

Dalhousie Distributed Research Institute and Virtual Environment

Computer-assisted Discovery and Proof

Jonathan Borwein, FRSC <u>www.cs.dal.ca/~jborwein</u>

Canada Research Chair in Collaborative Technology

"Elsewhere Kronecker said ``In mathematics, I recognize true scientific value only in concrete mathematical truths, or to put it more pointedly, only in mathematical formulas." ... I would rather say ``computations" than ``formulas", but my view is essentially the same."

Harold Edwards, Essays in Constructive Mathematics, 2004

Revised 22/01/2006

PART I. Numerical Experimentation

Computer-assisted Discovery and Proof of Generating Functions for Riemann's Zeta

Jonathan M. Borwein Dalhousie D-Drive

David H Bailey Lawrence Berkeley National Lab

Details in **Experimental Mathematics in Action** Bailey, Borwein et al, A.K. Peters, 2006.

"All truths are easy to understand once they are discovered; the point is to discover them." – Galileo Galilei

Algorithms Used in Experimental Mathematics

- Symbolic computation for algebraic and calculus manipulations.
- Integer-relation methods, especially the "PSLQ" algorithm.
- High-precision integer and floating-point arithmetic.
- High-precision evaluation of integrals and infinite series summations.
- The Wilf-Zeilberger algorithm for proving summation identities.
- Iterative approximations to continuous functions.
- Identification of functions based on graph characteristics.
- Graphics and visualization methods targeted to mathematical objects.

"High-Precision" or "Arbitrary Precision" Arithmetic

- High-precision integer arithmetic is required in symbolic computing packages.
- High-precision floating-point arithmetic is required to permit identification of mathematical constants using PSLQ or online constant recognition facilities.
- Most common requirement is for 200-500 digits, although more than 1,000-digit precision is sometimes required.
- One problem required 50,000-digit arithmetic.

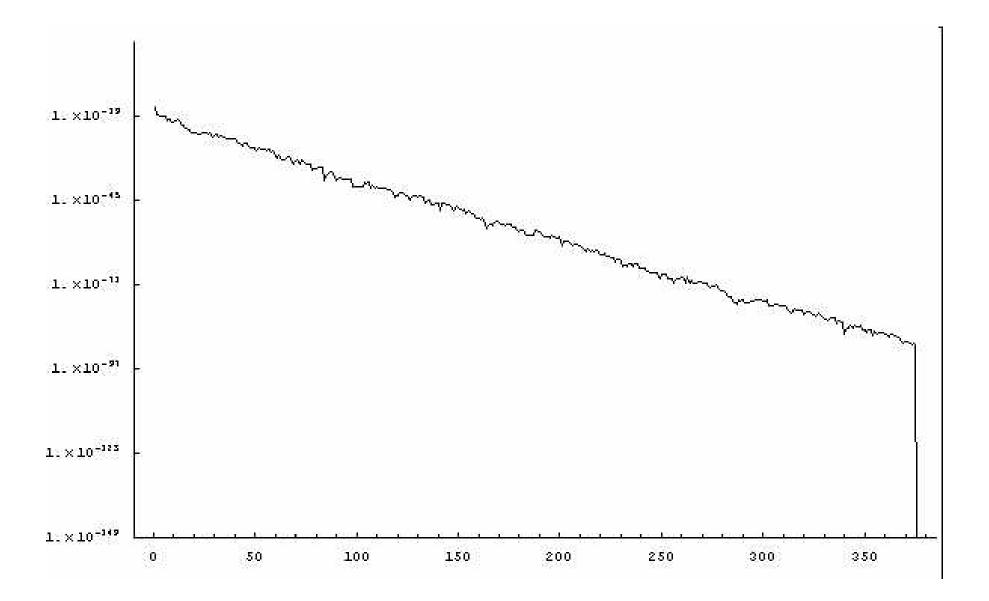
The PSLQ Integer Relation Algorithm

Let (x_n) be a vector of real numbers. An integer relation algorithm finds integers (a_n) such that

 $a_1x_1 + a_2x_2 + \dots + a_nx_n = 0$

- At the present time, the PSLQ algorithm of mathematician-sculptor *Helaman Ferguson* is the bestknown integer relation algorithm.
- PSLQ was named one of ten "algorithms of the century" by Computing in Science and Engineering.
- High precision arithmetic software is required: at least d £ n digits, where d is the size (in digits) of the largest of the integers a_k.

