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Abstract In this paper we present two Douglas–Rachford inspired iteration schemes which
can be applied directly to N-set convex feasibility problems in Hilbert space. Our main
results are weak convergence of the methods to a point whose nearest point projections onto
each of the N sets coincide. For affine subspaces, convergence is in norm. Initial results from
numerical experiments, comparing our methods to the classical (product-space) Douglas–
Rachford scheme, are promising.
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1 Introduction

Given N closed and convex sets with nonempty intersection, the N-set convex feasibility
problem asks for a point contained in the intersection of the N sets. Many optimization
and reconstruction problems can be cast in this framework, either directly or as a suitable
relaxation if a desired bound on the quality of the solution is known a priori.

A common approach to solving N-set convex feasibility problems is the use of projection
algorithms. These iterative methods assume that the projections onto each of the individual
sets are relatively simple to compute. Some well known projection methods include von
Neumann’s alternating projection method [1–8], the Douglas–Rachford method [9–11] and
Dykstra’s method [12–14]. Of course, there are many variants. For a review, we refer the
reader to any of [15–20].

On certain classes of problems, various projection methods coincide with each other,
and with other known techniques. For example, if the sets are closed affine subspaces, al-
ternating projections = Dykstra’s method [13]. If the sets are hyperplanes, alternating pro-
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jections = Dykstra’s method = Kaczmarz’s method [17]. If the sets are half-spaces, alter-
nating projections = the method Agmon, Motzkin and Schoenberg (MAMS), and Dykstra’s
method = Hildreth’s method [19, Chapter 4]. Applied to the phase retrieval problem, al-
ternating projections = error reduction, Dykstra’s method = Fienup’s BIO, and Douglas–
Rachford = Fienup’s HIO [21].

Continued interest in the Douglas–Rachford iteration is in part due to its excellent—
if still largely mysterious—performance on various problems involving one or more non-
convex sets. For example, in phase retrieval problems arising in the context of image recon-
struction [21, 22]. The method has also been successfully applied to NP-complete combi-
natorial problems including Boolean satisfiability [23, 24] and Sudoku [23, 25]. In contrast,
von Neumann’s alternating projection method applied to such problems often fails to con-
verge satisfactorily. For progress on the behaviour of non-convex alternating projections, we
refer the reader to [26–29].

Recently, Borwein and Sims [30] provided limited theoretical justification for non-
convex Douglas–Rachford iterations, proving local convergence for a prototypical Euclidean
case involving a sphere and an affine subspace. For the two-dimensional case of a circle and
a line, Borwein and Aragón [31] were able to give an explicit region of convergence. Even
more recently, a local version of firm nonexpansivity has been utilized by Hesse and Luke
[28] to obtain local convergence of the Douglas–Rachford method in limited non-convex
settings. Their results do not directly overlap with the work of Aragón, Borwein and Sims
(for details see [28, Example 43]).

Most projection algorithms can be extended in various natural ways to the N-set convex
feasibility problem without significant modification. An exception is the Douglas–Rachford
method, for which only the theory of 2-set feasibility problems has so far been successfully
investigated. For applications involving N > 2 sets, an equivalent 2-set feasibility problem
can, however, be posed in a product space. We shall revisit this later in our paper.

The aim of this paper is to introduce and study the cyclic Douglas–Rachford and aver-
aged Douglas–Rachford iteration schemes. Both can be applied directly to the N-set convex
feasibility problem without recourse to a product space formulation.

The paper is organized as follows: In Section 2, we give definitions and preliminaries. In
Section 3, we introduce the cyclic and averaged Douglas–Rachford iteration schemes, prov-
ing in each case weak convergence to a point whose projections onto each of the constraint
sets coincide. In Section 4, we consider the important special case when the constraint sets
are affine. In Section 5, the new cyclic Douglas–Rachford scheme is compared, numerically,
to the classical (product-space) Douglas–Rachford scheme on feasibility problems having
ball or sphere constraints. Initial numerical results for the cyclic Douglas–Rachford scheme
are quite positive.

2 Preliminaries

Throughout this paper,

H is a real Hilbert space with inner product 〈·, ·〉
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and induced norm ‖ · ‖. We use w.
⇀ to denote weak convergence.

We consider the N-set convex feasibility problem:

Find x ∈
N⋂

i=1

Ci 6= /0 where Ci ⊆H are closed and convex. (1)

Given a set S⊆H and point x ∈H , the best approximation to x from S is a point p∈ S
such that

‖p− x‖= d(x,S) := inf
s∈S
‖x− s‖.

If for every x ∈H there exists such a p, then S is said to be proximal. Additionally, if p is
always unique then S is said to be Chebyshev. In the latter case, the projection onto S is the
operator PS : H → S which maps x to its unique nearest point in S and we write PS(x) = p.
The reflection about S is the operator RS : H →H defined by RS := 2PS−I where I denotes
the identity operator which maps any x ∈H to itself.

Fact 2.1 Let C ⊆H be non-empty closed and convex. Then:

(i) C is Chebyshev.
(ii) (Characterization of projections)

PC(x) = p ⇐⇒ p ∈C and 〈x− p,c− p〉 ≤ 0 for all c ∈C.

(iii) (Characterization of reflections)

RC(x) = r ⇐⇒ 1
2
(r+ x) ∈C and 〈x− r,c− r〉 ≤ 1

2
‖x− r‖2 for all c ∈C.

(iv) (Translation formula) For y ∈H , Py+C(x) = y+PC(x− y).
(v) (Dilation formula) For 0 6= λ ∈ R, PλC(x) = λPC(x/λ ).

(vi) If C is a subspace then PC is linear.
(vii) If C is an affine subspace then PC is affine.

Proof See, for example, [32, Theorem 3.14, Proposition 3.17, Corollary 3.20], [19, Theo-
rem 2.8, Exercise 5.2(i), Theorem 3.1, Exercise 5.10] or [18, Theorem 2.1.3, Theorem 2.1.6].
Note, the equivalence of (ii) and (iii) by substituting r = 2p− x. ut

Given A,B⊆H we define the 2-set Douglas–Rachford operator TA,B : H →H by

TA,B :=
I +RBRA

2
. (2)

Note that TA,B and TB,A are typically distinct, while for an affine set A we have TA,A = I.

The basic Douglas–Rachford algorithm originates in [9] and convergence was proven as
part of [10].

Theorem 2.1 (Douglas–Rachford [9], Lions–Mercier [10]) Let A,B ⊆H be closed and
convex with nonempty intersection. For any x0 ∈H , the sequence T n

A,Bx0 converges weakly
to a point x such that PAx ∈ A∩B.
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Theorem 2.1 gives an iterative algorithm for solving 2-set convex feasibility problems.
For applications involving N > 2 sets, an equivalent 2-set formulation is posed in the product
space H N . This is discussed in detail in Remark 3.4.

Let T : H →H . We recall that T is asymptotically regular if T nx− T n+1x→ 0, in
norm, for all x ∈H . We denote the set of fixed points of T by FixT = {x : T x = x}. Let
D⊆H and T : D→H . We say T is nonexpansive if

‖T x−Ty‖ ≤ ‖x− y‖ for all x,y ∈ D

(i.e. 1-Lipschitz). We say T is firmly nonexpansive if

‖T x−Ty‖2 +‖(I−T )x− (I−T )y‖2 ≤ ‖x− y‖2 for all x,y ∈ D.

It immediately follows that every firmly nonexpansive mapping is nonexpansive.

Fact 2.2 Let A,B⊆H be closed and convex. Then PA is firmly nonexpansive, RA is nonex-
pansive and TA,B is firmly nonexpansive.

Proof See, for example, [32, Proposition 4.8, Corollary 4.10, Remark 4.24], or [18, Theo-
rem 2.2.4, Corollary 4.3.6]. ut

The class of nonexpansive mappings is closed under convex combinations, composi-
tions, etc. The class of firmly nonexpansive mappings is, however, not so well behaved.
For example, even the composition of two projections onto subspaces need not be firmly
nonexpansive (see [5, Example 4.2.5]).

A sufficient condition for firmly nonexpansive operators to be asymptotically regular is
the following.

Lemma 2.1 Let T : H →H be firmly nonexpansive with FixT 6= /0. Then T is asymptoti-
cally regular.

Proof See, for example, [33, Corollary 1], [18, Lemma 4.3.5] or [34, Corollary 1.1, Propo-
sition 2.1]. ut

The composition of firmly nonexpansive operators is always nonexpansive. However,
nonexpansive operators need not be asymptotically regular. For example, reflection with
respect to a singleton, clearly is not; nor are most rotations. The following is a sufficient
condition for asymptotic regularity.

Lemma 2.2 Let Ti : H →H be firmly nonexpansive, for each i, and define T := Tr . . .T2 T1.
If FixT 6= /0 then T is asymptotically regular.

