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Abstract

We shall find a multi-dimensional checkerboard copula of maximum entropy that matches an ob-
served set of grade correlation coefficients. This problem is formulated as the maximization of
a concave function on a convex polytope. Under mild constraint qualifications we show that a
unique solution exists in the core of the feasible region. The theory of Fenchel duality is used to
reformulate the problem as an unconstrained minimization which is well solved numerically using
a Newton iteration. Finally, we discuss the numerical calculations for some hypothetical examples
and describe how this work can be applied to the modelling and simulation of monthly rainfall.

1 Introduction

An m-dimensional copula where m ≥ 2, is a continuous, m-increasing, grounded probability distri-
bution C : [0, 1]m 7→ [0, 1] on the unit m-dimensional hyper-cube with uniform marginal probability
distributions. A checkerboard copula is a distribution with a corresponding density defined almost
everywhere by a step function on an m-uniform subdivision of the hypercube. The grade correlation
coefficients are the respective correlations of the marginal distributions. We shall solve the following
constrained optimization problem.

Problem 1 (Preliminary statement). Find a checkerboard copula of maximum entropy that matches
a given set of grade correlation coefficients.

We first formulate the primal problem as the maximum of a concave function on a convex polytope and
show that subject to reasonable constraint qualifications there is a unique solution in the core of the
feasible region. To calculate numerical solutions we shall use the theory of Fenchel duality to formulate
an equivalent unconstrained minimization problem which we then solve using a Newton iteration. The
formulation and solution of the primal and dual problems leans heavily on the established theory of
convex analysis. The relevant theory can be found in the book by Borwein and Lewis [5] and elsewhere.

1.1 Motivation

The optimal management of urban storm-water systems can be demonstrated effectively using com-
puter graphics simulation packages. To drive these simulations it is necessary to develop stochastic
rainfall simulations that accurately reflect observed rainfall patterns. In a recent model of a storm-
water management system at Parafield in South Australia we wished to simulate monthly rainfall
[15] in successive months where the marginal distributions for each month were modelled as random
variables with prescribed gamma distributions and where the monthly rainfall records for the past
100 years showed small but sometimes significant values of the grade correlation coefficients between
various different months. Simulations in which monthly rainfall totals were modelled as mutually
independent random variables showed a much higher standard deviation for the yearly totals than
that obtained from the observed yearly totals.
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We reasoned that the standard deviation could be reduced if we were able to incorporate an appropriate
level of dependence amongst the individual monthly totals. Hence our interest in the use of an
elementary copula to construct an appropriate joint distribution function which would preserve the
prescribed marginal distributions and still match the observed grade correlation coefficients. Thus we
pose the following general mathematical problem.

Suppose we wish to model the joint distribution of a collection of random variables with prescribed
marginal distributions and known grade correlation coefficients. Can we find a checkerboard copula
of maximum entropy that matches the known grade correlation coefficients?

Since the entropy of the checkerboard copula measures the inherent disorder we are effectively finding
the most disordered joint distribution with the prescribed marginal distributions that matches the
observed second order statistics. Of course we expect a better solution if we increase the number of
subdivisions in the checkerboard. A typical rainfall application will be discussed as a Case Study later
in the paper.

1.2 Previous work

A doubly stochastic matrix h = [hij ] ∈ Rn×n is a matrix with hij ≥ 0 and with
∑

j hij = 1 for all
i = 1, 2, . . . , n and

∑
i hij = 1 for all j = 1, 2, . . . , n. In a recent paper Piantadosi et al [16] used

a doubly stochastic matrix and a corresponding two-dimensional checkerboard copula to construct a
joint distribution that preserved the prescribed marginal distributions and matched a known grade
correlation coefficient in such a way that the entropy of the doubly stochastic matrix was maximized.
We wish to extend those ideas to a multi–dimensional setting. Birkhoff [4, 5] proved that the set of
doubly stochastic matrices is a convex polytope and that a doubly stochastic matrix is extremal if and
only if it is a permutation matrix. Piantadosi et al used this idea to formulate the two dimensional
problem as one of finding an appropriate convex combination of permutation matrices.
In this paper we consider the analogous problem in a general multi-dimensional setting. Can we find
a checkerboard copula of maximum entropy to construct a multi-dimensional probability distribution
that preserves prescribed marginal distributions and that matches the observed grade correlation
coefficients? Although the set of multi-stochastic hyper-matrices is a convex polytope it is not possible
when m > 2, to express each element as a convex combination of multi-stochastic matrices whose
elements are either zero or one. That is there are some vertices that are not multi-dimensional
permutation hyper-matrices. In this sense we could say there is no multi-dimensional analogue of the
Birkhoff theorem. Thus we need to use a different method of analysis than the one proposed in [16].

1.3 Multi-dimensional copulas

Let C : [0, 1]m 7→ [0, 1] be an m–dimensional copula for m ≥ 2. If Fr : R 7→ [0, 1] are prescribed
continuous distributions for the real valued random variable Xr for each r = 1, . . . ,m then the function
G : Rm 7→ [0, 1] defined by

G(x1, . . . , xm) = C(F1(x1), . . . , Fm(xm))

is a joint probability distribution for the vector valued random variable X = (X1, . . . , Xm) with the
marginal distribution for Xr defined by Fr for each r = 1, 2, . . . ,m. The joint density g : Rm 7→ [0,∞)
is defined almost everywhere and is given by the formula

g(x1, . . . , xm) = c(F1(x1), . . . , Fm(xm))f1(x1) · · · fm(xm)

where c : [0, 1]m 7→ [0,∞) is the density for the joint distribution defined by C and where fr : R 7→
[0,∞) for each r = 1, 2, . . . ,m are the densities for the prescribed marginal distributions.
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If related real valued random variables Ur = Fr(Xr) are defined for each r = 1, 2, . . . ,m then each
Ur is uniformly distributed on [0, 1] and the copula C describes the distribution of the vector valued
random variable U = (U1, . . . , Um). When the joint distribution G is not known there are many
standard choices for C but the best choice will depend on what else is known about the observed
distribution.
It is often the case in practice that the grade correlation coefficients

ρr,s =
E[(Fr(Xr)− 1/2)(Fs(Xs)− 1/2)]√

E[(Fr(Xr)− 1/2)2] · E[(Fs(Xs)− 1/2)2]
=

E[(Ur − 1/2)(Us − 1/2)]√
E[(Ur − 1/2)2] · E[(Us − 1/2)2]

for 1 ≤ r < s ≤ m are known. How should one choose C in order to satisfy these additional constraints?
For each fixed n ∈ N we will consider a subdivision of the interval [0, 1] into n equal length subintervals
and a corresponding m-uniform subdivision of the unit hyper-cube [0, 1]m into nm congruent hyper-
cubes. For each sufficiently large n ∈ N we will show that an elementary copula C = Ch can be chosen
by defining a density c = ch in the form of a step function defined by an m-dimensional hyper-matrix
h such that the density takes a constant non-negative value on each hyper-cube of the subdivision.
The hyper-matrix will be chosen in such a way that the known grade correlations are imposed and the
entropy of the hyper-matrix is maximized. Since entropy is a measure of disorder our solution for ch
can be interpreted as the most disordered or least prescriptive choice of step function for the selected
value of n that satisfies the required correlation constraints. The corresponding checkerboard copula
C = Ch is the most disordered such copula.