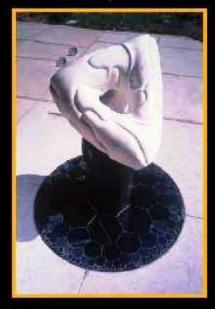
Decrease of min_j |A_j x| in PSLQ

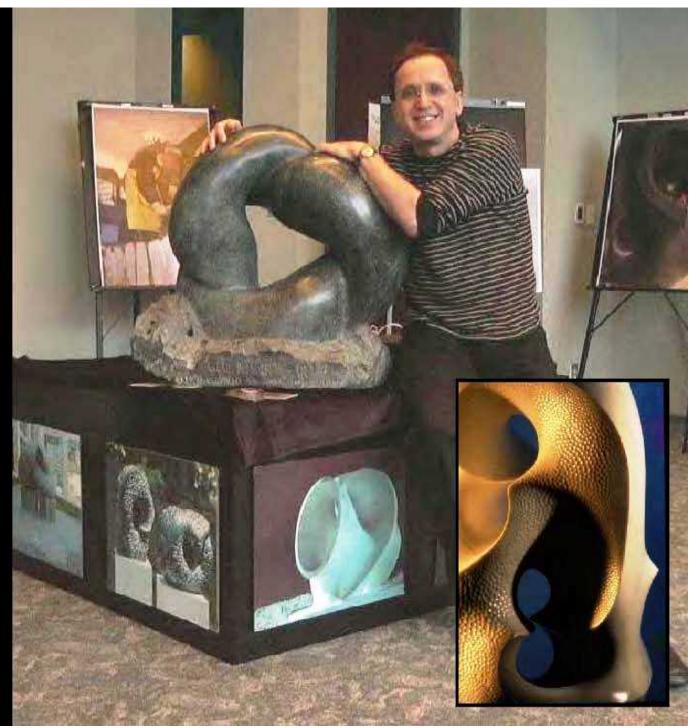


Peter Borwein in front of Helaman Ferguson's work

> CMS Meeting December 2003 SFU Harbour Centre

Ferguson uses high tech tools and micro engineering at NIST to build monumental math sculptures



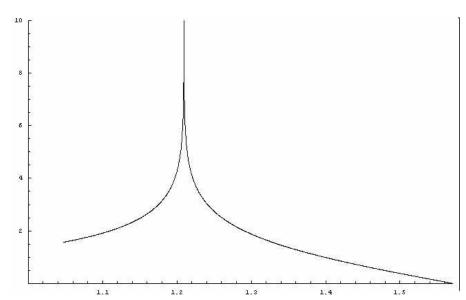


$$\frac{24}{7\sqrt{7}} \int_{\pi/3}^{\pi/2} \log \left| \frac{\tan t + \sqrt{7}}{\tan t - \sqrt{7}} \right| dt$$
$$\stackrel{?}{=} \sum_{n=0}^{\infty} \left[\frac{1}{(7n+1)^2} + \frac{1}{(7n+2)^2} - \frac{1}{(7n+3)^2} + \frac{1}{(7n+4)^2} - \frac{1}{(7n+5)^2} - \frac{1}{(7n+6)^2} \right]$$

This arises in mathematical physics, from analysis of the volumes of *ideal tetrahedra* in hyperbolic space.

This "identity" has now been verified numerically to **20,000** digits, but no proof is known.

Note that the integrand function has a nasty singularity.



Drive Extreme Quadrature ... 20,000 Digits (50 Certified) on 1024 CPUs

Perko knots 10₁₆₂ and 10₁₆₃ agree: a dynamic proof

- . The integral was split at the nasty interior singularity
- . The sum was `easy'.
- . All fast arithmetic & function evaluation ideas used

Run-times and speedup ratios on the Virginia Tech G5 Cluster

CPUs	Init	Integral $\#1$	Integral $#2$	Total	Speedup
1	*190013	*1534652	*1026692	*2751357	1.00
16	12266	101647	64720	178633	15.40
64	3022	24771	16586	44379	62.00
256	770	6333	4194	11297	243.55
1024	199	1536	1034	2769	993.63

Parallel run times (in seconds) and speedup ratios for the 20,000-digit problem

Expected and unexpected scientific spinoffs

- 1986-1996. Cray used quartic-Pi to check machines in factory
- 1986. Complex FFT sped up by factor of two
- 2002. Kanada used hex-pi (20hrs not 300hrs to check computation)
- 2005. Virginia Tech (this integral pushed the limits)
- 1995- Math Resources (another lecture)

Define

$$J_n = \int_{n\pi/60}^{(n+1)\pi/60} \log \left| \frac{\tan t + \sqrt{7}}{\tan t - \sqrt{7}} \right| dt$$

Then

$$0 \stackrel{?}{=} -2J_2 - 2J_3 - 2J_4 + 2J_{10} + 2J_{11} + 3J_{12} + 3J_{13} + J_{14} - J_{15} - J_{16} - J_{17} - J_{18} - J_{19} + J_{20} + J_{21} - J_{22} - J_{23} + 2J_{25}$$

This has been verified to over **1000** digits. The interval in J_{23} includes the singularity.

