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Abstract: Functions which are the differences of two convex

functions are examined hoth in R" and in locally convex spaces.




One of the central results on convex functions concerns the
maximal monotonicity of their subgradients [4]. A natural question
to ask is: what operators are the differences of maximal monotone
operators? On the 1ine, of course, these are exactly the functions of
bounded variation. In general the question seems very hard, but it
does suggest the related question of what functions are convex differences.
An answer to this will of course provide information concerning the previous
question and, in additjon, the space thus generated will inherit many of
the pleasant analytic properties of convex functions such as continuity
on the relative interior of the domain of definition and differentiability
densely, [4].

We make the following preliminary definitions. Let X be
a locally convex topological vector space and let © < X be a compact
convex subset of X . Let C(R) denote the continuous real valued functions
on & with the sup norm and let CO(Q) denote the convex functions on @ .

We will denote (CD(R) - CO(Q)) n C{@) by K(a).

Proposition 1: K(®) 1is a Riesz subspace of C(f) .That is K(f) is a

sublattice and subspace of C{f).

Proof: Let eeK{2) . Then there exist a,beco(ﬂ) with e =a-b . Then

min(e,0) = a - max{a.b)

w
I

and

max(e,0) = max{a,b) - b .

m
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Now max (a,b) 1is convex since it is the pointwise maximum of convex
functions. It follows that e’ and e'eCO(Q) - Co(g) .

It is easy to verify that this is sufficient for CO(Q) - Co(ﬂ)
to be a lattice. This in turn implies that K{Q) 1is a sublattice of

c(e) . Since CO(Q) is a cone, K(f) is clearly a subspace. 0

Theorem 1:  K() is dense in C{f) with the supnorm.

Proof: It suffices by the Kakutani-Stone Theorem ([3]) to show that for
any feC(2) and any Xy» X5 in 2 and e>0 there is some geK{Q) with

lgx;) - Flx;)] <« 1 =12

Case (i): Xs Xo are linearly independent. There then exist continuous

linear functionals g; on X with gi(xj) = 5ijf(xi)' Then

g =gy - g, € K(2)
and g(xi) = f(xi) for i =1,2 .

Case (ii): Xy and x| are dependent linearly. We may assume that
Xy = Ax1, reR, A # 1 .

Let h be defined, on the subspace generated by X1s by

hitx)) = (Flxy) - Flx,)) (3‘%) + (x,)
. h_

Then h(xq) = f(XT) and h(xz) = f(xz). Now h is continuous and affine
from the subspace generated by X1 and thus has a continuous extension

to X, by the Hahn-Banach Theorem [1]. Thus in either case there is some
convex (affine) function in K(f) with the same values as f . It follows

that K(aj = c(@). O



-3 -

Remark: It suffices that @ be completely regular for Theorem 1 to hold
with the topology of uniform convergence on compact sets. MNote also that the
Theorem promises that any function in C{Q) can be approximated by functions
which are differences of convex, continuous maps which is slightly stronger
than by functions in K{g).

In R one can completely characterize K(g), for o = [a,b] (with @ c
int{dom )).
Theorem 2:  TeK{fa,b]) if and only if f s absolutely continuous and
f= Jg with geBV[a,b] .
Proof: Since feK(a), f s the difference of convex functions f,
which,being convex,are Lipshitz on the relative interior of their domains
[4]. Thus f 1is absolutely continuous. Moreover, since 1"‘,i is convex
on [a.,bl, f%(x) exists except countably and is monotone. Let A,
be the domain of definition and let

g;(x) = sup f1(x)
NELVAS

X X
Then fi(x) = J f%(t)dt = J gi(t)dt and

a d

X X
#x) = [ (g18) - gpttdat = [g(t)at
a 0

where g(t) = g](t) o gz(t) is in BY|a.b] since each gi(x) is monotone.
X

Conversely, if f(x) = J g(t)dt with geBV[a,b] then g = my - m, with
a

My 51y monotone. It suffices to show that

t
f00 = [ my (o)t
d
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is convex. Suppose, to this end, that Xo > Xy - Then

X
2
fi(xz) - fi(xi) = J mi(t)dt g-mi(xl)(xz—x])
X
Similarly, if x, < x;, then m(s) < m(x;) for x5 <8 < % and
Xy
X2
Thus fi has a tangent at every point and so is convex ([4]).
Thus F(x) = f1(x) - fZ(x) e K() . 0O
In R" it appears more difficult to describe K(2) . The following
direct result gives some additional information to Theorem 1. Let P(R")

denote the real valued polynomials in n - variables.

Theorem 3:  P(R") < K(R") .

Proof: (i) Let n=1. It suffices to note that each X" dis in K{R) .
Since hoth max(xn,O) and —min(xn,U) are convex functions for any n,
x"eK(R) .