1.4 Literature review

The text by Nelsen [14] is a comprehensive reference for the general theory of copulas. Much of the
work on copulas has been related to construction of general families with desirable properties. We
refer to Nelsen [14] for a summary of the basic theory. Although copulas have been used in one form
or another for many years much of the theory has been developed relatively recently. For instance
Schmid and Schmidt [18] consider non-parametric estimation of multivariate measures of association.
Genest, Ghoudi and Rivest [8] and Chen et al [7] consider semi-parametric estimation of dependence
parameters in multivariate families of distributions, while Genest et al [9] review Goodness-of-fit tests
for copulas and suggest some new procedures. Jaworski [11] looks at copulas where the so-called
diagonal section is prescribed. More generally, Borwein, Lewis and Nussbaum [6] study the existence
of distributions with prescribed marginals in an infinite dimensional setting.
There are other papers where the emphasis is on the application of copulas. For instance Venter
et al [22] use multivariate copulas for financial modelling. Zakaria et al [24] use a bivariate skew
t-distribution and an appropriate copula to model monthly rainfall at two sites in the Murray-Darling
Basin. This work relies on general results obtained by Azzalini [1] and Sun et al [21] related to the
multivariate skew t-distribution. Following earlier work by Holm and Alouini [10], Zakaria et al also
propose rainfall models with correlated bivariate gamma distributions.

2 Notation

Let m ∈ N with m ≥ 2 and let X = (X1, . . . , Xm) ∈ Rm be a vector–valued random variable with
joint probability density g : Rm 7→ R. The corresponding marginal probability densities are

gr(xr) =

∫
Rm−1

g(x) dπcrx

3



for all xr ∈ R and each r = 1, . . . ,m where we write x = (x1, . . . , xm) ∈ Rm and where the projection
πr : Rm 7→ R onto the xr-axis and the complementary projection πcr : Rm 7→ Rm−1 are defined for
each r = 1, 2, . . . ,m by

πrx = xr and πcrx =


(x2, . . . , xm) if r = 1
(x1, . . . , xr−1, xr+1, . . . , xm) if r = 2, . . . ,m− 1
(x1, . . . , xm−1) if r = m.

In simulation of random events it may be convenient to construct a joint probability distribution where
the corresponding marginal distributions are already known. The method of copulas is one possible
way. If the joint distribution is known and the marginal distributions are continuous then the copula
is uniquely defined. We refer to the book by Nelsen [14] for the fundamental theory. In our discussion
we assume the joint distribution is not completely known and so the question of uniqueness is not
relevant. Nevertheless it is convenient to assume that the given marginal distributions are continuous.
Let c : [0, 1]m 7→ [0,∞) be a joint probability density on the unit m–dimensional hyper-cube with
uniform marginal densities. That is, the marginal densities cr : [0, 1] 7→ [0,∞), satisfy the conditions

cr(ur) = 1 ⇔
∫
[0,1]m−1

c(u) dπcru = 1

for all ur ∈ [0, 1] and each r = 1, . . . ,m. The distribution C : [0, 1]m 7→ [0, 1] defined by

C(u) =

∫
×n

i=1[0,ui]
c(v)dv

for all u ∈ [0, 1]m is an m-dimensional copula. The copula C defines a joint distribution for a vector
valued random variable U = (U1, . . . , Um) on the unit hyper-cube [0, 1]m. Let fs : R 7→ R be a
given probability density with corresponding cumulative distribution function Fs : R 7→ [0, 1] for each
s = 1, . . . ,m. Write f = (f1, . . . , fm) : Rm 7→ [0,∞)m and F = (F1, . . . , Fm) : Rm 7→ [0, 1]m. The
joint density g : Rm 7→ [0,∞) defined for the vector valued random variable X = (X1, . . . , Xm) by the
formula

g(x) = c(F (x))
m∏
s=1

fs(xs)

for x ∈ Rm has prescribed marginal densities for the real valued random variables Xr given by

gr(xr) = fr(xr)

∫
Rm−1

c(F (x))
∏
s 6=r

fs(xs) dπ
c
rx = fr(xr)

∫
[0,1]m−1

c(u) dπcru = fr(xr)

for all xr ∈ R and each r = 1, . . . ,m where we have written

u = F (x) ⇔ (u1, . . . , um) = (F1(x1), . . . , Fm(xm))

for each x = (x1 . . . , xr) ∈ Rm. The corresponding m-dimensional distribution G : Rm 7→ [0, 1] is
defined in terms of the copula C and the marginal distributions F by the formula

G(x) = C(F (x))

for all x ∈ Rm.
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3 An elementary form for the joint density

Let n ∈ N be a natural number and let h be a non-negative m–dimensional hyper–matrix given
by h = [hi] ∈ R` where ` = nm and i ∈ {1, . . . , n}m with hi ∈ [0, 1]. Define the marginal sums
σr : {1, . . . , n} 7→ R by the formulae

σr(ir) =
∑

πc
ri ∈ {1,2,...,n}m−1

hi

for each ir = 1, 2, . . . ,m. If σr(ir) = 1 for all r = 1, 2, . . . ,m then we say that h is multiply stochastic.
Define the partition 0 = a(1) < a(2) < · · · < a(n + 1) = 1 of the interval [0, 1] by setting a(k) =
(k − 1)/n for each k = 1, . . . , n+ 1 and define a step function ch : [0, 1]m 7→ R almost everywhere by
the formula

ch(u) = nm−1 · hi if u ∈ Ii = ×m
r=1[a(ir), a(ir + 1)]

for each i = (i1, . . . , im) ∈ {1, 2, . . . , n}m. Now it follows that∫
[0,1]m

ch(u) · du =
∑

i ∈ {1,...,n}m

∫
Ii

ch(u) · du =
∑

i ∈ {1,...,n}m
nm−1hi ·

1

nm
= 1

and since

(ch)r(ur) =

∫
[0,1]m−1

ch(u) · dπcru =
∑

πc
ri ∈ {1,...,n}m−1

nm−1hi ·
1

nm−1
= 1

for all r = 1, 2, . . . ,m it follows that the step function ch : [0, 1]m 7→ [0,∞) is a joint density function
for a corresponding copula Ch : [0, 1]m 7→ [0, 1] defined by

Ch(u) =

∫
×n

i=1[0,ui]
ch(v)dv

for all u ∈ [0, 1]m. The proposed joint density gh : Rm 7→ [0,∞) for the random variable X =
(X1, . . . , Xm) is defined by

gh(x) = ch(F (x))

m∏
s=1

fs(xs)

for x ∈ Rm and the corresponding distribution function Gh : Rm 7→ [0, 1] is defined in terms of the
copula Ch and the prescribed marginal distributions F by the formula

Gh(x) = Ch(F (x))

for all x ∈ Rm.