II. New Ramanujan-Like Identities

Guillera has recently found Ramanujan-like identities, including:

$$\frac{128}{\pi^2} = \sum_{n=0}^{\infty} (-1)^n r(n)^5 (13 + 180n + 820n^2) \left(\frac{1}{32}\right)^{2n}$$

$$\frac{32}{\pi^2} = \sum_{n=0}^{\infty} (-1)^n r(n)^5 (1 + 8n + 20n^2) \left(\frac{1}{2}\right)^{2n}$$

$$\frac{32}{\pi^3} = \sum_{n=0}^{\infty} r(n)^7 (1 + 14n + 76n^2 + 168n^3) \left(\frac{1}{32}\right)^{2n}.$$

where

$$r(n) = \frac{(1/2)_n}{n!} = \frac{1/2 \cdot 3/2 \cdot \dots \cdot (2n-1)/2}{n!} = \frac{\Gamma(n+1/2)}{\sqrt{\pi} \Gamma(n+1)}$$

Guillera proved the first two of these using the Wilf-Zeilberger algorithm. He ascribed the third to Gourevich, who found it using integer relation methods.

Are there any higher-order analogues?

Not as far as we can tell

Searches for Additional Formulas

We searched for additional formulas of either the following forms:

$$\frac{c}{\pi^m} = \sum_{n=0}^{\infty} r(n)^{2m+1} (p_0 + p_1 n + \dots + p_m n^m) \alpha^{2n}$$
$$\frac{c}{\pi^m} = \sum_{n=0}^{\infty} (-1)^n r(n)^{2m+1} (p_0 + p_1 n + \dots + p_m n^m) \alpha^{2n}.$$

where c is some linear combination of 1, $2^{1/2}$, $2^{1/3}$, $2^{1/4}$, $2^{1/6}$, $4^{1/3}$, $8^{1/4}$, $32^{1/6}$, $3^{1/2}$, $3^{1/3}$, $3^{1/4}$, $3^{1/6}$, $9^{1/3}$, $27^{1/4}$, $243^{1/6}$, $5^{1/2}$, $5^{1/4}$, $125^{1/4}$, $7^{1/2}$, $13^{1/2}$, $6^{1/2}$, $6^{1/3}$, $6^{1/4}$, $6^{1/6}$, 7, $36^{1/3}$, $216^{1/4}$, $7776^{1/6}$, $12^{1/4}$, $108^{1/4}$, $10^{1/2}$, $10^{1/4}$, $15^{1/2}$

where each of the coefficients p_i is a linear combination of 1, $2^{1/2}$, $3^{1/2}$, $5^{1/2}$, $6^{1/2}$, $7^{1/2}$, $10^{1/2}$, $13^{1/2}$, $14^{1/2}$, $15^{1/2}$, $30^{1/2}$ and where α is chosen as one of the following: 1/2, 1/4, 1/8, 1/16, 1/32, 1/64, 1/128, 1/256, $\sqrt{5} - 2$, $(2 - \sqrt{3})^2$, $5\sqrt{13} - 18$, $(\sqrt{5} - 1)^4/128$, $(\sqrt{5} - 2)^4$, $(2^{1/3} - 1)^4/2$, $1/(2\sqrt{2})$, $(\sqrt{2} - 1)^2$, $(\sqrt{5} - 2)^2$, $(\sqrt{3} - \sqrt{2})^4$

Relations Found by PSLQ (in addition to Guillera's three relations)