Proof See, for example, [32, Theorem 5.22]. ut

Remark 2.1 Recently Bauschke, Martı́n-Márquez, Moffat and Wang [35, Theorem 4.6]
showed that any composition of firmly nonexpansive, asymptotically regular operators is
also asymptotically regular, even when FixT = /0. ♦

The following lemma characterizes fixed points of certain compositions of firmly non-
expansive operators.

Lemma 2.3 Let Ti : H →H be firmly nonexpansive, for each i, and define T := Tr . . .T2 T1.
If
⋂r

i=1 FixTi 6= /0 then FixT =
⋂r

i=1 FixTi.



A Cyclic Douglas–Rachford Iteration Scheme 5

Proof See, for example, [32, Corollary 4.37] or [34, Proposition 2.1, Lemma 2.1]. ut

There are many way to prove Theorem 2.1. One is to use the following well-known
theorem of Opial [36].

Theorem 2.2 (Opial) Let T : H → H be nonexpansive, asymptotically regular, and
FixT 6= /0. Then for any x0 ∈H , T nx0 converges weakly to an element of FixT .

Proof See also, for example, [36] or [32, Theorem 5.13]. ut

In addition, when T is linear, the limit can be identified and convergence is in norm.

Theorem 2.3 Let T : H →H be linear, nonexpansive and asymptotically regular. Then
for any x0 ∈H , in norm,

lim
n→∞

T nx0 = PFixT x0.

Proof See, for example, [32, Proposition 5.27]. ut

Remark 2.2 A version of Theorem 2.3 was used by Halperin [2] to show that von Neu-
mann’s alternating projection, applied to finitely many closed subspaces, converges in norm
to the projection on the intersection of the subspaces.1 ♦

Summarizing, we have the following.

Corollary 2.1 Let Ti : H →H be firmly nonexpansive, for each i, with
⋂r

i=1 FixTi 6= /0
and define T := Tr . . .T2T1. Then for any x0 ∈H , T nx0 converges weakly to an element of
FixT =

⋂N
i=1 FixTi. Moreover, if T is linear, then T nx0 converges, in norm, to PFixT x0.

Proof Since T is the composition of nonexpansive operators, T is nonexpansive. By
Lemma 2.3, FixT 6= /0. By Lemma 2.2, T is asymptotically regular. The result now fol-
lows by Theorem 2.2 and Theorem 2.3. ut

We note that the verification of many results in this section can be significantly simplified
for the special cases we require.

3 Cyclic Douglas–Rachford Iterations

We are now ready to introduce our first new projection algorithm, the cyclic Douglas–
Rachford iteration scheme. Let C1,C2, . . . ,CN ⊆H and define T[C1 C2 ...CN ] : H →H by

T[C1 C2 ...CN ] := TCN ,C1 TCN−1,CN . . .TC2,C3 TC1,C2

=

(
I +RC1 RCN

2

)(
I +RCN RCN−1

2

)
. . .

(
I +RC3 RC2

2

)(
I +RC2 RC1

2

)
.

Given x0 ∈H , the cyclic Douglas–Rachford method iterates by repeatedly setting

xn+1 = T[C1 C2 ...CN ]xn.

1 Kakutani had earlier proven weak convergence for finitely many subspaces [37]. Von Neumann’s original
two-set proof does not seem to generalize.
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Remark 3.1 In the two set case, the cyclic Douglas–Rachford operator becomes

T[C1 C2] = TC2,C1 TC1,C2 =

(
I +RC1 RC2

2

)(
I +RC2 RC1

2

)
.

That is, it does not coincide with the classic Douglas–Rachford scheme. ♦

Where there is no ambiguity, we take indices modulo N, and abbreviate TCi,C j by
Ti, j, and T[C1 C2 ...CN ] by T[12 ...N]. In particular, T0,1 := TN,1, TN,N+1 := TN,1,C0 := CN
and CN+1 :=C1.

Recall the following characterization of fixed points of the Douglas–Rachford operator.

Lemma 3.1 Let A,B⊆H be closed and convex with nonempty intersection. Then

PA FixTA,B = A∩B.

Proof See, for example, [21, Fact A1] or [11, Corollary 3.9].

We are now ready to present our main result regarding convergence of the cyclic
Douglas–Rachford scheme.

Theorem 3.1 (Cyclic Douglas–Rachford) Let C1,C2, . . . ,CN ⊆H be closed and convex
sets with a nonempty intersection. For any x0 ∈ H , the sequence T n

[12 ...N]x0 converges

weakly to a point x such that PCi x = PC j x, for all indices i, j. Moreover, PC j x ∈
⋂N

i=1 Ci,
for each index j.

Proof By Fact 2.2, Ti,i+1 is firmly nonexpansive, for each i. Further,

N⋂
i=1

FixTi,i+1 ⊇
N⋂

i=1

Ci 6= /0.

By Corollary 2.1, T n
[12 ...N]x0 converges weakly to a point x ∈ FixT[12 ...N] =

⋂N
i=1 FixTi,i+1.

By Lemma 3.1, PCi x ∈Ci+1, for each i. Now we compute

1
2

N

∑
i=1
‖PCi x−PCi−1 x‖2 = 〈x,0〉+ 1

2

N

∑
i=1

(
‖PCi x‖

2−2〈PCi x,PCi−1 x〉+‖PCi−1 x‖2)
=

〈
x,

N

∑
i=1

(PCi−1 x−PCi x)

〉
−

N

∑
i=1
〈PCi x,PCi−1 x〉+

N

∑
i=1
‖PCi x‖

2

=
N

∑
i=1
〈x−PCi x,PCi−1 x−PCi x〉

Fact 2.1
≤ 0.

Thus, PCi x = PCi−1 x, for each i; and we are done. ut

Again by invoking Opial’s Theorem, a more general version of Theorem 3.1 can be
abstracted.

Theorem 3.2 Let C1,C2, . . . ,CN ⊆H be closed and convex sets with nonempty intersec-
tion, let Tj : H →H , for each j, and define T := TN . . .T2T1. Suppose the following three
properties hold.
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1. T = TM . . .T2T1, is nonexpansive and asymptotically regular,
2. FixT =

⋂M
j=1 FixTj 6= /0,

3. PC j FixTj ⊆C j+1, for each j.

Then, for any x0 ∈H , the sequence T nx0 converges weakly to a point x such that PCi x=PC j x
for all i, j. Moreover, PC j x ∈

⋂N
i=1 Ci, for each j.

Proof By Theorem 2.2, T nx0 converges weakly to point x ∈ FixT . The remainder of the
proof is the same as Theorem 3.1. ut

Remark 3.2 We give a sample of examples of operators which satisfy the three conditions
of Theorem 3.2.

1. T[A1 A2 ...AM ] where A j ∈ {C1,C2 . . .CN}, and is such that each Ci appear in the sequence
A1,A2, . . . ,AM at least once.

2. T is any composition of PC1 ,PC2 , . . . ,PCN , such that each projection appears in said com-
position at least once. In particular, setting T = PCN . . .PC2 PC1 we recover Bregman’s
seminal result [3].

3. Tj = (I +P j)/2 where P j is any composition of PC1 ,PC2 , . . . ,PCN such that, for each i,
there exists a j such that P j = PCi Q j for some composition of projections Q j. A special
case is,

T =

(
I +PC1 PCN

2

)
. . .

(
I +PC3 PC2

2

)(
I +PC2 PC1

2

)
.

4. If T1,T2 . . . ,TM are operators satisfying the conditions of Theorem 3.2, replacing Tj with
the relaxation α jI +(1−α j)Tj where α j ∈]0,1/2], for each i. Note the relaxations are
firmly nonexpansive [32, Remark 4.27].

Of course, there are many other applicable variants. For instance, Krasnoselski–Mann
iterations (see [32, Theorem 5.14] and [38]). ♦

We now investigate the cyclic Douglas–Rachford iteration in the special-but-common
case where the initial point lies in one of the target sets; most especially the first target set.

Corollary 3.1 Let C1,C2, . . . ,CN ⊆H be closed and convex sets with a nonempty intersec-
tion. If y ∈ Ci then Ti,i+1y = PCi+1 y. In particular, if x0 ∈ C1, the cyclic Douglas–Rachford
trajectory coincides with that of von Neumann’s alternating projection method.

Proof For any y ∈H , Ti,i+1y = PCi+1 y ⇐⇒ RCi+1 y = RCi+1 RCi y. If y ∈Ci then RCi y = y. In
particular, if x0 ∈C1 then

T[12 ...N]x0 = TN,1 . . .T2,3T1,2y = PC1 PCN . . .PC2 x0 ∈C1,

and the result follows. ut

Remark 3.3 If x0 6∈C1, then the cyclic Douglas–Rachford trajectory need not coincide with
von Neumann’s alternating projection method. We give an example involving two closed
subspaces with codimension 1 (see Figure 1). Define

C1 := {x ∈H : 〈a1,x〉= 0}, C2 := {x ∈H : 〈a2,x〉= 0},

where a1,a2 ∈H such that 〈a1,a2〉 6= 0. By scaling if necessary, we may assume that ‖a1‖=
‖a2‖= 1. Then one has,

PC1 x = x−〈a1,x〉a1, PC2 x = x−〈a2,x〉a2,
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Fig. 1 An interactive Cinderella applet showing a cyclic Douglas–Rachford trajectory differing from von
Neumann’s alternating projection method. Each green dot represents a 2-set Douglas–Rachford iteration.

and

T1,2x = x+2PC2 PC1 x− (PC1 x+PC2 x)

= x−〈a1,x〉a1−〈a2,x〉a2 +2〈a1,a2〉〈a1,x〉a2.