4 The grade correlation coefficients

There exist several measures of association for joint distributions [14]. The most widely known are
Kendall’s tau and Spearman’s rho, both of which measure a form of dependence known as concordance.
Spearman’s rho is often called the grade correlation coefficient. If xr are observations from a real
valued random variable Xr with cumulative distribution function Fr then the grade of xr is given by
ur = Fr(xr). Note that the grade ur can be regarded as an observation of the uniform random variable
Ur = Fr(Xr) on [0, 1] and that Ur has mean 1/2 and variance 1/12. The grade correlation coefficient
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for the continuous random variables Xr and Xs where r < s is defined as the correlation for the grade
random variables Ur = Fr(Xr) and Us = Fs(Xs) by the formula

ρr,s =
E[(Ur − 1/2)(Us − 1/2)]

E[(Ur − 1/2)2]1/2E[(Us − 1/2)2]1/2
= 12 (E[UrUs]− 1/4) .

We refer the reader to Nelsen [14] for further details. We will now calculate the grade correlation
coefficients for the random variables Xr and Xs where r < s when the joint distribution is defined by
Gh(x) = Ch(F (x)). To begin we define the projection πrs : Rm 7→ R2 onto the urus-plane and the
complementary projection πcrs : Rm 7→ Rm−2 for 1 ≤ r < s ≤ m by the formulae

πrsu = (ur, us)

and

πcrsu =



(u3, . . . , um) if r = 1, s = 2
(u2, . . . , us−1, us+1, . . . , um) if r = 1, 2 < s < m
(u2, . . . , um−1) if r = 1, s = m
(u1, . . . , ur−1, ur+1, . . . , us−1, us+1, . . . , um) if 1 < r < s < m
(u1, . . . , ur−1, ur+1, . . . , um) if 1 < r < m− 1, s = m
(u1, . . . , um−2) if r = m− 1, s = m.

We have

E[UrUs] =

∫
[0,1]m

urus · ch(u) · du

=
∑

i ∈ {1,...,n}m

∫
Iπrsi

urus

[∫
Iπc

rsi

ch(u) · dπcrsu

]
dπrsu

=
∑

i ∈ {1,...,n}m
nhi

(∫ a(ir+1)

a(ir)
ur · dur

)(∫ a(is+1)

a(is)
us · dus

)

=
1

n3

∑
i ∈ {1,...,n}m

hi(ir − 1/2)(is − 1/2).

Thus the grade correlation coefficient is given by

ρr,s = 12

 1

n3

∑
i ∈ {1,...,n}m

hi(ir − 1/2)(is − 1/2) − 1

4

 . (1)

The maximum possible value for the grade correlation coefficient occurs if

∑
πc

rsi ∈ {1,...,n}m−2

hi =


1 if ir = is

0 otherwise

in which case we have ρr,s = 12 · (E[UrUs]− 1/4) = 1 − 1/n2. The minimum possible value for the
covariance occurs if ∑

πc
rsi ∈ {1,...,n}m−2

hi =


1 if ir + is = n+ 1

0 otherwise

in which case we have ρr,s = 12 · (E[UrUs]− 1/4) = −1 + 1/n2. Thus,

−1 +
1

n2
≤ ρr,s ≤ 1− 1

n2
. (2)
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5 Entropy

Let h ∈ R` be a multiply stochastic hyper–matrix and let ch : [0, 1]m → R be the associated elementary
joint density defined previously. The entropy of h is defined by

J(h) = (−1) ·
∫
[0,1]m

ch(u) loge ch(u) · du

= (−1) ·
∑

i ∈ {1,...,n}m
(nm−1hi) · loge(n

m−1hi) ·
1

nm

= (−1) · 1

n

∑
i ∈ {1,...,n}

hi [loge hi + (m− 1) loge n]

= (−1)

 1

n

∑
i ∈ {1,...,n}m

hi loge hi + (m− 1) loge n

 . (3)

We wish to select a multiply stochastic hyper–matrix h = [hi] ∈ R` to match known grade correlation
coefficients ρr,s for all r < s in such a way that the entropy is maximized.

6 Formulation and solution of the primal problem

We can now formulate the problem we wish to solve.

Problem 2 (The primal problem). Find the hyper-matrix h ∈ R` to maximize the entropy

J(h) = (−1)

 1

n

∑
i ∈ {1,...,n}m

hi loge hi + (m− 1) loge n

 (4)

subject to the constraints ∑
πc

ri ∈ {1,...,n}m−1

hi = 1 (5)

for all ir ∈ {1, . . . , n} and each r = 1, . . . ,m and

hi ≥ 0 (6)

for all i ∈ {1, . . . , n}m and the additional grade correlation coefficient constraints

12

 1

n3
·

∑
i ∈ {1,...,n}m

hi(ir − 1/2)(is − 1/2)− 1/4

 = ρr,s (7)

for 1 ≤ r < s ≤ m where ρr,s is known for all 1 ≤ r < s ≤ m.

In general terms the problem is well posed. There are a finite number of linear constraints on h and
so the feasible set F of hyper–matrices satisfying (5,6,7) is a bounded (closed) convex set in R`. The
function J : F 7→ [0,∞) is strictly concave. If the interior or core of F is non-empty then there must
be a unique solution for h with strictly positive coordinates. The reader is referred to [2, 5] for a
general discussion of the requisite convex analysis and nonlinear optimization.
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6.1 Solution of the primal problem

To solve the problem we begin by forming a Lagrangian function

J (h) = n · J(h) +
m∑
r=1

n∑
ir=1

λr,ir

 ∑
πc

ri ∈ {1,...,n}m−1

hi − 1


+

∑
i ∈ {1,...,n}m

µihi

+
m−1∑
s=1

m∑
t=s+1

νs,t

 ∑
i ∈ {1,...,n}m

hi(is − 1/2)(it − 1/2)− σs,t

 (8)

where we have written σs,t = n3(ρs,t + 3)/12 for each 1 ≤ s < t ≤ m and where λr,ir ≥ 0 for each
r = 1, . . . ,m and µi ≥ 0 for each i ∈ {1, . . . , n}m and νs,t ≥ 0 for each 1 ≤ s < t ≤ m are Lagrange
multipliers.
We now apply the Karush–Kuhn–Tucker (KKT) conditions Our derivation is legitimated by the dual
development described in Section 7 and Proposition 2; and refer the reader to [2, 5] for further details.
For each fixed j ∈ {1, . . . , n}m we have the necessary condition