$$\begin{aligned} \frac{4}{\pi} &= \sum_{n=0}^{\infty} r(n)^3 (1+6n) \left(\frac{1}{2}\right)^{2n} \\ \frac{16}{\pi} &= \sum_{n=0}^{\infty} r(n)^3 (5+42n) \left(\frac{1}{8}\right)^{2n} \\ \frac{12^{1/4}}{\pi} &= \sum_{n=0}^{\infty} r(n)^3 (-15+9\sqrt{3}-36n+24\sqrt{3}n) \left(2-\sqrt{3}\right)^{4n} \\ \frac{32}{\pi} &= \sum_{n=0}^{\infty} r(n)^3 (-1+5\sqrt{5}+30n+42\sqrt{5}n) \left(\frac{(\sqrt{5}-1)^4}{128}\right)^{2n} \\ \frac{5^{1/4}}{\pi} &= \sum_{n=0}^{\infty} r(n)^3 (-525+235\sqrt{5}-1200n+540\sqrt{5}n) \left(\sqrt{5}-2\right)^{8n} \\ \frac{2\sqrt{2}}{\pi} &= \sum_{n=0}^{\infty} (-1)^n r(n)^3 (1+6n) \left(\frac{1}{2\sqrt{2}}\right)^{2n} \\ \frac{2}{\pi} &= \sum_{n=0}^{\infty} (-1)^n r(n)^3 (-5+4\sqrt{2}-12n+12\sqrt{2}n) \left(\sqrt{2}-1\right)^{4n} \\ \frac{2}{\pi} &= \sum_{n=0}^{\infty} (-1)^n r(n)^3 (23-10\sqrt{5}+60n-24\sqrt{5}n) \left(\sqrt{5}-2\right)^{4n} \\ \frac{2}{\pi} &= \sum_{n=0}^{\infty} (-1)^n r(n)^3 (177-72\sqrt{6}+420n-168\sqrt{6}n) \left(\sqrt{3}-\sqrt{2}\right)^{8n} \end{aligned}$$

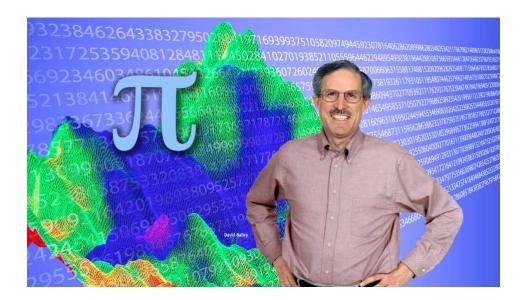
Echoes of the elliptic theory in *Pi and the AGM*

explain the various series for $1/\pi$. Details are in given the *Excursions*.

"No. I have been teaching it all my life, and I do not want to have my ideas upset."

Isaac Todhunter (1820 - 1884) recording *Maxwell being asked* whether he would like to see an experimental demonstration of conical refraction.

JM Borwein and DH Bailey



"Anyone who is not shocked by quantum theory has not understood a single word." - Niels Bohr

The Wilf-Zeilberger Algorithm for Proving Identities

- A slick, computer-assisted proof scheme to prove certain types of identities
- Provides a nice complement to PSLQ
 - PSLQ and the like permit one to discover new identities but do not constitute rigorous proof
 - W-Z methods permit one to prove certain types of identities but do not suggest any means to discover the identity

Example Usage of W-Z

Consider these experimentally-discovered identities (the later from Part I):

$$\sum_{n=0}^{\infty} \frac{\binom{4n}{2n}\binom{2n}{n}^4}{2^{16n}} \left(120n^2 + 34n + 3\right) = \frac{32}{\pi^2}$$

$$B = 4A$$

$$\sum_{n=0}^{\infty} \frac{\left(-1\right)^n \binom{2n}{n}^5}{2^{20n}} \left(820n^2 + 180n + 13\right) = \frac{128}{\pi^2}$$

Guillera *cunningly* started by defining

$$G(n,k) = \frac{(-1)^k}{2^{16n}2^{4k}} \left(120n^2 + 84nk + 34n + 10k + 3\right) \frac{\binom{2n}{n}^4 \binom{2k}{k}^3 \binom{4n-2k}{2n-k}}{\binom{2n}{k} \binom{n+k}{n}^2}$$

He then used the **EKHAD** software package to obtain the companion

$$F(n,k) = \frac{(-1)^k 512}{2^{16n} 2^{4k}} \frac{n^3}{4n - 2k - 1} \frac{\binom{2n}{n}^4 \binom{2k}{k}^3 \binom{4n - 2k}{2n - k}}{\binom{2n}{k} \binom{n+k}{n}^2}$$

When we define

$$H(n,k) = F(n+1, n+k) + G(n, n+k)$$

Zeilberger's theorem gives the identity

$$\sum_{n=0}^{\infty} G(n,0) = \sum_{n=0}^{\infty} H(n,0)$$

which when written out is

$$\sum_{n=0}^{\infty} \frac{\binom{2n}{n}^4 \binom{4n}{2n}}{2^{16n}} \left(120n^2 + 34n + 3 \right) = \sum_{n=0}^{\infty} \frac{(-1)^n}{2^{20n+7}} \frac{(n+1)^3}{2n+3} \frac{\binom{2n+2}{n+1}^4 \binom{2n}{n}^3 \binom{2n+4}{n+2}}{\binom{2n+2}{n} \binom{2n+1}{n+1}^2} \\ + \sum_{n=0}^{\infty} \frac{(-1)^n}{2^{20n}} \left(204n^2 + 44n + 3 \right) \binom{2n}{n}^5 = \frac{1}{4} \sum_{n=0}^{\infty} \frac{(-1)^n \binom{2n}{n}^5}{2^{20n}} \left(820n^2 + 180n + 13 \right)$$

Now for integer k

$$\sum_{n=0}^{\infty} G(n,k) = \sum_{n=0}^{\infty} G(n,k+1)$$

and so for all real k: taking the limit at t=1/2 completes the proof.

