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Inequalities they want to use, but cannot prove.” (D.J.H.
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The Bohrs

e One Nobel Prize
— Nils (1885-1962)
— Physics (1922)

* One Olympic Medal
— Harald (1887-1951)
— Soccer (1908)




Abstract of Convexity Talk |

In honour of my friend Boris Mordhukovich

We met in 1990. He said
“How old are you?”
| said “39 and you?”
He replied “48.”

| left thinking he was 48 and
he thinking | was 51.

Some years later Terry
Rockafellar corrected our
cultural misconnect.

What was Iit?




Abstract of Convexity Talk Il

This is arevised version of a talk given in March
and In June 2007 to celebrate Tony Thompson’s
70t birthday and Jon Thompson’s 65t"

The three have alot in common
« Substantial white beards
» Great energy and commitment
« Many contributions to the community
* | like them each enormously

 They are all older than me




G'Day

G’day from Newcastle, Oz

Please pass on my best wishes to Boris. |
have fond memories of his generous help
as a reviewer to my first paper in JOTA
many years ago. He was a great friend to
Alex Rubinov and Is of course a fine
mathematician. Pass on my birthday
greetings! Barney Glover



Abstract of Convexity Talk

| offer various examples of convexity
appearing (often unexpectedly) over the
years in my research.

Each example illustrates either the power
of convexity, or of modern symbolic
computation, or of both ...

PUB: falx) = SUP AcA HA(ZB)H‘

Proof. Isc and p.w. bounded is finite hence continuous
and so the linear operators are uniformly bounded.

| start with a brief advert for computer-assisted
mathematics and collaborative tools.



Changing notions of distance

T~

240 cpu Glooscap at Dal




C2C Seminar: Example from SFU

- running biweekly since 2005, Ontario joined on 25/09/07. Chile this year

Local Presentation Remote Presentation
Speaker Remote Audience
Presentation SlidesLocal Camera Placement

Solving Checkers: one of top 10 Science breakthroughs of 2007




Experimental Mathodology

1. Gaining insight and intuition

2. Discovering new relationships
3. Visualizing math principles
4

. Testing and especially falsifying
conjectures

5. Exploring a possible result to see
If it merits formal proof

6. Suggesting approaches for
formal proof

/. Computing replacing lengthy
hand derivations

8. Confirming analytically derived
results

Comparing —-y?In(y) (red) to y-y? and y?-y*






Interactive Proofs

The Perko Pair 10157 and 1015

are two adjacent 10-crossing knots (1900)

o first shown to be the same by Ken Perko in 1974

« and beautifully made dynamic in (open source)



Outline of Convexity Talk

A.Generalized Convexity of Volumes (Bohr-Mollerup).

B. Coupon Collecting and Convexity.

C. Convexity of Spectral Functions.

The talk ends

D. Madelung’s Constant for Salt.
when | do

There are three
bonus tracks!

Full details are in the four reference texts




Generalized Convexity of Volumes

A.Generalized Convexity of Gamma (Bohr-Mollerup).

[ is usually defined for Re(z) > 0 as

M(z) = /OOO et =1 gt (1)
Theorem 1 (Bohr-Mollerup) I is the unique
function f : (0,00) — (0,00) such that:

(a) f(1) =1;(b) f(x+1) =zf(x),

(c) fis log-convex (z — log(f(x)) is convex).

e Application is often automatable in a com-
puter algebra system, as we now illustrate:



Generalized Convexity of Volumes

A.Generalized Convexity of Gamma (Beta function).
The B—function is defined by

B(z,y) = Altw—l(l—t)y—ldt (1)

for Re(x),Re(y) > 0. As is often established
using polar coordinates and double integrals
(z) M (y)

B(z,y) Fe 1) (2)
Proof Use f =z — B(z,y) N(z + y) /T (y).
(a) and (b) are easy. For (c) we show f is
log-convex via Holder's inequality. Thus f=1T
as required. QED

o [ is hyper-transcendental as is (.



Generalized Convexity of Volumes

A.Convexity of Volumes (Blaschke-Santalo inequality).
For a convex body C in R"™ its polar is

C° = {ye R":{(y,z) <1 forall z € C}.

Denoting n-dimensional Euclidean volume of
S C R" by V,(S), Blaschke-Santalo says

Va(C) Vi (C®) < Vi(E) V(E®) = V2(Bn(2))
(1)

where maximality holds (only) for any ellipsoid
F and Bp(2) is the Euclidean unit ball.

Question How to explain cases of this as con-
vexity estimates?



Generalized Convexity of Volumes

A.Convexity of Volumes (Dirichlet Formulae).

