simultaneously on the eight cores of our system. However, it is clear that
any future research in this area will need to employ highly parallel computer
systems. Techniques for efficient parallel implementation of high-precision in-
tegration are described in [BB2008].

8 Conclusion

These results underscore the need for even more effective numerical algorithms and
computational tools, and, yes, even higher precision. For example, to gain further
confidence that the basis sets we have listed in Table 3 are true Z-linearly indepen-
dent basis sets, it will be necessary to perform these computations with even higher
numerical precision, so that we can obtain larger basis norm bounds. For that mat-
ter, extending the results in Table 3 to larger values of the parameters D1 and D2

will also require higher precision.
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This seems to be almost a universal law of computation, not just in computational
mathematics, but in most other arenas of scientific computation as well: whenever
more advanced computing tools become available, researchers quickly fully utilize
these facilities and ask for more. Thus, there will always be interest in more effective
numerical algorithms, more efficient and easier-to-use mathematical software, and,
of course, faster and more capacious computer hardware.

Fortunately, the prognosis for the future remains bright, both in light of the
inexorable advance of Moore’s Law and also in anticipation of expected improvements
in computational software. If anything, the pace of advancement may quicken in the
future. Ten years from now, we may wonder how we ever accomplished any research
work with the primitive facilities that we employ today.
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