III. A Cautionary Example

These **constants agree to 42 decimal digits** accuracy, but are **NOT** equal:

$$\int_{0}^{\infty} \cos(2x) \prod_{n=0}^{\infty} \cos(x/n) dx =$$
0.39269908169872415480783042290993786052464543418723...
$$\frac{\pi}{8} =$$
0.39269908169872415480783042290993786052464617492189...

Computing this integral is nontrivial, due largely to difficulty in evaluating the integrand function to high precision.

IV. Apery-Like Summations

The following formulas for $\zeta(n)$ have been known for many decades:

$$\zeta(2) = 3 \sum_{k=1}^{\infty} \frac{1}{k^2 \binom{2k}{k}},$$

$$\zeta(3) = \frac{5}{2} \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^3 \binom{2k}{k}},$$

$$\zeta(4) = \frac{36}{17} \sum_{k=1}^{\infty} \frac{1}{k^4 \binom{2k}{k}}.$$

These results have led many to speculate that

$$Q_5 := \zeta(5) / \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^5 \binom{2k}{k}}$$

might be some nice rational or algebraic value.

Sadly, PSLQ calculations have established that if Q_5 satisfies a polynomial with **degree** at most **25**, then at least **one coefficient** has **380** digits.

Apery-Like Relations Found Using Integer Relation Methods

$$\begin{split} \zeta(5) &= 2\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^5 \binom{2k}{k}} - \frac{5}{2} \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^3 \binom{2k}{k}} \sum_{j=1}^{k-1} \frac{1}{j^2}, \\ \zeta(7) &= \frac{5}{2} \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^7 \binom{2k}{k}} + \frac{25}{2} \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^3 \binom{2k}{k}} \sum_{j=1}^{k-1} \frac{1}{j^4} \\ \zeta(9) &= \frac{9}{4} \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^9 \binom{2k}{k}} - \frac{5}{4} \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^7 \binom{2k}{k}} \sum_{j=1}^{k-1} \frac{1}{j^2} + 5 \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^5 \binom{2k}{k}} \sum_{j=1}^{k-1} \frac{1}{j^4} \\ &+ \frac{45}{4} \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^3 \binom{2k}{k}} \sum_{j=1}^{k-1} \frac{1}{j^6} - \frac{25}{4} \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^3 \binom{2k}{k}} \sum_{j=1}^{k-1} \frac{1}{j^4} \sum_{j=1}^{k-1} \frac{1}{j^2}, \\ \zeta(11) &= \frac{5}{2} \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^{11} \binom{2k}{k}} + \frac{25}{2} \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^7 \binom{2k}{k}} \sum_{j=1}^{k-1} \frac{1}{j^4} \\ &- \frac{75}{4} \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^3 \binom{2k}{k}} \sum_{j=1}^{k-1} \frac{1}{j^8} + \frac{125}{4} \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^3 \binom{2k}{k}} \sum_{j=1}^{k-1} \frac{1}{j^4} \sum_{j=1}^{k-1} \frac{1}{j^4} \end{split}$$

Formulas for 7 and 11 were found by JMB and David Bradley; 5 and 9 by Kocher 25 years ago, as part of the general formula:

$$\sum_{k=1}^{\infty} \frac{1}{k(k^2 - x^2)} = \frac{1}{2} \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^3 \binom{2k}{k}} \frac{5k^2 - x^2}{k^2 - x^2} \prod_{m=1}^{k-1} \left(1 - \frac{x^2}{m^2}\right)$$

Newer (2005) Results

Using **bootstrapping** and the "**Pade/pade**" function JMB and Dave Bradley then found the following remarkable result (1996):

$$\sum_{k=1}^{\infty} \frac{1}{k^3 (1 - x^4/k^4)} = \frac{5}{2} \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^3 \binom{2k}{k} (1 - x^4/k^4)} \prod_{m=1}^{k-1} \left(\frac{1 + 4x^4/m^4}{1 - x^4/m^4} \right)$$

Following an analogous – but more deliberate – experimental-based procedure, we have obtained a similar general formula for $\zeta(2n+2)$ that is pleasingly parallel to above:

$$\sum_{k=1}^{\infty} \frac{1}{k^2 - x^2} = 3 \sum_{k=1}^{\infty} \frac{1}{k^2 \binom{2k}{k} \left(1 - \frac{x^2}{k^2}\right)} \prod_{m=1}^{k-1} \left(\frac{1 - 4x^2/m^2}{1 - \frac{x^2}{m^2}}\right)$$

Note that this gives an *Apery-like formula* for $\zeta(2n)$, since the LHS equals

$$\sum_{n=0}^{\infty} \zeta(2n+2)x^{2n} = \frac{1 - \pi x \cot(\pi x)}{2x^2}$$

• We will sketch our experimental discovery of this in the new few slides.