Similarly,

T2,1x = x−〈a1,x〉a1−〈a2,x〉a2 +2〈a1,a2〉〈a2,x〉a1.

By Remark 4.1,

2〈a1,T[12]x〉= 〈a1,T1,2x〉+ 〈a1,T2,1x〉

= 〈a1,x〉−〈a1,x〉‖a1‖2−〈a2,x〉〈a2,a1〉+2〈a1,a2〉2〈a1,x〉
+ 〈a1,x〉−〈a1,x〉‖a1‖2−〈a2,x〉〈a2,a1〉+2〈a1,a2〉〈a2,x〉

= 2〈a1,a2〉2〈a1,x〉.

Hence, 〈a1,T[12]x〉= 〈a1,a2〉2〈a1,x〉. Similarly, 〈a2,T[12]x〉= 〈a1,a2〉2〈a2,x〉.
Thus, if 〈ai,x〉 6= 0, for each i, then 〈ai,T[12]x〉 6= 0, for each i. In particular, if x0 6∈C1∪C2,

then none of the cyclic Douglas–Rachford iterates lie in C1 or C2.
A second example, involving a ball and an affine subspace is illustrated in Figure 2. ♦

Remark 3.4 (A product version) We now consider the classical product formulation of (1).
Define two subsets of H N :

C :=
N

∏
i=1

Ci, D := {(x,x, . . . ,x) ∈H N : x ∈H }, (3)

which are both closed and convex (in fact, D is a subspace). Consider the 2-set convex
feasibility problem

Find x ∈C∩D⊆H N . (4)

Then (1) is equivalent to (4) in the sense that

x ∈
N⋂

i=1

Ci ⇐⇒ (x,x, . . . ,x) ∈C∩D.
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Fig. 2 An interactive Cinderella applet showing a cyclic Douglas–Rachford trajectory differing from von
Neumann’s alternating projection method. Each green dot represents a 2-set Douglas–Rachford iteration.

Further the projections, and hence reflections, are easily computed since

PCx =
N

∏
i=1

PCi xi, PDx =
N

∏
i=1

(
1
N

N

∑
j=1

x j

)
.

Let x0 ∈ D and define xn := T[DC]xn−1. Then Corollary 3.1 yields

T[DC]xn = PDPCxn =

(
1
N

N

∑
i=1

PCi ,
1
N

N

∑
i=1

PCi , . . . ,
1
N

N

∑
i=1

PCi

)
.

That is, if—as is reasonable—we start in D, the cyclic Douglas–Rachford method coincides
with averaged projections.

In general, the iteration is based on

T[DC]x = x−PDx+2PDPCTD,Cx−PCTD,Cx+PCRDx−PDPCRDx. (5)

If x = (x1,x2, . . . ,xN), then the ith coordinate of (5) can be expressed as

(T[DC]x)i = xi−
1
N

N

∑
j=1

x j +
2
N

N

∑
j=1

PC j (TD,Cx) j−PCi(TD,Cx)i

+PCi

(
2
N

N

∑
j=1

x j− xi

)
− 1

N

N

∑
j=1

PC j

(
2
N

N

∑
k=1

xk− x j

)
,

where

(TD,Cx) j = x j−
1
N

N

∑
k=1

xk +PC j

(
2
N

N

∑
k=1

xk− x j

)
,

which is a considerably more complex formula. ♦
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Let A,B⊆H . Recall that points (x,y) ∈ A×B form a best approximation pair relative
to (A,B) if

‖x− y‖= d(A,B) := inf{‖a−b‖ : a ∈ A,b ∈ B}.

Remark 3.5 (a) Consider C1 = BH := {x ∈H : ‖x‖ ≤ 1} and C2 = {y}, for some y ∈H .
Then

T[12]x = x−PC1 x+PC1(y− x+PC1 x),

where PC1 z = z if z ∈C1, and z/‖z‖ otherwise. Now,

x ∈ FixT[12] ⇐⇒ PC1 x = PC1(y− x+PC1 x). (6)

Thus,

– If x ∈C1 then x = PC1 y.
– If y− x+PC1 x ∈C1 then x = y.
– Else, ‖x‖> 1 and ‖y− x+PAx‖> 1. By (6),

x = λy where λ =

(
‖x‖

‖y− x+PC1 x‖+‖x‖−1

)
∈]0,1[.

Moreover, since 1 < ‖x‖= λ‖y‖, we obtain λ ∈]1/‖y‖,1[.

In each case, PC1 x = PC1 y and PC2 x = y. Therefore (PC1 x,PC2 x) is a best approximation pair
relative to (C1,C2) (see Figure 3). In particular, if C1 ∩C2 6= /0, then PC1 y = y and, by The-
orem 3.1, the cyclic Douglas–Rachford scheme weakly converges to y, the unique element
of C1∩C2.

When C1∩C2 = /0, Theorem 3.1 cannot be invoked to guarantee convergence. However,
the above analysis provides the information that

FixT[12] ⊆ {λPC1 y+(1−λ )y : λ ∈ [0,1]}.

(b) Suppose instead, C1 = SH := {x ∈H : ‖x‖= 1}. A similar analysis can be performed.
If y 6= 0 and x ∈ FixT[12] are such that x,y− x+PC1 x 6= 0, then

– If x ∈C1 then x = PC1 y.
– If y− x+PC1 x ∈C1 then x = y.
– Else, x = λy where

λ =

(
‖x‖

‖y− x+PC1 x‖+‖x‖−1

)
≥
(

‖x‖
‖y− x‖+‖PC1 x‖+‖x‖−1

)
> 0.

Again, (PC1 x,PC2 x) is a best approximation pair relative to (C1,C2). ♦

Experiments with interactive Cinderella2 dynamic geometry applets, suggest similar be-
haviour of the cyclic Douglas–Rachford method applied to many other problems for which
C1∩C2 = /0. For example, see Figure 4. This suggests the following conjecture.

Conjecture 3.1 Let C1,C2 ⊆H be closed and convex with C1∩C2 = /0. Suppose that a best
approximation pair relative to (C1,C2) exists. Then the two-set cyclic Douglas–Rachford
scheme converges weakly to a point x such that (PC1 x,PC2 x) is a best approximation pair
relative to the sets (C1,C2).

2 See http://www.cinderella.de/.

http://www.cinderella.de/
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Fig. 3 An interactive Cinderella applet showing the behaviour described in Remark 3.5. Each green dot
represents a cyclic Douglas–Rachford iteration.

Fig. 4 An interactive Cinderella applet showing the cyclic Douglas–Rachford method applied to the case
of a non-intersecting ball and a line. The method appears convergent to a point whose projections onto the
constraint sets form a best approximation pair. Each green dot represents a cyclic Douglas–Rachford iteration.

Remark 3.6 If there exists an integer n such that either T n
[12]x0 ∈C1 or T1,2T n

[12]x0 ∈C2, by
Corollary 3.1, the cyclic Douglas–Rachford scheme coincides with von Neumann’s alter-
nating projection method. In this case, Conjecture 3.1 holds by [39, Theorem 2]. In this
connection, we also refer the reader to [4, 14].

It is not hard to think of non-convex settings in which Conjecture 3.1 is false. For exam-
ple, in R, let C1 = [0,1] and C2 = {0, 11

10}. If x0 = 1 then T[12]x0 = x0, but

(PC1(1),PC2(1)) = (1,
11
10

),

which is not a best approximation pair relative to (C1,C2). ♦

We now present an averaged version of our cyclic Douglas–Rachford iteration.

Theorem 3.3 (Averaged Douglas–Rachford) Let C1,C2, . . . ,CN ⊆H be closed and con-
vex sets with a nonempty intersection. For any x0 ∈H , the sequence defined by

xn+1 :=

(
1
N

N

∑
i=1

Ti,i+1

)
xn

converges weakly to a point x such that PCi x = PC j x for all indices i, j. Moreover,
PC j x ∈

⋂N
i=1 Ci, for each index j.
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Proof Consider C,D⊆H N as (3) and define T := PD(∏
N
i=1 Ti,i+1). By Fact 2.2, PD is firmly

nonexpansive. By Fact 2.2, Ti,i+1 is firmly nonexpansive in H , for each i, hence ∏
N
i=1 Ti,i+1

is firmly nonexpansive in H N . Further, Fix(∏N
i=1 Ti,i+1)∩PD ⊇C∩D 6= /0. By Corollary 2.1,

xn converges weakly to a point x ∈ FixT .
Let x0 = (x0,x0, . . . ,x0)∈H N . Since T xn ∈D, for each n, we write xn = (xn,xn, . . . ,xn)

for some xn ∈H . Then

xn+1 = (T xn+1)i =

(
1
N

N

∑
i=1

Ti,i+1

)
xn,

independent of i. Similarly, since x ∈ FixPD = D, we write x = (x,x, . . . ,x) ∈H N for some
x∈H . Since x∈ Fix(∏N

i=1 Ti,i+1), x∈ FixTi,i+1, for each i, and hence PCi x∈Ci+1. The same
computation as in Theorem 3.1 now completes the proof. ut

Since each 2-set Douglas–Rachford iteration can be computed independently, the aver-
aged iteration is easily parallelizable.