∂J
∂hj

= 0 (9)

from which it follows that

− loge hj − 1 +
m∑
r=1

λr,jr + µj +
m−1∑
s=1

m∑
t=s+1

νs,t(js − 1/2)(jt − 1/2) = 0. (10)

By taking an exponential and rearranging the terms we can write each optimal hj in the form

hj = αj ·
m∏
r=1

βr,jr ·
m−1∏
s=1

m∏
t=s+1

[γs,t]
jsjt (11)

where αj , βr,jr and γs,t are positive constants defined by

αj = exp
[
µj
]

βr,jr = exp

[
λr,jr −

1

m
+

1

4m

m−1∑
s=1

m∑
t=s+1

νs,t −
1

2

(
r−1∑
s=1

νs,r +
m∑

t=r+1

νr,t

)
jr

]

γs,t = exp [νs,t]

for each j ∈ {1, . . . , n}m, each r = 1, . . . ,m and each 1 ≤ s < t ≤ m. In the case where the
grade correlation coefficients are zero we can expect that the entropy will be maximized when all the
elements hj are equal. Note that in general any solution to the equations (10) requires hj > 0 for all
j ∈ {1, . . . ,m} since all terms in these equations must be finite. Therefore, to solve the equations we
may assume that hj > 0 for all j ∈ {1, . . . , }m. Consequently it follows from the KKT conditions that
µj = 0 and hence that αj = 1 for all j ∈ {1, . . . , n}m. Thus the expression for the optimal form of hj
simplifies to

hj =
m∏
r=1

βr,jr ·
m−1∏
s=1

m∏
t=s+1

[γs,t]
jsjt (12)

for all j ∈ {1, . . . , n}m.
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6.2 A solution scheme for the primal problem

One possible method of numerical solution would be to proceed as follows.

Choose fixed values for the constants γs,t > 0 and substitute the expressions (12) into the key
equations (5). Now use a Newton iteration to solve for the unknowns βr,jr > 0 and hence calculate
ρs,t.

In the case where m = 3 and n = 4 we have 64 variables hj for j ∈ {1, . . . , 4}3 and the optimal form
of hj is given by

hj = β1,j1β2,j2β3,j3 [γ1,2]
j1j2 [γ1,3]

j1j3 [γ2,3]
j2j3

where β1,j1 > 0, β2,j2 > 0 and β3,j3 > 0 for each j1, j2, j3 ∈ {1, 2, 3, 4} and γ1,2 > 0, γ1,3 > 0 and
γ2,3 > 0 are unknown constants. We fix values for γ1,2, γ1,3, γ2,3 and solve for the 12 unknowns β1,j1 ,
β2,j2 and β3,j3 , substituting the optimal expression for hj in the equations (5) to give the 12 key
equations

β1,j1δ1,j1 = 1, β2,j2δ2,j2 = 1, β3,j3δ3,j3 = 1 (13)

where we have defined

δ1,j1 =

4∑
j2=1

β2,j2 [γ1,2]
j1j2

4∑
j3=1

β3,j3 [γ1,3]
j1j3 [γ2,3]

j2j3

δ2,j2 =
4∑

j1=1

β1,j1 [γ1,2]
j1j2

4∑
j3=1

β3,j3 [γ1,3]
j1j3 [γ2,3]

j2j3

δ3,j3 =
4∑

j1=1

β1,j1 [γ1,3]
j1j3

4∑
j2=1

β2,j2 [γ1,2]
j1j2 [γ2,3]

j2j3

for each j1, j2, j3 ∈ {1, 2, 3, 4}. The key equations (13) are written in vector form

p(β) = 0 (14)

where p = β. ∗ δ − 1 ∈ R12 and where the Matlab notation β. ∗ δ has been used to denote the
Hadamard product vector whose components are the products of the corresponding components from
the vectors β ∈ R12 and δ ∈ R12. We have written 1 ∈ R12 and 0 ∈ R12 respectively for the vectors
with all components equal to 1 and all components equal to 0. Now the Newton iteration can be
written as

β(j+1) = β(j) − J†[β(j)]p[β(j)] (15)

where J† denotes the Matlab Moore-Penrose inverse [3, 13] of the Jacobian matrix J ∈ R12×12.
The Moore-Penrose inverse is used to avoid, where possible, unstable calculations. It should be noted
that the optimal form for the elements hj can give both very small and very large values for relatively
modest values of the parameters. Thus it is common to find Matlab will warn that the inverse matrix
J−1 is undefined. The proposed procedure formally ignores the constraints (7). Instead we nominate
values for the constants γs,t for 1 ≤ s < t ≤ m. The corresponding grade correlations can be calculated
from the formula (1). To match the given grade correlation coefficients it is necessary to repeatedly
adjust the selected values for γs,t and then solve the corresponding key equations (13). Although we
have used this method successfully in small problems the Newton iteration proposed here becomes
unstable for larger problems, and so we prefer the dual method developed later in the paper.
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6.3 A fundamental correlation constraint

We have assumed that the grade correlations are known but in practice they are estimated from
observed data. Thus, before applying our suggested numerical calculation procedure, it would be
prudent to check that the given grade correlations are feasible. There is a well-known necessary and
sufficient condition of which we should be aware. The matrix

R = [ρi,j ] ∈ Rm×m

where ρi,i = 1 and ρi,j ∈ [−1, 1] when i 6= j is symmetric and non-negative. That is the matrix must
satisfy the conditions R∗ = R, where R∗ denotes the adjoint matrix, and 〈x, Rx〉 ≥ 0 for all x ∈ Rm.
The corresponding restrictions on R are not always obvious. For an intuitive view of the implications
suppose Xr, Xs and Xt are jointly distributed random variables. The grade correlations are essentially
the cosines of the angles between each pair of elements in a Hilbert space of random variables. Thus
if γr,s = cos θ, γr,t = cosϕ and γs,t = cosψ then we can regard θ, ϕ and ψ as the angles between the
respective random variable pairs, (Xr, Xs), (Xr, Xt) and (Xs, Xt). Some simple geometry tells us that

ϕ− ψ ≤ θ ≤ ϕ+ ψ

after which an elementary algebraic argument gives

cos2 θ + cos2 ϕ+ cos2 ψ ≤ 1 + 2 cos θ cosϕ cosψ.

Thus we obtain a fundamental grade correlation constraint

ρ21,2 + ρ21,3 + ρ22,3 ≤ 1 + 2ρ1,2ρ1,3ρ2,3. (16)

This shows us, for instance, that we cannot have ρ1,2 = 0.7, ρ1,3 = 0.5 and ρ2,3 = −0.3.