The Experimental Scheme

1. We first supposed that $\zeta(2n+2)$ is a rational combination of terms of the form:

$$\sigma(2r; [2a_1, \cdots, 2a_N]) := \sum_{k=1}^{\infty} \frac{1}{k^{2r} \binom{2k}{k}} \prod_{i=1}^{N} \sum_{n_i=1}^{k-1} \frac{1}{n_i^{2a_i}}$$

where $r + a_1 + a_2 + ... + a_N = n + 1$ and a_i are listed increasingly.

2. We can then write:

$$\sum_{n=0}^{\infty} \zeta(2n+2) x^{2n} \stackrel{?}{=} \sum_{n=0}^{\infty} \sum_{r=1}^{n+1} \sum_{\pi \in \Pi(n+1-r)} \alpha(\pi) \sigma(2\mathbf{r}; 2\pi) x^{2n}$$

where $\Pi(m)$ denotes the additive partitions of m.

3. We can then deduce that

$$\sum_{n=0}^{\infty} \zeta(2n+2) x^{2n} = \sum_{k=1}^{\infty} \frac{1}{\binom{2k}{k}(k^2-x^2)} P_k(x)$$

where $P_k(x)$ are functions whose general form we hope to discover:

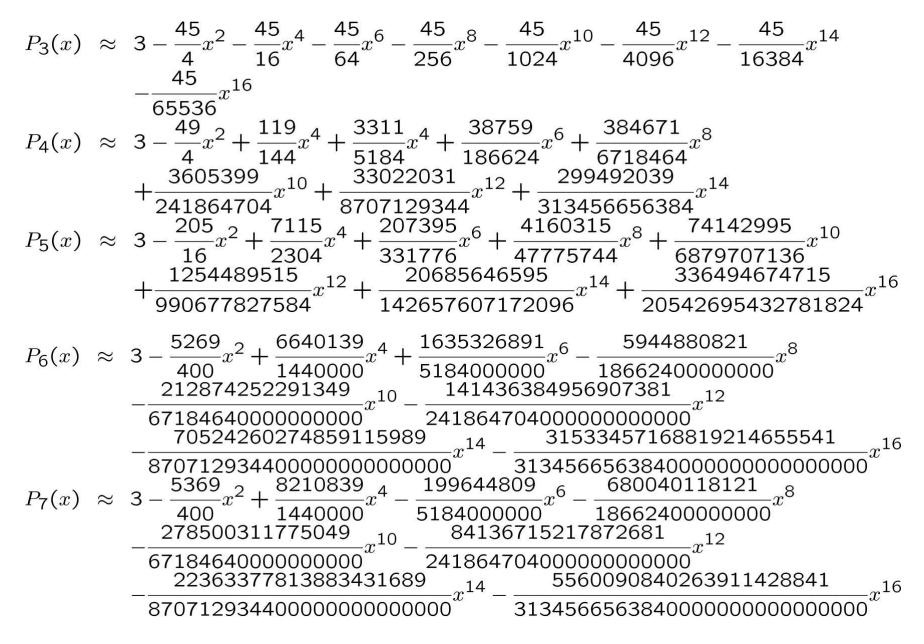
• •

$$\begin{split} \zeta(2) &= 3\sum_{k=1}^{\infty} \frac{1}{\binom{2k}{k}k^2} = 3\sigma(2,[0]), \\ \zeta(4) &= 3\sum_{k=1}^{\infty} \frac{1}{\binom{2k}{k}k^4} - 9\sum_{k=1}^{\infty} \frac{\sum_{j=1}^{k-1}j^{-2}}{\binom{2k}{k}k^2} = 3\sigma(4,[0]) - 9\sigma(2,[2]) \\ \zeta(6) &= 3\sum_{k=1}^{\infty} \frac{1}{\binom{2k}{k}k^6} - 9\sum_{k=1}^{\infty} \frac{\sum_{j=1}^{k-1}j^{-2}}{\binom{2k}{k}k^4} - \frac{45}{2}\sum_{k=1}^{\infty} \frac{\sum_{j=1}^{k-1}j^{-4}}{\binom{2k}{k}k^2} \\ &+ \frac{27}{2}\sum_{k=1}^{\infty}\sum_{j=1}^{k-1} \frac{\sum_{i=1}^{k-1}i^{-2}}{j^2\binom{2k}{k}k^2}, \\ &= 3\sigma(6,[]) - 9\sigma(4,[2]) - \frac{45}{2}\sigma(2,[4]) + \frac{27}{2}\sigma(2,[2,2]) \\ \zeta(8) &= 3\sigma(8,[]) - 9\sigma(6,[2]) - \frac{45}{2}\sigma(4,[4]) + \frac{27}{2}\sigma(4,[2,2]) - 63\sigma(2,[6]) \\ &+ \frac{135}{2}\sigma(2,[4,2]) - \frac{27}{2}\sigma(2,[2,2,2]) \\ \zeta(10) &= 3\sigma(10,[]) - 9\sigma(8,[2]) - \frac{45}{2}\sigma(6,[4]) + \frac{27}{2}\sigma(6,[2,2]) - 63\sigma(4,[6]) \\ &+ \frac{135}{2}\sigma(4,[4,2]) - \frac{27}{2}\sigma(4,[2,2,2]) - \frac{765}{4}\sigma(2,[8]) + 189\sigma(2,[6,2]) \\ &+ \frac{675}{8}\sigma(2,[4,4]) - \frac{405}{4}\sigma(2,[4,2,2]) + \frac{81}{8}\sigma(2,[2,2,2,2]) \end{split}$$