The volume of the ball in the ||-||,-norm, V,.(p),
was first determined by Dirichlet

Va(p) = znr(l " (1)
n\pP = F(1 %) .
When p = 2,
n F(%>“ I‘(%)n 1,2AND oo-BALLS INR?

Vn pr— pu— ,
r(1+35) r(1+35)

IS more concise than that usually recorded.

Maple code derives this formula as an iterated

integral for arbitrary p and fixed n.
1-ball in R3



Generalized Convexity of Volumes

A.Convexity of Volumes (Ease of Drawing Pictures).

log () log V,(1/x)fora =4/3,3

Discover the formula for 32,51 Vn(2)




Generalized Convexity of Volumes

A.Convexity of Volumes (‘mean’ log-convexity).
Theorem 2 [(H,A) log-concavity]| The func-

tion Vao(p) := 2T (1 + %)O‘/I‘(l + %) satisfies

Voz(p))\VOé(Q)l—A < VOé ()\ 11)\)7 (1)

p

foralla>1, ifp,g>1, p#*q, and X € (0,1).

a = n, %—I—% = 1 with A\{ = XA = 1/2 recov-
ers the p—norm case of Blaschke-Santalo; and

the

NOrms.

lower bound.

This extends to substitution

Q. How far can one take this?



Cartoon



Outline of Convexity Talk

A.Generalized Convexity of Volumes (Bohr-Mollerup).
B. Coupon Collecting and Convexity.

C. Convexity of Spectral Functions.

D. Madelung’s Constant for Salt. iR €L
when | do




Coupon Collecting and Convexity

B. The origin of the problem.

Consider a network objective function py:

PN\G) .= 9
ceSy \i=1 Zé\[:i 45 (5) i=1 Zj:i d5(5)

summed over all NI permutations; so a typical

term is
N ]

For example, with N = 3 this is

arars) (ars) &) Graratars )
919243 g1+ q> + g3 q> + g3 q3 g1+a2+q g+t a3/

This arose as the objective function in a 1999 PhD on coupon collection. lan
Affleck wished to show p, was convex on the positive orthant. | hoped not!




Coupon Collecting and Convexity

B. Doing What is Easy.

First, we try to simplify the expression for pys.
The partial fraction decomposition gives:

1
ri(z1) = —,
L1
1 1 1
pQ(xla$2) = —+ - )
r1 X2 Tl T2
1 1 1 1 1 1
p3(:1§'1,332,333) = —+ + - - -
L1 LD I3 1 —|—:132 o —|—:133 1 —|— I3
1
+ . (1)
L1 —I—(EQ —|—:133

Partial fractions are an arena in which com-
puter algebra is hugely useful. Try performing
the third case in (1) by hand. It is tempting to
predict the “same” pattern will hold for N = 4.
This is easy to confirm (by computer) and so
we are led to:



Coupon Collecting and Convexity

B. A Very Convex Integrand. (Is there a direct proof?)

A year later, Omar Hijab suggested re-expressing py as the
joint expectation of Poisson distributions. This leads to:

If © = (x1,---,2zn) iS @ point in the positive
orthant R_I_, then

pn(z) = (H %) /n ~@Y) max(yy, -, yn) dy,

_|_

where (x,y) = x1y1+: - - +xnyn is the Euclidean
iInner product.

Now y; — X; y; and standard techniques show 1/p, IS concave, as
the integrand is. [We can now ignore probability if we wish!]
Q.“Iinclusion-exclusion” convexity: OK for 1/g(x) > 0, g concave.




Goethe’s One Nice Comment About Us

“Mathematicians are a kind of
Frenchmen:

whatever you say to them they
translate into their own language,
and right away it is something
entirely different.”

(Johann Wolfgang von Goethe)

Maximen und Reflexionen, no. 1279







Outline of Convexity Talk

A.Generalized Convexity of Volumes (Bohr-Mollerup).
B. Coupon Collecting and Convexity.

C.Convexity of Spectral Functions.

D. Madelung’s Constant for Salt. SR €=l
when | do




Convexity of Spectral Functions

C. Eigenvalues of symmetric matrices (Lewis and Davis).

A(S) lists decreasingly the (real, resp. non-negative)
eigenvalues of a (symmetric, resp. PSD) n-by-n matrix S.
The Fenchel conjugate is the convex closed function

given by f*(x) = supy<y, T) — f(y).

Theorem (Spectral conjugacy) If f : R" —
[—o00,00] is a symmetric function, it satisfies
the formula (foA)* = f*o A

Corollary [Davis/Lewis| Suppose f : R" —
[—o00, 0] is symmetric. Then the “spectral func-
tion” fo A is closed and convex (resp. differ-
entiable) if and only if f is closed and convex
(resp. differentiable).