6.4 Some remarks about the feasible set

If we omit the final constraint (7) then the set E of all h satisfying (5) and (6) is simply the set of all
multiply stochastic hyper-matrices in R`. The set E is a non-empty convex polytope but in general
it is far from simple to describe the set. For instance it is a decidedly non-trivial task even to list
the vertices. Hence the set F is also difficult to describe. Despite this somewhat pessimistic outlook
it is nevertheless true that the set F will be non-empty if we impose realistic correlation constraints.
What do we mean by this statement? It is certainly true that the matrix R = [ρr,s] of imposed grade
correlation coefficients must be non-negative but we also know from an earlier calculation that

−1 +
1

n2
≤ ρr,s ≤ 1− 1

n2

for all 1 ≤ r < s ≤ m. We could consider a different viewpoint. Formula (1) shows that the grade
correlation coefficients are linear functions on the set E . Thus, for each 1 ≤ r < s ≤ m, we define
ρr,s : E 7→ [−1 + 1/n2, 1− 1/n2] by the formula

ρr,s(h) = 12

 1

n3

∑
i ∈ {1,...,n}m

hi

(
ir −

1

2

)(
is −

1

2

)
− 1

4


for each h ∈ E . Since these are linear functions they take extreme values at the vertices of the set E .
Thus the set R = R(E) of feasible grade correlation matrices is the set of all convex combinations of
the grade correlation matrices at the vertices V (E) of E . We have the following proposition.

10



Proposition 1. If

R =
∑

h∈V (E)

αhRh

where
∑
h∈V (E) αh = 1 with αh ≥ 0 then R = Rk where

k =
∑

h∈V (E)

αhh ∈ F .

If R = Rk where k ∈ F and kj > 0 for all j ∈ {1, 2, . . . ,m}n then Problem 2 has a unique solution
h with hj > 0 for all j ∈ {1, 2, . . . ,m}n. This relies on the fact that the entropy has compact upper
level sets [5, p. 47]. Since the feasible set is non-empty there must be a solution point h ∈ F . If
hj > 0 for all j then h is the desired unique solution. If not then define

h(α) = (1− α)h+ αk

for 0 ≤ α ≤ 1. The feasible set is convex and so h(α) ∈ F for all 0 ≤ α ≤ 1 and we have

J(α) = (−1)

 1

n

∑
i ∈ {1,...,n}m

[(1− α)hj + αkj ] loge[(1− α)hj + αkj ] + (m− 1) loge n


from which it follows that

J ′(α) =
1

n

∑
i ∈ {1,...,n}m

[hj − kj ]
{

loge[(1− α)hj + αkj ]− 1
}
.

If we let α ↓ 0 then those terms where hj > 0 approach a finite limit [hj − kj ] loge hj . All other terms
have the form (−1)kj loge[αkj ] and approach +∞. Therefore the right hand derivative J ′+(0) at α = 0
takes the value +∞. Hence J(0) < J(α) for all sufficiently small α > 0. Thus h is not a solution.
This is a contradiction. Hence hj > 0 for all j ∈ {1, 2, . . . ,m}. We have therefore established the
following proposition.

Proposition 2. If there exists k ∈ F with kj > 0 for all j ∈ {1, 2, . . . ,m}n then Problem 2 has a
unique solution h with hj > 0 for all j ∈ {1, 2, . . . ,m}n.

6.5 Numerical examples for the primal problem

To obtain a direct numerical solution of the primal problem we select certain parameter values to begin
and calculate the remaining parameters by finding a numerical solution to the key equations (14). We
then calculate the corresponding grade correlation coefficients. To match given grade correlations
we need to repeatedly adjust the initial choice of parameter values so that the corresponding grade
correlation coefficients converge to the given values. We assume this can be done in an heuristic
manner.

Example 1. Let m = 3 and n = 4 and take γ1,2 = 1.15, γ1,3 = 0.93 and γ2,3 = 0.9. We write

p = (p1, . . . , p12) ∈ R12. The numerical calculations are routine. We take the initial value β(0) = 1.
After 18 iterations the solution, shown to four decimal place accuracy, is given by

β ≈ [0.5300, 0.4634, 0.3917, 0.3202, 0.4402, 0.4208,

0.3861, 0.3401, 0.2360, 0.3770, 0.5882, 0.8965] ,

δ ≈ [1.8870, 2.1581, 2.5528, 3.1233, 2.2715, 2.3763,

2.5897, 2.9401, 4.2366, 2.6524, 1.7000, 1.1155]
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and

h1 ≈


0.0530 0.0709 0.0925 0.1180
0.0524 0.0631 0.0742 0.0851
0.0498 0.0539 0.0571 0.0589
0.0454 0.0443 0.0421 0.0392

 , h2 ≈


0.0496 0.0616 0.0748 0.0888
0.0564 0.0631 0.0690 0.0736
0.0616 0.0620 0.0610 0.0586
0.0646 0.0585 0.0518 0.0448

 ,

h3 ≈


0.0448 0.0518 0.0585 0.0646
0.0586 0.0610 0.0620 0.0616
0.0736 0.0690 0.0631 0.0564
0.0888 0.0748 0.0616 0.0496

 , h4 ≈


0.0392 0.0421 0.0443 0.0454
0.0589 0.0571 0.0539 0.0498
0.0851 0.0742 0.0631 0.0524
0.1180 0.0925 0.0709 0.0530

 ,
where we have used the notation hi = [hijk]. The correlations, shown to four decimal place accuracy,
are ρ1,2 ≈ 0.1707, ρ1,3 ≈ −0.1050 and ρ2,3 ≈ −0.1359. The Matlab calculations show that

|pr| ≤ 3× 10−16

for each r = 1, . . . , 12 and that the value of the objective function, shown to four decimal place
accuracy, is given by J ≈ −0.0312. �

Example 2. Let m = 3 and n = 4 and set γ1,2 = 8, γ1,3 = 4 and γ2,3 = 0.3. The values for
γ are intended to generate very large and very small parameter values. Once again we write p =
(p1, . . . , p12) ∈ R12. The Newton iteration is modified to take the form

β(j+1) = β(j) − J†[β(j)]f [β(j)]/500.

We take the initial value β(0) = 1. After 30, 000 iterations the solution for both β and δ, shown to
four significant figures, is given by

β ≈ [2.9403, 0.0037, 0.0000, 0.0000, 0.0000, 0.0000,

0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000]× 105,

δ ≈ [0.0000, 0.0000, 0.0000, 6.6104, 0.0024, 0.0041,

0.0369, 1.7324, 0.7747, 0.6306, 0.9947, 3.0408]× 105

while the solution for h, shown to four decimal place accuracy, is

h1 ≈


0.1494 0.2203 0.1676 0.0658
0.2115 0.0935 0.0213 0.0025
0.0569 0.0075 0.0005 0.0000
0.0029 0.0001 0.0000 0.0000

 , h2 ≈


0.0061 0.0359 0.1092 0.1715
0.0689 0.1219 0.1113 0.0524
0.1483 0.0787 0.0216 0.0030
0.0606 0.0097 0.0008 0.0000

 ,

h3 ≈


0.0000 0.0008 0.0097 0.0606
0.0030 0.0216 0.0787 0.1483
0.0524 0.1113 0.1219 0.0689
0.1715 0.1092 0.0359 0.0061