4 Affine Constraints

In this section we observe that the conclusions of Theorems 3.1 and 3.3 can be strengthened
when the constraints are affine.

Lemma 4.1 (Translation formula) Let C′1,C
′
2, . . . ,C

′
N ⊆H be closed and convex sets with

a nonempty intersection. For fixed y ∈H , define Ci := y+C′i , for each i. Then

TCi,Ci+1 x = y+TC′i ,C
′
i+1

(x− y),

and
T[C1 C2 ...CN ]x = y+T[C′1 C′2 ...C

′
N ]
(x− y).

Proof By the translation formula for projections (Fact 2.1), we have

RCi x = y+RC′i
(x− y), for each i.

The first result follows since,

TCi,Ci+1 x =
x+RCi+1 RCi x

2
=

x+RCi+1(y+RC′i
(x− y))

2

=
x+ y+RC′i+1

RC′i
(x− y)

2
= y+

(x− y)+RC′i+1
RC′i

(x− y)

2
= y+TC′i ,C

′
i+1

(x− y).

Iterating gives,

TC2,C3 TC1,C2 = TC2,C3(y+TC′1,C
′
2
(x− y)) = y+TC′2,C

′
3
TC′1,C

′
2
(x− y),

from which the second result follows. ut
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Theorem 4.1 (Norm convergence) Let C1,C2, · · · ,CN ⊆ H be closed affine subspaces
with a nonempty intersection. Then, for any x0 ∈H ,

lim
n→∞

T n
[C1 C2 ...CN ]

x0 = PFixT[C1 C2 ...CN ]
x0,

is norm convergent.

Proof Let c∈∩N
i=1Ci. Since Ci are affine we write Ci = c+C′i , where C′i is a closed subspace.

Since TC′i ,C
′
i+1

is linear, for each i, so is T[C′1 C′2 ...C
′
N ]

. By Fact 2.2, for each i, TC′i ,C
′
i+1

is firmly
nonexpansive. Further, ∩N

i=1 FixTC′i ,C
′
i+1
⊇ ∩N

i=1C′i 6= /0. By Lemma 4.1 and Corollary 2.1,

T n
[C1 C2 ...CN ]

x = c+T n
[C′1 C′2 ...C

′
N ]
(x− c)→ c+PFixT[C′1 C′2 ...C′N ]

(x− c) = PFixT[C1 C2 ...CN ]
x.

This completes the proof. ut

Remark 4.1 For closed affine A, RA is affine (a consequence of Fact 2.1) and R2
A = I. Thus,

for the case of two affine subspaces,

T[AB] = TB,ATA,B =
1
2
(TA,B +RARBTA,B) =

1
2

(
TA,B +RA

(
RB +RBRBRA

2

))
=

1
2

(
TA,B +

(
RARB +RARBRBRA

2

))
=

TA,B +TB,A

2
.

That is, the cyclic Douglas–Rachford and averaged Douglas–Rachford methods coincide.
For N > 2 closed affine subspaces, the two methods do not always coincide. For instance,

when N = 3,

T2,3T1,2 =
1
2
(
T1,2 +RC3 RC2 T1,2

)
=

1
2

(
T1,2 +

RC3 RC2 +RC3 RC2 RC2 RC1

2

)
=

1
4
(
I +RC2 RC1 +RC3 RC2 +RC3 RC1

)
,

hence,

T[123] = T3,1T2,3T1,2 =
1
2
(
T2,3T1,2 +RC1 RC3 T2,3T1,2

)
=

1
2

(
T2,3T1,2 +

RC1 RC3 +RC1 RC3 RC2 RC1 +RC1 RC3 RC3 RC2 +RC1 RC3 RC3 RC1

4

)
=

1
8
(
2I +RC2 RC1 +RC3 RC2 +RC3 RC1 +RC1 RC3 +RC1 RC3 RC2 RC1 +RC1 RC2

)
.

This includes a term which is the composition of four reflection operators whereas the aver-
aged iteration can be expressed as a linear combination of terms which are the composition
of at most two reflection operators. ♦

Theorem 4.2 (Averaged norm convergence) Let C1,C2, · · · ,CN ⊆H be closed affine sub-
spaces with a nonempty intersection. Then, in norm

lim
n→∞

(
1
M

N

∑
i=1

TCi,Ci+1

)n

x0 = PFixT[C1 C2 ...CN ]
x0.
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Fig. 5 An interactive Cinderella applet using the cyclic Douglas–Rachford method to solve a feasibility
problem with two sphere constraints. Each green dot represents a 2-set Douglas–Rachford iteration.

Proof Let C,D⊆H N as in (3). Let c ∈ ∩N
i=1Ci and define c = (c,c, . . . ,c) ∈H N . Since Ci

are affine we may write Ci = c+C′i , where C′i is a closed subspace, and hence C = c+C′

where C′ = ∏
N
i=1 C′i .

For convenience, let Q denote ∏
N
i=1 TC′i ,C

′
i+1

and let T = PDQ. Since C′ and D are sub-
spaces, T is linear. By Fact 2.2, TC′i ,C

′
i+1

is firmly nonexpansive, hence so is Q. Further,
FixT ⊇ FixQ∩FixPD ⊇ FixQ∩D 6= /0 since ∩N

i=1C′i 6= /0.
As a consequence of Lemma 4.1, we have the translation formula

T x = c+T (x− c), for any x ∈H N .

As in the proof of Theorem 4.1, the translation formula, together with Corollary 2.1, shows
T nx0 → PkerT x0 =: z where x0 = (x0,x0, . . . ,x0) ∈ H N . As xn ∈ D, we may write
xn = (xn,xn, . . . ,xn) for some xn ∈H . Similarly, we write z = (z,z, . . . ,z). Then

√
N‖x0− z‖= ‖x0− z‖= d(x0,FixT )

≤ d(x0,(∩N
i=1 FixTi,i+1)

N) =
√

N d(x0,∩N
i=1 FixTi,i+1).

Hence, z = P∩N
i=1 FixTi,i+1

x0. By Lemma 2.3, FixT[C1 C2 ...CN ] = ∩
N
i=1 FixTi,i+1, and the proof is

complete. ut

5 Numerical Experiments

In this section we present the results of computational experiments comparing the cyclic
Douglas–Rachford and (product-space) Douglas–Rachford schemes—as serial algorithms.
These are not intended to be a complete computational study, but simply a first demonstra-
tion of viability of the method. From that vantage-point, our initial results are promising.

Two classes of feasibility problems were considered, the first convex and the second
non-convex.

(P1) Find x ∈
N⋂

i=1

Ci ⊆ Rn where Ci = xi + riBH := {y : ‖xi− y‖ ≤ ri},

(P2) Find x ∈
N⋂

i=1

Ci ⊆ Rn where Ci = xi + riSH := {y : ‖xi− y‖= ri}.
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Fig. 6 Cyclic Douglas–Rachford algorithm applied to a 3-set feasibility problem in R2. The constraint sets
are colored in blue, red and yellow. Each arrow represents a 2-set Douglas–Rachford iteration.

Here BH (resp. SH ) denotes the closed unit ball (resp. unit sphere).
To ensure all problem instances were feasible, constraint sets were randomly generated

using the following criteria.

– Ball constraints: Randomly choose xi ∈ [−5,5]n and ri ∈ [‖xi‖,‖xi‖+0.1].
– Sphere constraints: Randomly choose xi ∈ [−5,5]n and set ri = ‖xi‖.

In each cases, by design, the non-empty intersection contains the origin. We consider both
over- and under-constrained instances.

Note, if Ci is a sphere constraint then PCi(xi) = Ci (i.e., nearest points are not unique),
and PCi a set-valued mapping. In this situation, a random nearest point was chosen from Ci.
In every other case, PCi is single valued.

For the comparison, the classical Douglas–Rachford scheme was applied to the equiva-
lent feasibility problem (4), which is formulated in the product space (Rn)N .

Computations were performed using Python 2.6.6 on an Intel Xeon E5440 at 2.83GHz
(single threaded) running 64-bit Red Hat Enterprise Linux 6.4. The following conditions
were used.