(ii) Let n=2. Molluzzo has shown that any polynomial in
two variables can be written as a sum of polynomials in linear

combjpations of the variables. That is

1 -5

(1) P(x.y) =

i P.(a;x + b.y)

1

where each Pi is a polynomial of a single variable and the

coefficients a, and b, are real.




Now each Pi in (1) can be decomposed into convex parts
and since a convex function of a linear function is convex it

follows that

m + m _
P(x,y) = 1_5 Pila;x + byy) - 1_21 PZ (azx + boy)
is the desired decomposition where Pi = P: - P; is the

convex decomposition of Pi

(i11) Now suppose that for n < ny and any polynomial in

n variabies

(2) P(x],...,xn) =

ez =

Palaglxysooiax )

i=1

where the L, are linear functionals in R"™ and the Pj
are polynomials of a single variable. We show by induction

that {2) holds for n,+1, and since the same decomposition

can be used as in (1), the result is established.

It suffices to consider

n n, . n.
P(x1,...,xn) = 12 X = P(x],...,xn_1)xn Now
- m ~
P(x1, ,xn_1) = 151 PT(LT(X]’ ,xn_])) so that
m .. n,
P(x1, .,xn) = 1_21!3j_(w1.)xn with Wi = Li(x1,...,xn_]).

=3

Now by (2), ﬁ.(wi)xnn can be written as



This page from an earlier version  shows explicitly how to decompose
in two dimensions.

Llet k+ 2 =m . Consider solving

m

r (1+i)'d, =6, /(m) 0 <r<m
i=0 Tkt
for real d; . This can be done since (Cir) = ((i+1)") s a Vandermond

matrix ([51) with distinct entries. Now let b, = (‘:11.)”m and &, = (i+1)B, .

Then
M pemer M r, r/m, T-r/m m
iio 4 b3 =i£0 (1+1)7d; s ) ﬁksrl(r) ’
and
m m m m . . )
5 d1.((1+1‘)x+y)m = 1 (Gx+ Eiy)m = 1§ x EiJBim"J(m)nym'J
i=0 i=0 i=0 j=0 J
m . .
- m J m=J
350 ()8 5 Xy
m
™
k & [
Yy = Xky

_omy
= (icdy iy x

It follows that any polynomial in two variables has a decomposition
as in (1). Now each Pi in (1) «can be decomposed into convex parts
and since a convex ‘function of a T1inear function is convex it follows
that

mo, m
P(x,y) = & Pi(aix + biy) - 3

X 1 Ps (aix + biy)

1
is the desired decomposition where Pi = P: - P; is the convex decomposition

of Pi .
(iii1) Now suppose that for n < ng and any polynomial in n variables

m
(2) P(Xps-meax ) = 121 Po{li(Xqs00u0x))
where the Li are Tinear functionals in R" and the Pi are polynomials

of a single variable. We show by induction that (2) holds for n , and

0+1
since the same decomposition can be used as in (1), the result js established.
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This page from an earlier version shows explicitly how to decompose
 in two dimensions.



Pi(wi)(xn) = E P. .{a,.w. + b.xn)

and one has the desired decomposition. 0O

Remarks (i) It is an immediate corollary of this theorem and
the Stone-Weierstrass theorem that K(R"™) 4s dense in C(R")
with the uniform topology, so that Theorem 1 follows in this
case.

(ii) In the case n = 2 the decomposition in (1)
is due to Molluzzo [2]with a proof which also gives information
on the number of polynomials necessary in (1). Note that this
information will not extend to n > 2.

(iii) While Theorem 3 does not characterize K(Rn)
we know from Theorem 2 that K(R") does not coincide with

certain other classes. In particular there are differentiable

1

X
functions (such as f(x) = J t sin T dt) which are not in

0
K EF1,11 while the Cantor function is monotone without even

being absolutely continuous. Thus K(Rn) does not absorb
either Lipshitz or differentiable functions on RM
In the case of quadratic functions on a complex Hilbert

space, H, one has the following type of convex quadratic

decomposition:




Theorem 4: Suppose A 1is a continuous linear mapping H

Then g(x) = (Ax,x) can be written as
g(x) = gy(x) + ig,(x)
where each gi(x) is the difference of convex quadratic

functions.

Proof: Let A = B] + 182 with B],B2 self adjoint.

+ -
Let 81 = Bi - Bi where
. B.+/B? -B,+v/B2
gt = i i BT = i i
i 2 i 2
Note that the square root of B? exists since B? is self
adjoint and positive ([11). It follows that Bjag = 0 and

that B:,B; are positive ([1]1). Thus

g(x) = (Byx:x) = (BJx,x) + i((Bjx,x) - (Bjx,x))

which is the desired decomposition since.for a bounded operator

T, one has that (T x,x) 1is convex when T s self adjoint

positive. 0
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