 , h4 ≈


0.0000 0.0000 0.0001 0.0029
0.0000 0.0005 0.0075 0.0569
0.0025 0.0213 0.0935 0.2115
0.0658 0.1676 0.2203 0.1494

 ,
where we have again written hi = [hijk]. The correlations are shown to four decimal place accuracy
as ρ1,2 = 0.6610, ρ1,3 = 0.3508 and ρ2,3 = −0.1226 and the Matlab calculations show that

|pr| ≤ 7× 10−14

for each r = 1, . . . , 12. The value of the objective function, shown to four decimal place accuracy, is
given as J ≈ −0.6206. �
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7 Formulation and solution of the Fenchel dual problem

Let us define g : R` 7→ [0,∞) ∪ {+∞} by setting

g(h) =

{
(−1)J(h) if hj ≥ 0 for all j ∈ {1, 2, . . . ,m}n
+∞ otherwise

where we have used the convention that h loge h = 0 when h = 0 and where we will allow functions
to take values in an extended set of real numbers. Unless otherwise stated we follow the notations
and conventions in the book by Borwein and Lewis [5]. With appropriate definitions we can write the
constraints (5) and (7) in the form Ah = b where A ∈ Rk×` and b ∈ Rk and where k is the collective
rank of the coefficient matrix defining the two sets of linear constraints. In particular we note that
the definition of g allows us to omit the restriction (6) from our statement of Problem 2. Indeed we
can now write a mathematical statement for Problem 2 in standard form.

Problem 3 (Mathematical statement of the primal problem). Find

inf
h∈R`

{
g(h) | Ah = b

}
. (17)

If we assume that (17) has a unique solution h ∈ F with hj > 0 for all j ∈ {1, 2, . . . ,m}n then the
Fenchel dual problem is an unconstrained maximization and the solution to the primal problem can
be recovered from the solution to the dual problem. The necessary justification for this statement can
be found from Corollary 3.3.11 and Exercise 7 on page 56 of the book by Borwein and Lewis [5]. We
observe that the Fenchel conjugate of the function g is the function g∗ : R` 7→ R ∪ {−∞} defined by

g∗(k) = sup
h∈R`

{
〈k,h〉 − g(h)

}
(18)

and refer to Borwein and Lewis [5] for further details. For each fixed k ∈ R` we define

G(h) =
∑

i ∈ {1,...,n}m
kihi −

1

n

∑
i ∈ {1,...,n}m

(
hi loge hi − hi

)
− (m− 1) loge n

where we note that
∑
i∈{1,2,...,m}n hi = n. We can now use elementary calculus to show that G(h) is

maximized when hi = exp [nki] and hence find that

g∗(k) =
1

n

∑
i ∈ {1,...,n}m

exp [nki]− (m− 1) loge n.

Note that A∗ ∈ R`×k. Using Corollary 3.3.11 from [5] we can now write a mathematical statement of
the dual problem in standard form.

Problem 4 (Mathematical statement of the dual problem). Find

sup
ϕ∈Rk

{
〈b,ϕ〉 − g∗(A∗ϕ)

}
. (19)

Let

H(ϕ) =

k∑
j=1

bjϕj −
1

n

∑̀
i=1

exp

n · k∑
j=1

a∗ijϕj

+ (m− 1) loge n
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and use elementary calculus once again to show that if the maximum of H(ϕ) occurs when ϕ = ϕ
then ∑̀

i=1

a∗ir exp

n · k∑
j=1

a∗ijϕj

 = br (20)

for all r = 1, 2, . . . , k.

7.1 Recovering the primal solution

In general there is a closed form for the primal solution h. Let k = A∗ϕ and suppose kj > 0 for all
j ∈ {1, 2, . . . ,m}n. Then the unique solution to the primal problem (3) is given by

h = ∇g∗(A∗ϕ). (21)

The underlying analysis is described in [5] where we refer to Theorem 3.3.5 and to Exercise 17 on
page 82. The key equations (20) produce an every where defined smooth set of equations and can be
solved by many methods.

7.2 A solution scheme for the dual problem

We can use a pure Newton iteration to solve the key equations (20) very well. The key equations are
written in the form

q(ϕ) = 0

where

qr(ϕ) =
∑̀
i=1

a∗ir exp

n · k∑
j=1

a∗ijϕj

− br
for each r = 1, 2, . . . , k. Now the Newton iteration can be written as

ϕ(j+1) = ϕ(j) − J−1[ϕ(j)]q[ϕ(j)]

where we use the Matlab inverse of the Jacobian matrix J ∈ Rk×k.

7.3 Numerical examples for the dual problem

We consider several examples to illustrate different aspects of the calculation. The first example is
chosen so that we can display the constraint Ah = b. In larger examples the matrix A, although
relatively sparse, is too large to display conveniently. The second example is chosen to show that
solution via the dual problem gives the same result as solution of the primal problem. The third
example is larger and shows that the solution scheme for the dual problem is significantly more stable.

Example 3. In the case where m = 2 and n = 3 the objective function is given by

g∗(k) =
1

3

3∑
r=1

3∑
s=1

exp [3krs]− loge 3.

and the constraints (5) and (7) can be written in the form Ah = b where

A =



1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1
1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
1
9

1
3

5
9

1
3 1 5

3
5
9

5
3

25
9

 and b =



1
1
1
1
1

ρ+ 3

 .
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If we set ρ = 0.7 and let ϕ(0) = 0 ∈ R6 then after 8 iterations the solution, shown to four decimal
place accuracy, is given by

ϕ ≈



−0.8682
−2.4632
−0.2825
−1.1506
−2.7457

1.8474

 and h ≈

 0.7933 0.2010 0.0058
0.2010 0.5980 0.2010
0.0058 0.2010 0.7933



where we have written h = [hij ] for convenience. The Matlab calculations show that

‖Ah− b‖ < 8× 10−15

and the value of the objective function, shown to four decimal place accuracy, is given by g∗(k) ≈
−0.5761. The duality gap satisfies the inequality

J(h)− g∗(k) < 3× 10−16

�

Example 4. In the case where m = 3 and n = 4 the objective function is given by

g∗(k) =
1

4

4∑
r=1

4∑
s=1

4∑
t=1

exp [4krst]− 2 loge 4

and the constraints (5) and (7) can be written in matrix form Ah = b where A ∈ R13×64 and b ∈ R13.
If the grade correlation coefficients are given by

ρ1,2 = 0.1707, ρ1,3 = −0.1050 and ρ2,3 = −0.1359

and if we let ϕ(0) = 0 ∈ R13 then after 15 iterations the approximate solution, shown to four decimal
place accuracy, is given by

ϕ ≈ [−0.0251, −0.0587, −0.1007, −0.0070, −0.0242, −0.0516, −0.7320,

−0.6371, −0.5482, −0.4650, 0.1863, −0.0968, −0.1405] .