Coefficients Obtained

ſ	Partition Alpha		Partition		Alpha		Partition		Alpha			
-	[empty] 3/1		1		-9/1		2		-45/2			
	1,1 27/2		3		-63/1		2,1		135/2			
	1,1,1 -27/2		4		-765/4		3,1		189/1			
	2,2 675/8		2,1,1		-405/4		1,1,1,1		81/8			
	5 -3069/5		4,1		2295/4		3,2		945/2			
	3,1,1	-567/2	2,2,1		-2025/8		2,1,1,1		405/4			
1,1,1,1,1		-243/40	6		-4095/2		5,1		9207/5			
	4,2	11475/8	4,1,1		-68	85/8	3,3		1323/2			
	3,2,1 -2835/2		3,1,1,1		567	7/2 2,2,2			-3375/16			
	2,2,1,1 6075/16		2,1,1,1,1		-12	15/16	1,1,1,	1,1,1	243/80			
	7	7 -49149/7 6,		1 491		40/8	5,2		36828/	8		
Partition		Alpha	ha Pa		Partition Alpha			Partition		AI	pha	
5,1,1		-27621/10		4,3		32130/8		4,2,1	4,2,1		-34425/8	
4,1,1,1		6885/8		3,3,1		-15876/8		3,2,2		-14175/8		
3,2,1,1		17010/8		3,1,1,1,1		-1701/8		2,2,2,1		10125/16		
2,2,1,1,1		-6075/16		2,1,1,1,1,1		729/16		1,1,1,1,1,1,1		-729/560		
8		-1376235/56		7,1		1179576/56		6,2		859950/56		
6,1,1		-515970/56		5,3		902286/70		5,2,1		-773388/56		
5,1,1,1		193347/70		4,4		390150/64		4,3,1		-674730/56		
4,2,2		-344250/64		4,2,1,1		413100/64		4,1,1,1,1		-41310/64		
3,3,2		-277830/56		3,3,1,1		166698/56		3,2,2,1		297675/56		
3,2,1,1,1		-119070/56		3,1,1,1,1,1		• * **		2,2,2,2		50625/128		
2,2,2,1,1		-60750/64		2,2,1,1,1,1		18225/64		2,1,1,1,1,1,1		-1458/64		
1,1,1,1,1,1,1,1		2187/4480										

Resulting Polynomials



After Using "Pade" Function in Mathematica or Maple

$$P_{1}(x) \stackrel{?}{=} 3$$

$$P_{2}(x) \stackrel{?}{=} \frac{3(4x^{2}-1)}{(x^{2}-1)}$$

$$P_{3}(x) \stackrel{?}{=} \frac{12(4x^{2}-1)}{(x^{2}-4)}$$

$$P_{4}(x) \stackrel{?}{=} \frac{12(4x^{2}-1)(4x^{2}-9)}{(x^{2}-4)(x^{2}-9)}$$

$$P_{5}(x) \stackrel{?}{=} \frac{48(4x^{2}-1)(4x^{2}-9)}{(x^{2}-9)(x^{2}-16)}$$

$$P_{6}(x) \stackrel{?}{=} \frac{48(4x^{2}-1)(4x^{2}-9)(4x^{2}-25)}{(x^{2}-9)(x^{2}-16)(x^{2}-25)}$$

$$P_{7}(x) \stackrel{?}{=} \frac{192(4x^{2}-1)(4x^{2}-9)(4x^{2}-25)}{(x^{2}-16)(x^{2}-25)(x^{2}-36)}$$