– Choose a random x0 ∈ [−10,10]n. Initialize the cyclic Douglas–Rachford scheme with
x0, and the parallel Douglas–Rachford scheme with (x0,x0, . . . ,x0) ∈ (Rn)N .

– Iterate by setting
xn+1 = T xn where T = T[12 ...N] or TC,D.

An iteration limit of 1000 was enforced.
– Stopping criterion:

‖xn− xn+1‖< ε where ε = 10−3 or 10−6.

– After termination, the quality of the solution was measured by

error =
N

∑
i=2
‖PC1 x−PCi x‖

2.

Results are tabulated in Tables 1, 2, 3 & 4. A “0” error (without decimal place) represents
zero within the accuracy the numpy.float64 data type. Illustrations of low dimensional
examples are shown in Figures 5, 6 and 7.

We make some comments on the results.

– The cyclic Douglas–Rachford method easily solves both problems.
Solutions for 1000 dimensional instances, with varying numbers of constraints, could
be obtained in under half-a-second, with worst case errors in the order of 10−13. Many
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Fig. 7 Cyclic Douglas–Rachford algorithm applied to a 3-set feasibility problem in R3. The constraint sets
are colored in blue, red and yellow. Each arrow represents a 2-set Douglas–Rachford iteration.

instances of the (P1) where solved without error. Instances involving fewer constraints
required a greater number of iterations before termination. This can be explained by
noting that each application of T[12 ...N] applies a 2-set Douglas–Rachford operator N
times, and hence iterations for instances with a greater number of constraints are more
computationally expensive.

– When the number of constraints was small, relative to the dimension of the problem,
the Douglas–Rachford method was able to solve (P1) in a comparable time to the cyclic
Douglas–Rachford method.
For larger numbers of constraints the method required significantly more time. This is
a consequence of working in the product space, and would be ameliorated in a parallel
implementation.

– Applied to (P2), the original Douglas–Rachford method encountered difficulties.
While it was able to solve (P2) reliably when ε = 10−3, when ε = 10−6 the method
failed to terminate in every instance. However, in these cases the final iterate still yielded
a point having a satisfactory error. The number of iterations and time required, for the
Douglas–Rachford method was significantly higher compared to the cyclic Douglas–
Rachford method. As with (P1), the difference was most noticeable for problems with
greater numbers of constraints.

– Both methods performed better on (P1) compared to (P2).
This might well be predicted. For in (P1), all constraint sets are convex, hence conver-
gence is guaranteed by Theorem 3.1 and Theorem 2.1, respectively. However, in (P2),
the constraints are non-convex, thus neither Theorem cannot be evoked. Our results sug-
gest that the cyclic Douglas–Rachford as a heuristic.

– We note that there are some difficulties in using the number of iterations as a comparison
between two methods.
Each cyclic Douglas–Rachford iteration requires the computation of 2N reflections, and
each Douglas–Rachford iteration (N + 1). Even taking this into account, performance
of the cyclic Douglas–Rachford method was superior to the original Douglas–Rachford
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method on both (P1) and (P2). However, in light of the “no free lunch” theorems of
Wolpert and Macready [40], we are heedful about asserting dominance of our method.

Remark 5.1 Applied to combinatorial feasibility problems, experimental evidence suggests
that unlike the Douglas–Rachford scheme, the cyclic Douglas–Rachford scheme fails to
converge satisfactorily. For details, see [41].
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Table 1 Results for N ball constraints in Rn with ε = 10−3. The mean (max) from 10 trials are reported for
the cyclic Douglas–Rachford (cycDR) and Douglas–Rachford (DR) methods.

n N
Iterations Time (s) Error

cycDR DR cycDR DR cycDR DR

100 10 4.6 (5) 22.9 (45) 0.004 (0.005) 0.022 (0.041) 0 (0) 7.91e-34 (1.65e-33)
100 20 3.4 (4) 42.4 (113) 0.006 (0.007) 0.071 (0.183) 0 (0) 1.59e-33 (6.11e-33)
100 50 2.3 (3) 75.3 (241) 0.008 (0.011) 0.288 (0.907) 2.03e-14 (2.02e-13) 6.37e-08 (6.37e-07)
100 100 2.1 (3) 97.9 (151) 0.014 (0.019) 0.717 (1.096) 0 (0) 5.51e-33 (3.85e-32)
100 200 2.0 (2) 186.2 (329) 0.025 (0.025) 2.655 (4.656) 9.68e-15 (9.68e-14) 2.17e-08 (2.17e-07)
100 500 2.0 (2) 284.2 (372) 0.059 (0.060) 9.968 (12.989) 0 (0) 2.70e-07 (9.51e-07)
100 1000 2.0 (2) 383.0 (507) 0.118 (0.119) 26.656 (35.120) 0 (0) 4.30e-07 (9.42e-07)
100 1100 2.0 (2) 380.7 (471) 0.129 (0.130) 29.160 (36.001) 0 (0) 8.35e-07 (1.79e-06)
100 1200 2.0 (2) 372.3 (537) 0.141 (0.144) 31.140 (44.886) 0 (0) 8.08e-07 (1.79e-06)
100 1500 2.0 (2) 466.0 (631) 0.178 (0.181) 49.282 (66.533) 0 (0) 5.38e-05 (5.34e-04)
100 2000 2.0 (2) 529.3 (725) 0.232 (0.234) 74.878 (102.148) 9.31e-19 (5.29e-18) 4.79e-06 (4.00e-05)

200 10 6.3 (7) 22.1 (35) 0.007 (0.008) 0.023 (0.036) 0 (0) 1.89e-33 (6.18e-33)
200 20 4.2 (5) 23.8 (56) 0.008 (0.010) 0.045 (0.103) 0 (0) 6.61e-33 (2.55e-32)
200 50 2.8 (3) 66.4 (144) 0.012 (0.013) 0.283 (0.604) 0 (0) 1.48e-32 (7.12e-32)
200 100 2.2 (3) 81.5 (132) 0.016 (0.021) 0.673 (1.083) 0 (0) 3.20e-32 (1.03e-31)
200 200 2.0 (2) 149.9 (301) 0.027 (0.028) 2.413 (4.801) 7.84e-16 (7.84e-15) 5.97e-08 (5.97e-07)
200 500 2.1 (3) 245.6 (354) 0.067 (0.095) 9.739 (14.055) 0 (0) 2.20e-07 (8.42e-07)
200 1000 2.0 (2) 323.4 (417) 0.124 (0.125) 26.429 (34.023) 0 (0) 4.10e-07 (9.43e-07)
200 1100 2.1 (3) 358.1 (434) 0.140 (0.201) 32.481 (39.289) 0 (0) 4.06e-07 (8.92e-07)
200 1200 2.0 (2) 337.0 (455) 0.145 (0.146) 33.662 (45.415) 0 (0) 8.51e-07 (1.63e-06)
200 1500 2.0 (2) 379.1 (495) 0.181 (0.183) 48.070 (62.778) 2.94e-19 (2.94e-18) 6.70e-07 (1.36e-06)
200 2000 2.0 (2) 422.6 (569) 0.239 (0.240) 74.611 (100.490) 0 (0) 7.28e-05 (7.22e-04)

500 10 9.1 (11) 17.0 (37) 0.012 (0.014) 0.023 (0.049) 0 (0) 3.19e-33 (8.23e-33)
500 20 6.1 (7) 16.9 (31) 0.014 (0.016) 0.042 (0.076) 0 (0) 2.35e-32 (6.76e-32)
500 50 3.0 (3) 66.3 (184) 0.016 (0.017) 0.373 (1.024) 0 (0) 4.55e-32 (2.23e-31)
500 100 2.6 (3) 81.5 (167) 0.023 (0.026) 0.892 (1.804) 0 (0) 2.64e-31 (1.21e-30)
500 200 2.3 (3) 142.5 (251) 0.037 (0.046) 3.068 (5.367) 0 (0) 6.58e-32 (1.90e-31)
500 500 2.0 (2) 267.3 (354) 0.071 (0.072) 15.687 (20.713) 0 (0) 2.40e-07 (1.22e-06)
500 1000 2.2 (3) 318.6 (413) 0.151 (0.204) 42.107 (54.312) 0 (0) 4.33e-07 (9.15e-07)
500 1100 2.0 (2) 338.4 (402) 0.149 (0.152) 49.911 (59.818) 0 (0) 2.45e-07 (5.58e-07)
500 1200 2.1 (3) 356.5 (478) 0.171 (0.240) 57.385 (76.217) 0 (0) 3.60e-07 (9.01e-07)
500 1500 2.0 (2) 345.7 (407) 0.203 (0.205) 70.272 (82.803) 0 (0) 6.39e-07 (9.77e-07)
500 2000 2.0 (2) 358.3 (404) 0.271 (0.273) 97.104 (110.421) 0 (0) 5.34e-07 (1.12e-06)