Convexity of Spectral Functions

C. Three Amazing Examples (Lewis).

I. Log Determinant Let Ib(z) := —log(x125 - - zn)
which is clearly symmetric and convex. The
corresponding spectral function is S — — log det(.S).

II. Sum of Eigenvalues Ranging over per-
mutations, let fi(x) = Maxx{T (1) + ZTr(2)
""|‘337r(k)}- This is clearly symmetric and con-
vex. The corresponding spectral function is
0, (S) = X1(S) + X (S) + - - - A (S).

In particular the largest eigenvalue, o1, IS a
continuous convex function of S and is differ-
entiable if and only if the eigenvalue is simple.




Convexity of Spectral Functions

C. Three Amazing Examples (Lewis).
III. k—th Largest Eigenvalue The k—th largest

eigenvalue may be written as

pi(S) = 0p(S) — or_1(5).

In particular, this represents u;. as the differ-
ence of two convex continuous, hence locally
Lipschitz, functions of S and so we discover
the very difficult result that for each k, up(S)
Is a locally Lipschitz function of S.

e Hard analogues exist for singular values, hy-
perbolic polynomials, Lie algebras, etc. Traceclass

operators



Convexity of Barrier Functions

C. A Fourth Amazing Example (Nesterov & Nemirovskii).
IV Self-concordant Barrier Functions Let A
be a nonempty open convex set in RN Define,
for x € A,

F(z) = An((A—2)%),

where Ay is N-dimensional Lebesque measure
and (A — x)? is the polar set. Then F is an
essentially Fréchet smooth, log-convex, barrier
function for A.

e Central to modern interior point methods.

e The orthant yields Ib(z) := — >, log zy.

e Hilbert space analog? (JB-JV, CUP, 2008)



"He was very big in Vienna."



Outline of Convexity Talk

A.Generalized Convexity of Volumes (Bohr-Mollerup).

B. Coupon Collecting and Convexity.

C. Convexity of Spectral Functions.

D. Madelung’s Constant for Salt. iR €=
when | do

Full details are in the three reference texts




D. Madelung’s Constant:
David Borwein CMS Career Award

/

—"”L;n:,p\/nz—l—mz—l—p2

(_1)n—|—m+p

This polished solid silicon bronze sculpture is inspired by the work of
David Borwein, his sons and colleagues, on the conditional series
above for salt, Madelung's constant. This series can be summed to
uncountably many constants; one is Madelung's constant for
electro-chemical stability of sodium chloride. (Convexity is
hidden here too!)

This constant is a period of an elliptic curve, a real surface in four
dimensions. There are uncountably many ways to imagine that
surface in three dimensions; one has negative gaussian curvature
and is the tangible form of this sculpture. (As described by the artist.)



Ferguson



D. Madelung’s Constant
/

) v & 1)ntmtp g o
M3 r— cubic lattice
n,m,p {n2 + m? + p2}8
/
(_1)n—|—m
MQ(S) L=
22 {2 + w2}

In many texts, the potential, M3(1/2), is ‘added’
over increasing spheres: |>°°0 1(—1)"r3(n)/v/n
but rz3(n)/+/n 4 0! [r3(n) is # of reps. of n
as sum of 3 squares.]

The sum over increasing cubes does converge
to the value chemists expect (by Mellin trans-
form methods): —1.74756459... — needs a
solar-system size crystal to be realistic!

D)



D. Madelung’s Constant in 2D

M>(1/2) =320 1(=1)"ro(n)/+/n

Now if M, is "added” over spheres (¢ balls) the n-th term tends
to zero and the sum agrees with that over increasing squares (£>)
but the sum over increasing diamonds (¢) diverges-Riemann sum!

v' For C a closed convex symmetric body set

Mga(s) ;= lim zlj (=1
NHOO’R,’TTLENC (nQ_I_mQ)S




i / 1 n-+m
MO(S) — ||mN—>QQ Zn,meNC’ ((?12—'277?/2)8

Theorem (BBP, 1998) Mg(s) exists, is ana-
lytic and is independent of C for Re(s) > 1/2.
[In R” this holds for Re(s) > (k —1)/2.]

1. Re(s) > 1 needed for absolute convergence.
2. Myj<13(8) = —4¢(s)(1—217%)L_4(s) con-
verges precisely for Re(s) > 1/4. This relies on
@reétn@of the wonderful exact determina-
tion of the average size of r»(n) [ Cappell and
Shaneson,2007]. the number of lattice points
in a circle of radius \/t is =t + O (t1/4+5) (best
possible).







Three Bonus Track Follows

A.Generalized Convexity of Volumes (Bohr-Mollerup).