and

h1 ≈


0.0530 0.0709 0.0925 0.1180
0.0524 0.0631 0.0742 0.0851
0.0498 0.0539 0.0571 0.0590
0.0454 0.0443 0.0421 0.0392

 , h2 ≈


0.0496 0.0616 0.0748 0.0888
0.0564 0.0631 0.0690 0.0736
0.0616 0.0620 0.0610 0.0586
0.0646 0.0585 0.0518 0.0448

 ,

h3 ≈


0.0448 0.0518 0.0585 0.0646
0.0586 0.0610 0.0620 0.0616
0.0736 0.0690 0.0631 0.0564
0.0888 0.0748 0.0616 0.0496

 , h4 ≈


0.0392 0.0421 0.0443 0.0454
0.0590 0.0571 0.0539 0.0498
0.0851 0.0742 0.0631 0.0524
0.1180 0.0925 0.0709 0.0530

 ,
where we have written hi = [hijk]. The Matlab calculations show that

‖Ah− b‖ < 2× 10−15
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and the value of the objective function, shown to four decimal place accuracy, is given by g∗(k) ≈
−0.0312. The duality gap satisfies the inequality

J(h)− g∗(k) < 9× 10−16.

This solution confirms the answer obtained earlier when we solved the corresponding primal problem
in Example 1. �

Example 5. In the case where m = 4 and n = 4 the objective function is given by

g∗(k) =
1

4

4∑
r=1

4∑
s=1

4∑
t=1

4∑
u=1

exp [4krstu]− 3 loge 4.

and the constraints (5) and (7) can be written in matrix form Ah = b where A ∈ R19×256 and b ∈ R19.
If the grade correlation coefficients are given by

ρ1,2 = 0.8250, ρ1,3 = 0.1050, ρ1,4 = 0.6372, ρ2,3 = −0.1359, ρ2,4 = 0.3450, ρ3,4 = 0.1556

and if we let ϕ(0) = 0 ∈ R19 then after 15 iterations the approximate solution, shown to four decimal
place accuracy, is given by

ϕ ≈ [ −1.6101, −7.7873, −17.5404, −30.8695, −0.3976, −3.1928, −8.3856,

0.2452, 0.3785, 0.3998, 0.0999, −0.3473, −1.3414,

15.5038, 3.1601, 7.3445, −2.7066, −5.3433, −0.8088]

and

h11 ≈


0.0398 0.0927 0.0242 0.0007
0.0928 0.1180 0.0168 0.0003
0.1384 0.0959 0.0075 0.0001
0.1319 0.0498 0.0021 0.0000

 , h12 ≈


0.1326 0.0056 0.0000 0.0000
0.0407 0.0009 0.0000 0.0000
0.0080 0.0001 0.0000 0.0000
0.0010 0.0000 0.0000 0.0000

 ,

h13 ≈


0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000

 , h14 ≈


0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000

 ,

h21 ≈


0.0000 0.0000 0.0005 0.0034
0.0000 0.0001 0.0035 0.0138
0.0000 0.0009 0.0166 0.0357
0.0001 0.0048 0.0503 0.0590

 , h22 ≈


0.0048 0.0498 0.0584 0.0077
0.0156 0.0890 0.0569 0.0041
0.0327 0.1017 0.0354 0.0014
0.0438 0.0742 0.0141 0.0003

 ,

h23 ≈


0.1218 0.0232 0.0005 0.0000
0.0524 0.0054 0.0001 0.0000
0.0144 0.0008 0.0000 0.0000
0.0025 0.0001 0.0000 0.0000

 , h24 ≈


0.0002 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000

 ,

h31 ≈


0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0002

 , h32 ≈


0.0000 0.0000 0.0001 0.0025
0.0000 0.0000 0.0008 0.0144
0.0000 0.0001 0.0054 0.0524
0.0000 0.0005 0.0232 0.1218

 ,
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h33 ≈


0.0003 0.0141 0.0742 0.0438
0.0014 0.0354 0.1017 0.0327
0.0041 0.0569 0.0890 0.0156
0.0077 0.0584 0.0498 0.0048

 , h34 ≈


0.0590 0.0503 0.0048 0.0001
0.0357 0.0166 0.0009 0.0000
0.0138 0.0035 0.0001 0.0000
0.0034 0.0005 0.0000 0.0000

 ,

h41 ≈


0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000

 , h42 ≈


0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000

 ,

h43 ≈


0.0000 0.0000 0.0000 0.0010
0.0000 0.0000 0.0001 0.0080
0.0000 0.0000 0.0009 0.0407
0.0000 0.0000 0.0056 0.1326

 , h44 ≈


0.0000 0.0021 0.0498 0.1319
0.0001 0.0075 0.0959 0.1384
0.0003 0.0168 0.1180 0.0928
0.0007 0.0242 0.0927 0.0398

 ,
where we have written hij = [hijk`]. The Matlab calculations show that

‖Ah− b‖ < 2× 10−14

and the optimal value of the objective function, shown to four decimal place accuracy, is g∗(k) ≈
−5.3829. The duality gap satisfies the inequality

J(h)− g∗(k) < 10−16,

as intended. �

Example 6. In the case where m = 5 and n = 4 the objective function is given by

g∗(k) =
1

4

4∑
r=1

4∑
s=1

4∑
t=1

4∑
u=1

4∑
v=1

exp [4krstuv]− 4 loge 4.

and the constraints (5) and (7) can be written in matrix form Ah = b where A ∈ R26×1024 and b ∈ R26.
If the grade correlation coefficients are given by

ρ1,2 = 0.597, ρ1,3 = −0.122, ρ1,4 = 0.346, ρ1,5 = 0.225, ρ2,3 = −0.175,

ρ2,4 = 0.304, ρ2,5 = 0.406, ρ3,4 = 0.272, ρ3,5 = 0.113, ρ4,5 = 0.324

and if we let ϕ(0) = 0 ∈ R26 then after 15 iterations we obtain an approximate solution ϕ given to
four decimal place accuracy by

ϕ ≈ [ −0.2642, −0.6818, −1.2529, −0.3254, −0.8557, −1.5908, −0.0034, −0.0562,

−0.1586, −0.4323, −0.9512, −1.5567, −0.9273, −1.2144, −1.5697, −1.9933,

0.9942, −0.1539, 0.4320, −0.1586, −0.4030, 0.1831, 0.6397, 0.5000, 0.1979, 0.2686].