1000 10 15.0 (16) 12.4 (26) 0.024 (0.026) 0.023 (0.048) 2.12e-19 (2.12e-18) 1.24e-32 (3.34e-32)
1000 20 8.2 (9) 20.4 (71) 0.024 (0.027) 0.069 (0.237) 0 (0) 3.02e-32 (6.98e-32)
1000 50 4.3 (5) 38.8 (112) 0.028 (0.031) 0.311 (0.884) 2.67e-19 (2.67e-18) 1.24e-31 (5.29e-31)
1000 100 3.3 (4) 80.8 (222) 0.037 (0.042) 1.260 (3.436) 0 (0) 2.15e-31 (6.84e-31)
1000 200 2.4 (3) 138.5 (270) 0.048 (0.058) 4.730 (9.446) 0 (0) 6.50e-31 (2.52e-30)
1000 500 2.0 (2) 201.3 (313) 0.085 (0.086) 20.356 (31.166) 3.90e-20 (3.90e-19) 2.10e-30 (6.11e-30)
1000 1000 2.0 (2) 348.8 (518) 0.162 (0.164) 73.420 (108.493) 0 (0) 1.36e-06 (1.20e-05)
1000 1100 2.1 (3) 334.4 (550) 0.183 (0.260) 77.174 (126.896) 0 (0) 1.10e-07 (7.62e-07)
1000 1200 2.0 (2) 353.8 (518) 0.190 (0.193) 89.153 (128.683) 0 (0) 1.74e-07 (9.63e-07)
1000 1500 2.1 (3) 403.9 (607) 0.245 (0.346) 126.707 (189.011) 1.33e-19 (1.33e-18) 3.17e-07 (8.94e-07)
1000 2000 2.0 (2) 487.0 (593) 0.307 (0.312) 239.210 (374.390) 0 (0) 3.58e-07 (1.11e-06)



A Cyclic Douglas–Rachford Iteration Scheme 19

Table 2 Results for N ball constraints in Rn with ε = 10−6. The mean (max) from 10 trials are reported for
the cyclic Douglas–Rachford (cycDR) and Douglas–Rachford (DR) methods.

n N
Iterations Time (s) Error

cycDR DR cycDR DR cycDR DR

100 10 4.7 (6) 22.9 (45) 0.005 (0.005) 0.023 (0.044) 0 (0) 7.91e-34 (1.65e-33)
100 20 3.6 (5) 42.4 (113) 0.006 (0.008) 0.077 (0.199) 0 (0) 1.59e-33 (6.11e-33)
100 50 2.6 (4) 77.4 (262) 0.010 (0.014) 0.320 (1.068) 0 (0) 1.24e-32 (5.96e-32)
100 100 2.1 (3) 97.9 (151) 0.015 (0.020) 0.781 (1.195) 0 (0) 5.51e-33 (3.85e-32)
100 200 2.3 (3) 187.1 (329) 0.029 (0.038) 2.909 (5.077) 0 (0) 5.89e-33 (2.30e-32)
100 500 2.3 (3) 329.6 (661) 0.071 (0.093) 12.554 (24.975) 0 (0) 1.81e-32 (6.37e-32)
100 1000 2.3 (3) 427.4 (635) 0.141 (0.184) 32.431 (47.903) 0 (0) 2.21e-32 (8.10e-32)
100 1100 2.3 (3) 467.4 (714) 0.153 (0.199) 38.936 (59.259) 0 (0) 3.92e-32 (3.17e-31)
100 1200 2.1 (3) 451.8 (698) 0.154 (0.218) 41.059 (63.259) 0 (0) 1.12e-31 (8.08e-31)
100 1500 2.1 (3) 507.2 (712) 0.193 (0.277) 58.578 (81.907) 0 (0) 2.66e-31 (8.15e-31)
100 2000 2.3 (3) 627.8 (808) 0.276 (0.361) 96.554 (124.880) 0 (0) 1.50e-31 (7.53e-31)

200 10 6.3 (7) 22.1 (35) 0.007 (0.008) 0.026 (0.040) 0 (0) 1.89e-33 (6.18e-33)
200 20 4.4 (5) 23.8 (56) 0.009 (0.010) 0.050 (0.116) 0 (0) 6.61e-33 (2.55e-32)
200 50 2.8 (3) 66.4 (144) 0.012 (0.014) 0.323 (0.691) 0 (0) 1.48e-32 (7.12e-32)
200 100 2.4 (3) 81.5 (132) 0.018 (0.022) 0.772 (1.242) 0 (0) 3.20e-32 (1.03e-31)
200 200 2.1 (3) 152.5 (301) 0.030 (0.040) 2.825 (5.547) 0 (0) 3.04e-32 (1.63e-31)
200 500 2.5 (3) 263.8 (435) 0.081 (0.098) 12.074 (19.831) 0 (0) 4.32e-32 (2.69e-31)
200 1000 2.1 (3) 427.9 (703) 0.135 (0.192) 40.025 (65.394) 0 (0) 6.64e-32 (2.66e-31)
200 1100 2.2 (3) 426.0 (545) 0.153 (0.209) 44.161 (56.724) 0 (0) 5.92e-32 (1.86e-31)
200 1200 2.2 (3) 442.9 (633) 0.166 (0.225) 50.678 (72.862) 0 (0) 5.98e-32 (2.81e-31)
200 1500 2.1 (3) 470.1 (882) 0.196 (0.279) 69.261 (128.978) 1.00e-25 (1.00e-24) 1.71e-31 (6.88e-31)
200 2000 2.0 (2) 578.4 (894) 0.248 (0.252) 117.575 (179.883) 0 (0) 4.82e-32 (1.04e-31)

500 10 9.1 (11) 17.0 (37) 0.012 (0.015) 0.028 (0.060) 0 (0) 3.19e-33 (8.23e-33)
500 20 6.1 (7) 16.9 (31) 0.015 (0.017) 0.052 (0.093) 0 (0) 2.35e-32 (6.76e-32)
500 50 3.1 (4) 66.3 (184) 0.017 (0.019) 0.467 (1.285) 0 (0) 4.55e-32 (2.23e-31)
500 100 2.6 (3) 81.5 (167) 0.024 (0.027) 1.132 (2.287) 0 (0) 2.64e-31 (1.21e-30)
500 200 2.7 (4) 142.5 (251) 0.043 (0.060) 3.979 (6.824) 0 (0) 6.58e-32 (1.90e-31)
500 500 2.1 (3) 277.5 (399) 0.078 (0.108) 20.528 (29.207) 0 (0) 4.06e-31 (2.22e-30)
500 1000 2.3 (3) 358.3 (540) 0.162 (0.210) 59.290 (88.063) 0 (0) 8.30e-32 (3.91e-31)
500 1100 2.1 (3) 372.7 (458) 0.163 (0.231) 67.065 (83.951) 0 (0) 6.41e-32 (3.21e-31)
500 1200 2.2 (3) 416.4 (604) 0.184 (0.246) 82.461 (119.456) 0 (0) 4.81e-32 (2.22e-31)
500 1500 2.1 (3) 461.7 (691) 0.220 (0.313) 114.836 (175.009) 0 (0) 2.28e-31 (1.36e-30)
500 2000 2.0 (2) 483.9 (785) 0.278 (0.283) 159.287 (259.033) 0 (0) 6.06e-31 (2.92e-30)

1000 10 15.1 (17) 12.4 (26) 0.024 (0.027) 0.030 (0.063) 0 (0) 1.24e-32 (3.34e-32)
1000 20 8.2 (9) 20.4 (71) 0.025 (0.027) 0.095 (0.330) 0 (0) 3.02e-32 (6.98e-32)
1000 50 4.5 (6) 38.8 (112) 0.029 (0.035) 0.434 (1.249) 0 (0) 1.24e-31 (5.29e-31)
1000 100 3.3 (4) 80.8 (222) 0.038 (0.043) 1.761 (4.730) 0 (0) 2.15e-31 (6.84e-31)
1000 200 2.5 (3) 138.5 (270) 0.051 (0.059) 6.224 (12.089) 0 (0) 6.50e-31 (2.52e-30)
1000 500 2.3 (3) 201.3 (313) 0.099 (0.125) 26.108 (40.534) 0 (0) 2.10e-30 (6.11e-30)
1000 1000 2.1 (3) 388.7 (905) 0.174 (0.241) 103.839 (243.085) 0 (0) 2.17e-30 (1.79e-29)
1000 1100 2.3 (3) 354.4 (660) 0.205 (0.264) 120.706 (220.612) 0 (0) 2.26e-30 (9.82e-30)
1000 1200 2.3 (3) 376.3 (620) 0.223 (0.288) 161.133 (260.857) 0 (0) 1.61e-30 (1.26e-29)
1000 1500 2.2 (3) 526.0 (1000) 0.265 (0.358) 276.095 (541.502) 2.68e-22 (2.68e-21) 1.08e-09 (5.98e-09)
1000 2000 2.1 (3) 595.0 (894) 0.332 (0.469) 427.933 (646.182) 0 (0) 4.48e-31 (1.97e-30)
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Table 3 Results for N sphere constraints in Rn with ε = 10−3. The mean (max) from 10 trials are reported
for the cyclic Douglas–Rachford (cycDR) and Douglas–Rachford (DR) methods.