B. Coupon Collecting and Convexity.
C. Convexity of Spectral Functions.

D. Madelung’s Constant for Salt.

References

E. Entropy and NMR.
F. Inequalities and the Maximum Principle.

G. Trefethen’s 4t Digit Challenge Problem.




E. CONVEX CONJUGATES and NMR (MRI)

The Hoch and Stern information measure in complex
N-space is H(z) := Y i, h(z;/b) where h is convex and
given (for scaling b) by

h(z) ;= |z|In <|z| + \/1 + |z|2) — \/1 + |2|?

for qguantum theoretic (NMR) reasons. Recall the Fenchel-
[_egendre conjugate

f(y) = sup(z,y) — f(z).
Our symbolic convex analysis package produced

h*(z) = cosh(|z]).

Compare the Shannon entropy zIn(z) — z whose conju-
gate is exp(z).

I'd never have tried by hand! Effective dual algorithms are now possible!




Knowing Closed Forms' Helps

For example

(expexp)*(y) = yIn(y) — y{W(y) + W(y)~'}

where Maple or Mathematica recognize the complex
Lambert W function given by Riemann Surface

W(x)eWk = x.
Thus, the conjugate's series IS: 3

1 1 8
—1+(In(y) — 1) y—§y2+§y3—§y4+ﬁy5+0 (y6) :

The literature is all in the last decade since W got a hame!



WHAT is ENTROPY?

Despite the narrative force that the concept of
entropy appears to evoke in everyday writing, in
scientific writing entropy remains a thermodynamic
guantity and a mathematical formula that
numerically quantifies disorder. When the American
scientist Claude Shannon found that the
mathematical formula of Boltzmann defined a
useful quantity in information theory, he hesitated to
name this newly discovered quantity entropy
because of its philosophical baggage. The
mathematician John Von Neumann encouraged
Shannon to go ahead with the name entropy,
however, since “no one knows what entropy Is, SO
In a debate you will always have the advantage."

The American Heritage Book of English Usage, p. 158



Information Theoretic Characterizations Abound

Theorem. Up to a positive scalar multiple

N
H(P)=— prlogps
k=1

IS the unique continuous function on finite probabilities
such that [a.] Uncertainly grows:

n
A\

H

-
1
e

n

1
n

S|

’

iNnCcreases with n.

[b.] Subordinate choices are respected: for distribu-
tions p{ andp3 and 0 < p < 1,

H(ppi,(1 —p)p3) =pH(pi) + (1 —p) H(p3).







F. Inequalities and the Maximum Principle

e Consider the two means

£z, y) 1= —
(,y) In(x) — In(y)
and ¢ away from
5| 2 n 2 Zero
T3 Y3
M(z,y) == >

A conformal function estimated reduced to

LM(x,1),v/x) > L(x,1) > LM(x,1),1)
for O < x < 1.
We first discuss showing

¢ near zero

E(x) i = LM(x,1),+/z) — L(x,1) > 0.



Numeric/Symbolic Methods

When we make each step effective.
This is hardest for the integral.

-

Y
(&= 1)"= 20736

~ 51840 (z — 1)°4+0 ((z — 1)°)



Il. Graphic/Symbolic Methods
Consider the opposite (cruder) inequality

A= L(z,1) — L(M(z,1),1) > 0.

We may observe that it holds since:

e M is a mean:

e L(x,1) decreases with z. A

e Thereis an algorithm (Collins) for universal
alaebraic inequalities.



F. Nick Trefethen’s 100 Digit/100 Dollar

Challenge, Problem 4 (SIAM News, 2002)

Z 4. What is the global minimum of the func-
tion

exp(sin(50x)) + sin(60eY) 4 sin(70sin x)

+ sin(sin(80y)) —sin(10(z +v)) + (z° + y°) /47

e NO bounds are given.
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. HDHD Challenge, Problem 4

* This model has been numerically solved by LGO,

MathOptimizer, MathOptimizer Pro, TOMLAB /LGO, and the
Maple GOT (by Janos Pinter who provide the pictures).

* The solution found agrees to 10 places with the announced
solution (the latter was originally based (provably) on a huge
grid sampling effort, interval analyisis and local search).

~ (-0.024627...,0.211789...)

*~-3.30687...

Close-up picture near global

solution: the problem still looks
rather difficult ... Mathematica 6

can solve this by “zooming”!
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See lovely SIAM solution book by Bornemann, Laurie, Wagon and Waldvogel
and my Intelligencer Review at http://users.cs.dal.ca/~|borwein/digits.pdf



http://users.cs.dal.ca/~jborwein/digits.pdf
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“The object of mathematical rigor is to sanction and legitimize the
conquests of intuition, and there was never any other object for it.”

» J. Hadamard quoted at length in E. Borel, Lecons sur la theorie des fonctions, 1928.
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