... and factoring

which immediately suggests the general form:

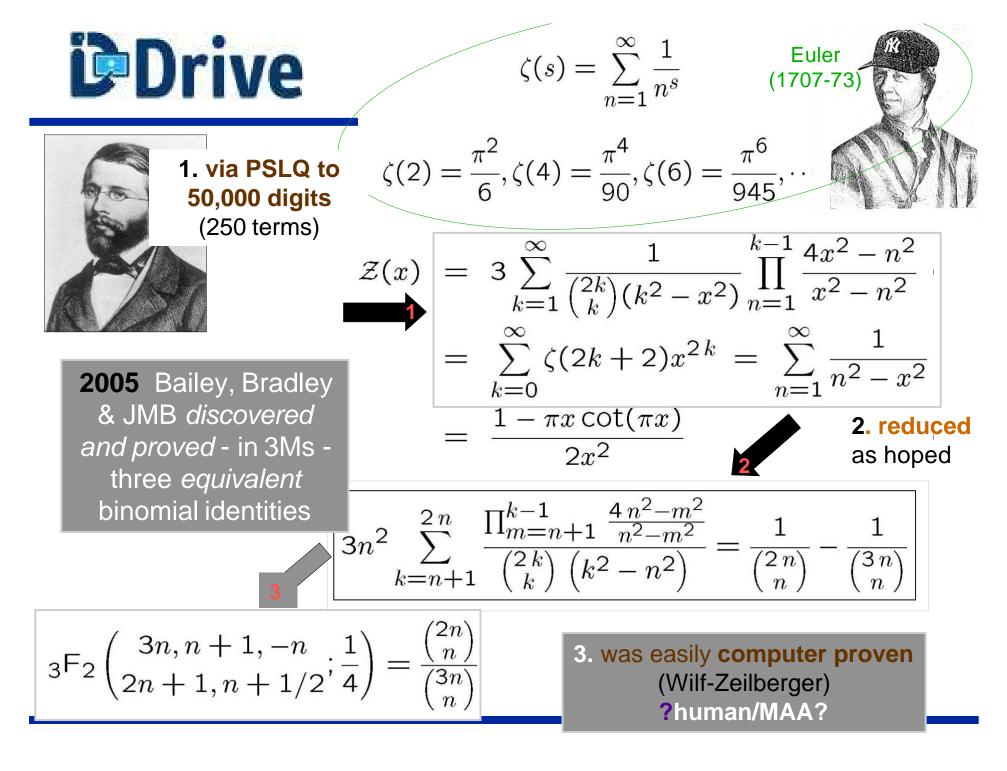
$$\sum_{n=0}^{\infty} \zeta(2n+2)x^{2n} \stackrel{?}{=} 3\sum_{k=1}^{\infty} \frac{1}{\binom{2k}{k}(k^2-x^2)} \prod_{m=1}^{k-1} \frac{4x^2-m^2}{x^2-m^2}$$

Several Confirmations of Z(2n+2)=Zeta(2n+2) Formula

- We symbolically computed the power series coefficients of the LHS and the RHS, and verified that they agree up to the term with x¹⁰⁰.
- We verified that Z(1/6), Z(1/2), Z(1/3), Z(1/4) give numerically correct values (analytic values are known).
- We then affirmed that the formula gives numerically correct results for 100 pseudorandomly chosen arguments – to high precision near radius of convergence

We subsequently proved this formula two different ways, including using the Wilf-Zeilberger method....

To SUMMARIZE



Summary

New techniques now permit integrals, infinite series sums and other entities to be evaluated to high precision (hundreds or thousands of digits), thus permitting PSLQ-based schemes to discover new identities.

These methods typically do not suggest proofs, but often it is much easier to find a proof when one "knows" the answer is right.



Full details are in *Excursions in Experimental Mathematics*, or in one of these two slightly older books by Jonathan M. Borwein, David H. Bailey and (for vol 2) Roland Girgensohn. A "Reader's Digest" version of these two books is available at <u>http://www.experimentalmath.info</u>

"The plural of 'anecdote' is not 'evidence'."

- Alan L. Leshner, Science publisher