n N
Iterations Time (s) Error

cycDR DR cycDR DR cycDR DR

100 10 16.8 (17) 219.1 (327) 0.021 (0.021) 0.272 (0.421) 4.46e-13 (7.24e-13) 8.29e-06 (1.06e-05)
100 20 9.0 (9) 247.8 (314) 0.022 (0.022) 0.669 (0.873) 5.94e-14 (1.12e-13) 1.54e-05 (1.70e-05)
100 50 5.0 (5) 375.1 (481) 0.031 (0.031) 2.559 (3.307) 6.59e-18 (1.00e-17) 2.86e-05 (3.29e-05)
100 100 3.0 (3) 471.6 (806) 0.037 (0.037) 6.185 (10.904) 1.30e-20 (2.62e-20) 4.30e-05 (4.98e-05)
100 200 2.0 (2) 747.7 (1000) 0.050 (0.050) 19.932 (26.634) 3.60e-26 (4.50e-26) 5.66e-05 (6.12e-05)
100 500 2.0 (2) 1000.0 (1000) 0.127 (0.128) 64.046 (65.562) 2.56e-26 (5.32e-26) 1.18e-04 (1.40e-04)
100 1000 2.0 (2) 1000.0 (1000) 0.253 (0.255) 130.475 (138.540) 3.87e-26 (8.28e-26) 2.43e-04 (2.70e-04)
100 1100 2.0 (2) 1000.0 (1000) 0.278 (0.281) 143.022 (149.895) 5.28e-26 (8.95e-26) 2.53e-04 (2.95e-04)
100 1200 2.0 (2) 1000.0 (1000) 0.304 (0.306) 156.653 (158.918) 7.16e-26 (1.65e-25) 3.12e-04 (3.74e-04)
100 1500 2.0 (2) 1000.0 (1000) 0.380 (0.386) 197.801 (210.661) 1.02e-25 (2.27e-25) 3.50e-04 (3.84e-04)
100 2000 2.0 (2) 1000.0 (1000) 0.504 (0.511) 261.535 (267.483) 9.91e-26 (2.42e-25) 4.82e-04 (6.04e-04)

200 10 23.0 (23) 123.1 (222) 0.030 (0.030) 0.183 (0.334) 2.50e-13 (7.46e-13) 6.33e-06 (8.72e-06)
200 20 12.8 (13) 115.2 (171) 0.033 (0.034) 0.329 (0.507) 1.48e-14 (4.39e-14) 1.05e-05 (1.46e-05)
200 50 6.0 (6) 110.6 (124) 0.038 (0.038) 0.790 (0.874) 2.56e-16 (4.47e-16) 1.42e-05 (2.09e-05)
200 100 4.0 (4) 120.1 (128) 0.051 (0.052) 1.726 (1.825) 2.49e-20 (3.71e-20) 1.70e-05 (2.21e-05)
200 200 3.0 (3) 134.9 (139) 0.077 (0.078) 3.749 (4.088) 2.88e-26 (6.69e-26) 2.31e-05 (2.98e-05)
200 500 2.0 (2) 156.4 (161) 0.130 (0.131) 11.106 (11.715) 8.53e-26 (1.71e-25) 4.37e-05 (5.16e-05)
200 1000 2.0 (2) 175.6 (182) 0.262 (0.264) 26.888 (30.935) 1.53e-25 (3.33e-25) 7.27e-05 (8.71e-05)
200 1100 2.0 (2) 179.5 (191) 0.286 (0.290) 31.161 (33.273) 1.71e-25 (2.77e-25) 7.97e-05 (9.82e-05)
200 1200 2.0 (2) 179.0 (184) 0.309 (0.316) 31.547 (35.242) 2.02e-25 (4.76e-25) 7.86e-05 (8.59e-05)
200 1500 2.0 (2) 190.0 (200) 0.394 (0.400) 43.207 (47.057) 2.29e-25 (3.91e-25) 9.97e-05 (1.15e-04)
200 2000 2.0 (2) 230.3 (295) 0.522 (0.525) 72.760 (94.718) 3.96e-25 (7.53e-25) 1.34e-04 (1.58e-04)

500 10 35.3 (36) 51.6 (67) 0.051 (0.052) 0.093 (0.121) 4.81e-14 (1.13e-13) 1.46e-06 (2.86e-06)
500 20 19.1 (20) 72.3 (85) 0.055 (0.057) 0.254 (0.300) 8.32e-15 (1.21e-14) 2.02e-06 (3.29e-06)
500 50 9.0 (9) 96.8 (107) 0.064 (0.064) 0.888 (0.991) 1.82e-16 (2.72e-16) 2.03e-06 (2.36e-06)
500 100 5.0 (5) 120.5 (127) 0.070 (0.071) 2.271 (2.475) 1.21e-17 (1.75e-17) 2.39e-06 (2.98e-06)
500 200 3.0 (3) 143.0 (148) 0.085 (0.085) 5.579 (6.072) 4.29e-20 (5.80e-20) 2.84e-06 (3.79e-06)
500 500 2.0 (2) 171.3 (176) 0.145 (0.146) 17.719 (21.106) 3.30e-25 (8.09e-25) 4.14e-06 (4.50e-06)
500 1000 2.0 (2) 195.1 (197) 0.295 (0.296) 47.771 (51.291) 8.61e-25 (1.37e-24) 6.18e-06 (6.64e-06)
500 1100 2.0 (2) 198.1 (202) 0.327 (0.329) 50.934 (54.122) 1.02e-24 (2.28e-24) 6.93e-06 (8.30e-06)
500 1200 2.0 (2) 199.8 (204) 0.359 (0.362) 56.155 (60.472) 1.01e-24 (2.17e-24) 6.69e-06 (7.56e-06)
500 1500 2.0 (2) 208.5 (213) 0.445 (0.451) 73.848 (78.355) 1.34e-24 (2.66e-24) 7.96e-06 (8.62e-06)
500 2000 2.0 (2) 217.8 (221) 0.590 (0.598) 100.538 (111.140) 1.61e-24 (3.00e-24) 1.00e-05 (1.09e-05)

1000 10 49.2 (50) 9.1 (29) 0.083 (0.085) 0.023 (0.072) 1.32e-14 (2.44e-14) 3.15e-07 (7.11e-07)
1000 20 27.0 (27) 30.0 (66) 0.092 (0.092) 0.127 (0.276) 1.96e-15 (3.11e-15) 4.88e-07 (7.90e-07)
1000 50 12.0 (12) 73.1 (86) 0.100 (0.100) 0.779 (0.946) 1.85e-16 (2.37e-16) 4.98e-07 (6.57e-07)
1000 100 7.0 (7) 103.7 (113) 0.117 (0.117) 2.248 (2.513) 4.22e-18 (5.49e-18) 5.51e-07 (7.17e-07)
1000 200 4.0 (4) 136.8 (143) 0.133 (0.134) 8.869 (10.028) 8.89e-20 (1.1e-19) 6.28e-07 (7.86e-07)
1000 500 3.0 (3) 178.9 (182) 0.258 (0.260) 31.706 (34.394) 2.17e-24 (5.88e-24) 7.86e-07 (9.48e-07)
1000 1000 2.0 (2) 211.7 (215) 0.343 (0.344) 73.182 (78.028) 2.16e-24 (3.71e-24) 1.04e-06 (1.15e-06)
1000 1100 2.0 (2) 215.3 (221) 0.379 (0.383) 84.584 (92.095) 4.01e-24 (9.45e-24) 1.07e-06 (1.21e-06)
1000 1200 2.0 (2) 218.7 (220) 0.411 (0.414) 94.408 (99.951) 3.91e-24 (8.19e-24) 1.14e-06 (1.27e-06)
1000 1500 2.0 (2) 228.6 (232) 0.518 (0.524) 124.265 (132.683) 5.73e-24 (1.58e-23) 1.29e-06 (1.48e-06)
1000 2000 2.0 (2) 242.3 (245) 0.681 (0.684) 176.575 (191.354) 6.06e-24 (1.5e-23) 1.53e-06 (1.67e-06)
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Table 4 Results for N sphere constraints in Rn with ε = 10−6. The mean (max) from 10 trials are reported
for the cyclic Douglas–Rachford (cycDR) and Douglas–Rachford (DR) methods.