Similar calculations to those used earlier show the optimal value of the objective function, shown to
four decimal place accuracy, is g∗(k) ≈ −0.4311 and that the duality gap satisfies the inequality

J(h)− g∗(k) < 3× 10−15,

again as intended. �
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Table 1: Monthly means and standard deviations (SD) for Sydney

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

mean 102.5 117.9 129.9 126.2 102.7 130.6 98.1 82.1 69.6 76.8 83.7 78.1

SD 76.4 109.6 103.4 112.0 110.7 115.8 82.2 83.6 60.0 66.4 75.5 63.4

8 Case Study

We have available 150 years of official monthly rainfall records supplied by the Australian Bureau of
Meteorology for Sydney, in NSW, Australia, during the period 1859-2008. The rainfall is measured in
millimetres (mm). Table 1 shows the monthly statistics for Sydney. September has the lowest average
of 69 mm and June has the highest of 130 mm.
The distributions for individual months can be modelled effectively using a gamma distribution [20,
12, 23, 19, 17, 15]. The gamma distribution is used to model strictly positive random variables. There
have never been any months with an observed zero rainfall total. The gamma distribution is defined
on (0,∞) by the formula

F [α, β](x) =

∫ x

0

ξα−1e−ξ/β

βαΓ(α)
dξ

where α > 0 and β > 0 are parameters. The parameters α = α[t] and β = β[t] for month t were
determined from the observed non-zero records by the method of maximum likelihood. The calculated
values are

α = (1.817, 1.359, 1.741, 1.333, 1.258, 1.338, 1.202, 1.039, 1.412, 1.468, 1.461, 1.777)

and
β = (56.40, 86.75, 74.60, 94.70, 95.97, 97.64, 81.56, 79.06, 49.33, 52.31, 57.29, 43.92).

The distributions appear to be weakly correlated. Table 2 shows the grade correlation coefficients for
all monthly pairs. The correlation for (Oct, Nov) is significant at the 0.01 level (2-tailed) and the
correlations for (Jan,Feb), (Jan,Apr), (Jan,Oct), (Mar,Jun), (Apr,May), (Jun,Sep) are significant at
the 0.05 level (2-tailed). The significant correlations are shown in bold print.

Example 7. Consider the months Mar-Jun-Sep. The observed correlations are ρ1,2 = 0.19, ρ1,3 =
−0.12 and ρ2,3 = −0.17. For n = 4 the copula of maximum entropy is defined by

h1 ≈


0.0493 0.0702 0.0965 0.1283
0.0459 0.0604 0.0768 0.0943
0.0410 0.0499 0.0586 0.0665
0.0351 0.0395 0.0429 0.0450

 , h2 ≈


0.0505 0.0630 0.0758 0.0881
0.0549 0.0632 0.0703 0.0755
0.0572 0.0609 0.0626 0.0621
0.0572 0.0562 0.0534 0.0490

 ,

h3 ≈


0.0490 0.0534 0.0562 0.0572
0.0621 0.0626 0.0609 0.0572
0.0755 0.0703 0.0632 0.0549
0.0881 0.0758 0.0630 0.0505

 , h4 ≈


0.0450 0.0429 0.0395 0.0351
0.0665 0.0586 0.0499 0.0410
0.0943 0.0768 0.0604 0.0459
0.1283 0.0965 0.0702 0.0493


where we have written hi = [hijk] and

ϕ ≈ [ −0.0272, −0.0647, −0.1127, 0.0038, −0.0064, −0.0305, −0.7490,

−0.6340, −0.5276, −0.4299, 0.2055, −0.1053, −0.1784].
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Table 2: Grade correlation coefficients for all monthly pairs

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Jan 0.18 -0.06 -0.19 -0.01 -0.02 -0.02 0.13 0.09 -0.16 0.05 -0.04
Feb 0.18 -0.03 -0.08 -0.09 0.05 -0.01 0.10 0.09 -0.05 0.08 -0.07
Mar -0.06 -0.03 0.11 0.04 0.19 -0.14 -0.15 -0.12 0.15 -0.05 -0.01
Apr -0.19 -0.08 0.11 0.18 0.05 0.13 0.12 -0.08 0.11 0.09 -0.03
May -0.01 -0.09 0.04 0.18 0.05 -0.02 -0.05 -0.08 -0.07 0.05 -0.06
Jun -0.02 0.05 0.19 0.05 0.05 -0.04 -0.07 -0.17 0.02 0.05 -0.05
Jul -0.02 -0.01 -0.14 0.13 -0.02 -0.04 0.11 0.12 0.08 -0.08 -0.02
Aug 0.13 0.10 -0.15 0.12 -0.05 -0.07 0.11 0.13 0.13 0.12 -0.09
Sep 0.09 0.09 -0.12 -0.08 -0.08 -0.17 0.12 0.13 0.04 0.07 -0.01
Oct -0.16 -0.05 0.15 0.11 -0.07 0.02 0.08 0.13 0.04 0.22 -0.03
Nov 0.05 0.08 -0.05 0.09 0.05 0.05 -0.08 0.12 0.07 0.22 0.08
Dec -0.04 -0.07 -0.01 -0.03 -0.06 -0.05 -0.02 -0.09 -0.01 -0.03 0.08

Example 8. Consider the months Jan-Oct-Nov. The observed correlations are ρ1,2 = −0.16, ρ1,3 =
0.05 and ρ2,3 = 0.22. For n = 4 the copula of maximum entropy is defined by

h1 ≈


0.0737 0.0501 0.0322 0.0197
0.0855 0.0631 0.0441 0.0292
0.0961 0.0770 0.0584 0.0420
0.1046 0.0910 0.0750 0.0585

 , h2 ≈


0.0737 0.0619 0.0492 0.0371
0.0729 0.0664 0.0574 0.0469
0.0698 0.0691 0.0648 0.0575
0.0647 0.0696 0.0708 0.0683

 ,

h3 ≈


0.0683 0.0708 0.0696 0.0647
0.0575 0.0648 0.0691 0.0698
0.0469 0.0574 0.0664 0.0729
0.0371 0.0492 0.0619 0.0737

 , h4 ≈


0.0585 0.0750 0.0910 0.1046
0.0420 0.0584 0.0770 0.0961
0.0292 0.0441 0.0631 0.0855
0.0197 0.0322 0.0501 0.0737

 .
where we have written hi = [hijk] and

ϕ ≈ [ 0.0468, 0.0857, 0.1167, −0.0063, −0.0319, −0.0768, −0.6603,

−0.7935, −0.9403, −1.1007, −0.2134, 0.1097, 0.2817].

�

9 Conclusions

We have proposed a checkerboard copula of maximum entropy to construct a joint probability density
that preserves the prescribed marginal distributions and matches known grade correlation coefficients.
We showed firstly that solution of the primal optimization problem allows us to find a general para-
metric form for the optimal solution but we also found that direct numerical calculations using this
formula become unstable for larger problems. By reformulating the problem as an unconstrained op-
timization problem using the theory of Fenchel duality we were able to show that solution of the dual
problem and subsequent recovery of the primal solution is a much more tractable procedure. The un-
derlying entropy model assures that the dual problem has many attractive features both theoretically
and numerically. Lastly, our theoretical ideas were illustrated by calculating copulas of maximum
entropy in a stochastic rainfall modelling setting.
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