n N
Iterations Time (s) Error

cycDR DR cycDR DR cycDR DR

100 10 27.4 (28) 1000.0 (1000) 0.035 (0.036) 1.302 (1.419) 1.21e-18 (2.25e-18) 9.10e-08 (2.16e-07)
100 20 14.1 (15) 1000.0 (1000) 0.036 (0.038) 2.463 (2.750) 1.21e-19 (2.65e-19) 1.26e-06 (1.78e-06)
100 50 7.0 (7) 1000.0 (1000) 0.044 (0.045) 6.760 (7.052) 1.02e-23 (1.81e-23) 8.51e-06 (1.07e-05)
100 100 4.0 (4) 1000.0 (1000) 0.052 (0.052) 13.823 (14.145) 2.02e-26 (3.73e-26) 2.17e-05 (3.00e-05)
100 200 3.0 (3) 1000.0 (1000) 0.078 (0.078) 25.239 (27.594) 8.97e-27 (1.69e-26) 4.39e-05 (5.93e-05)
100 500 2.0 (2) 1000.0 (1000) 0.131 (0.132) 66.159 (68.491) 2.56e-26 (5.32e-26) 1.18e-04 (1.40e-04)
100 1000 2.0 (2) 1000.0 (1000) 0.262 (0.263) 131.165 (139.166) 3.87e-26 (8.28e-26) 2.43e-04 (2.70e-04)
100 1100 2.0 (2) 1000.0 (1000) 0.290 (0.293) 149.386 (154.285) 5.28e-26 (8.95e-26) 2.53e-04 (2.95e-04)
100 1200 2.0 (2) 1000.0 (1000) 0.317 (0.322) 162.476 (171.252) 7.16e-26 (1.65e-25) 3.12e-04 (3.74e-04)
100 1500 2.0 (2) 1000.0 (1000) 0.395 (0.399) 205.210 (214.347) 1.02e-25 (2.27e-25) 3.50e-04 (3.84e-04)
100 2000 2.0 (2) 1000.0 (1000) 0.524 (0.527) 284.740 (295.621) 9.91e-26 (2.42e-25) 4.82e-04 (6.04e-04)

200 10 37.8 (39) 1000.0 (1000) 0.051 (0.053) 1.787 (1.801) 5.36e-19 (9.86e-19) 9.14e-08 (1.73e-07)
200 20 20.0 (20) 1000.0 (1000) 0.053 (0.054) 3.422 (3.452) 2.01e-20 (3.49e-20) 9.56e-07 (1.46e-06)
200 50 9.0 (9) 1000.0 (1000) 0.059 (0.060) 8.384 (8.615) 1.53e-22 (3.08e-22) 4.52e-06 (6.27e-06)
200 100 5.0 (5) 1000.0 (1000) 0.067 (0.067) 15.429 (17.471) 1.61e-24 (2.45e-24) 8.05e-06 (1.09e-05)
200 200 3.0 (3) 1000.0 (1000) 0.080 (0.080) 31.967 (33.857) 2.88e-26 (6.69e-26) 1.39e-05 (1.8e-05)
200 500 2.0 (2) 1000.0 (1000) 0.135 (0.135) 81.272 (85.423) 8.53e-26 (1.71e-25) 3.07e-05 (3.64e-05)
200 1000 2.0 (2) 1000.0 (1000) 0.272 (0.273) 166.615 (177.342) 1.53e-25 (3.33e-25) 5.49e-05 (6.55e-05)
200 1100 2.0 (2) 1000.0 (1000) 0.297 (0.299) 168.501 (184.769) 1.71e-25 (2.77e-25) 6.05e-05 (7.36e-05)
200 1200 2.0 (2) 1000.0 (1000) 0.320 (0.323) 195.997 (204.751) 2.02e-25 (4.76e-25) 6.03e-05 (6.58e-05)
200 1500 2.0 (2) 1000.0 (1000) 0.411 (0.416) 250.555 (257.482) 2.29e-25 (3.91e-25) 7.77e-05 (9.00e-05)
200 2000 2.0 (2) 1000.0 (1000) 0.540 (0.543) 333.273 (340.514) 3.96e-25 (7.53e-25) 1.06e-04 (1.29e-04)

500 10 58.0 (59) 1000.0 (1000) 0.085 (0.087) 2.135 (2.220) 1.46e-19 (3.30e-19) 7.50e-08 (1.05e-07)
500 20 30.8 (31) 1000.0 (1000) 0.091 (0.091) 3.658 (3.691) 1.04e-20 (2.56e-20) 4.45e-07 (6.81e-07)
500 50 13.1 (14) 1000.0 (1000) 0.095 (0.102) 9.321 (10.090) 8.52e-22 (1.38e-21) 1.05e-06 (1.21e-06)
500 100 7.8 (8) 1000.0 (1000) 0.114 (0.117) 18.124 (19.334) 8.23e-24 (4.40e-23) 1.65e-06 (2.04e-06)
500 200 5.0 (5) 1000.0 (1000) 0.147 (0.147) 41.555 (45.159) 1.60e-25 (2.81e-25) 2.25e-06 (2.95e-06)
500 500 3.0 (3) 1000.0 (1000) 0.224 (0.225) 118.550 (125.955) 3.31e-25 (8.15e-25) 3.60e-06 (3.91e-06)
500 1000 2.0 (2) 1000.0 (1000) 0.305 (0.306) 256.931 (276.971) 8.61e-25 (1.37e-24) 5.57e-06 (5.97e-06)
500 1100 2.0 (2) 1000.0 (1000) 0.336 (0.338) 279.305 (295.475) 1.02e-24 (2.28e-24) 6.26e-06 (7.46e-06)
500 1200 2.0 (2) 1000.0 (1000) 0.369 (0.371) 299.386 (318.799) 1.01e-24 (2.17e-24) 6.06e-06 (6.85e-06)
500 1500 2.0 (2) 1000.0 (1000) 0.459 (0.465) 379.780 (394.991) 1.34e-24 (2.66e-24) 7.28e-06 (7.89e-06)
500 2000 2.0 (2) 1000.0 (1000) 0.610 (0.618) 513.325 (526.365) 1.61e-24 (3.00e-24) 9.24e-06 (1.01e-05)

1000 10 81.1 (82) 1000.0 (1000) 0.140 (0.141) 3.181 (3.250) 4.17e-20 (8.76e-20) 3.62e-08 (9.00e-08)
1000 20 42.9 (43) 1000.0 (1000) 0.148 (0.149) 6.256 (6.973) 3.33e-21 (5.35e-21) 1.65e-07 (2.59e-07)
1000 50 18.8 (19) 1000.0 (1000) 0.161 (0.164) 15.651 (17.205) 1.26e-22 (4.37e-22) 3.17e-07 (4.18e-07)
1000 100 10.0 (10) 1000.0 (1000) 0.172 (0.172) 32.247 (36.360) 9.71e-24 (1.23e-23) 4.33e-07 (5.66e-07)
1000 200 6.0 (6) 1000.0 (1000) 0.207 (0.208) 71.902 (79.069) 6.31e-25 (1.43e-24) 5.46e-07 (6.82e-07)
1000 500 3.0 (3) 1000.0 (1000) 0.261 (0.263) 199.425 (211.841) 2.17e-24 (5.88e-24) 7.24e-07 (8.72e-07)
1000 1000 2.0 (2) 1000.0 (1000) 0.352 (0.354) 366.672 (403.696) 2.16e-24 (3.71e-24) 9.80e-07 (1.08e-06)
1000 1100 2.0 (2) 1000.0 (1000) 0.391 (0.393) 388.322 (396.817) 4.01e-24 (9.45e-24) 1.01e-06 (1.14e-06)
1000 1200 2.0 (2) 1000.0 (1000) 0.426 (0.427) 426.523 (436.721) 3.91e-24 (8.19e-24) 1.08e-06 (1.20e-06)
1000 1500 2.0 (2) 1000.0 (1000) 0.526 (0.535) 533.574 (546.055) 5.73e-24 (1.58e-23) 1.22e-06 (1.41e-06)
1000 2000 2.0 (2) 1000.0 (1000) 0.697 (0.700) 725.869 (733.381) 6.06e-24 (1.50e-23) 1.46e-06 (1.59e-06)
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6 Conclusion

Two new projection algorithms, the cyclic Douglas–Rachford and averaged Douglas–Rachford

iteration schemes, were introduced and studied. Applied to N-set convex feasibility prob-

lems in Hilbert space, both weakly converge to point whose projections onto each of the

N-set coincide. While the cyclic Douglas–Rachford is sequential, each iteration of the aver-

aged Douglas–Rachford can be parallelized.

Numerical experiments suggest that that the cyclic Douglas–Rachford scheme outper-

forms the classical Douglas–Rachford scheme, which suffers as a result of the product for-

mulation. An advantage of our schemes is that they can be used in the original space, without

recourse to this formulation. For inconsistent 2-set problems, there is evidence to suggest

that the two set cyclic Douglas–Rachford scheme yields best approximation pairs.

HTML versions of the interactive Cinderella applets are available at:

1. http://carma.newcastle.edu.au/tam/cycdr/2lines.html

2. http://carma.newcastle.edu.au/tam/cycdr/circleline.html

3. http://carma.newcastle.edu.au/tam/cycdr/2circles.html

4. http://carma.newcastle.edu.au/tam/cycdr/circlepoint.html
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