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in a 1936 address to the MAA

JMB&Zhu, ToVA, Springer, in press, ’04. I 12−04−04

1



SOME SELF PROMOTION

Two fine new

AK PETERS

Monographs

(2003, 2004)

you should

certainly buy!
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INTRODUCTION.

Details will appear in: J. Borwein and H. Wiersma,

Asplund Decompositions of Monotone Op-

erators (on Asplund Spaces), in preparation.

F “Even convex functions are hard . . . !”
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In a largely forgotten∗ 1968 or 1970 paper:

∗In part, this is Asplund’s fault. Titles really do matter!
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Edgar Asplund (1931–1974), inter alia, pro-

vided a very provocative decomposition . . . of

a maximal monotone operator as the sum of a

subgradient and an acyclic (“skew”) part.

Asplund’s other seminal contributions include

• Generic existence of nearest and farthest

points to closed sets in Banach space

• Asplund averaging of good (re)norms on

a Banach space

• Generic differentiability of convex func-

tions (‘SDS spaces’ now called Asplund spaces)

• Duality between smoothness and round-

ness (exposedness) properties
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OUTLINE. In this lecture I intend to:

1. Motivate revisiting Asplund’s work:

• How much do we know about convex
subgradients & monotone operators?

• Is a (bounded) linear mapping mono-
tone iff its adjoint is??

• Reviewing monotonicity theory in non-
reflexive spaces

2. Sketch a modern version of E.A.’s result.

3. Discuss applications and extensions

4. Pose some HARD CONJECTURES: e.g.,

All monotone pathologies are re-
alizable with ‘skew’ mappings.
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PRELIMINARIES

Definition 1 A mapping T : X → X∗ is mono-
tone if for all x, y ∈ D := domT

〈y∗ − x∗, y − x〉 ≥ 0

for all x∗ ∈ T (x), y∗ ∈ T (y).

T is skew if T and −T are both monotone.

Definition 2 A (multi-)function T : D ⊂ X →
X∗ is n-monotone if

〈T (x1), x1 − xn〉+
n∑

k=2

〈T (xk), xk − xk−1〉 ≥ 0

holds for all (x1, . . . , xn) ∈ Dn, and T is cycli-
cally monotone if it is n-monotone for all n.

Definition 3 A monotone mapping T : D ⊂
X → X∗ is acyclically-monotone if

M + ∂f ⊂ T

and M monotone implies f is linear.

X These classes are distinct (Asplund)
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I Our interest in cyclic monotonicity is largely

motivated by the following

Theorem 4 (Rockafellar, 1966) Given a re-

lation ρ on X×X∗, there exists a closed convex

function f on X such that ∂f ⊃ ρ if and only

if ρ is cyclically monotone.

I Throughout, X is a Banach space and ∂f

is the convex subdifferential familiar from

convex analysis: ∂f(x) =

{x∗ ∈ X∗ : 〈x∗, y− x〉+ f(x) ≤ f(y) ∀y ∈ X}.

• ∂f is maximally cyclically monotone iff it is

a subgradient of a closed convex function.

• Skew and monotone implies acyclic. The

converse holds if T is linear. Skew and C2

implies linear.
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(CONVEX) SUBGRADIENTS

F Take care, even in separable Hilbert space.

Example. A proper lower semicontinuous con-
vex function, f , on separable Hilbert space with
the graph of ∂f not norm×bw closed.

• Let E := `2(N) and define

ep,m :=
1

p

(
ep + epm

)
, e∗p,m := e∗p+(p−1)e∗pm

for m, p, r, s ∈ N, m ≥ 2 and p prime.

We have 〈e∗p,m, ep′,m′〉= 0 if p 6= p′, =1/p
if p = p′, m 6= m′ and =1 if p = p′, m = m′.

• For x ∈ E define

f(x):= max
m>1,p

(〈e∗1, x〉+ 1, sup{〈e∗p,m, x〉})

so f is a proper lsc convex function on E.
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1. Then f(0) = f(ep,m) = 1, f(−e1) = 0 and
f(x) ≥ 〈e∗p,m, x〉 for x ∈ E, for m ≥ 2 and p

prime.

• So, e∗p,m ∈ ∂f(ep,m).

2. Also 0∗ 6∈ ∂f(0), since 0∗ ∈ ∂f(0) is equiva-
lent to f(x)− f(0) ≥ 0 for all x ∈ E, which
fails for x = −e1.

• Thus (0,0∗) is not in the graph of ∂f .

3. The graph of ∂f is not norm×bw closed:

(0,0∗) is in the norm×bw closure of

{(ep,m, e∗p,m) : m ≥ 2, p prime} ⊆ graph ∂f

• Informally, this is true since ep,m tends
in norm to 0 for large p, and also 0∗ is
a bw-cluster point of the e∗p,m.

¥
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Remark. Less instructively use E = `2([0,1])
(non–separable) and

f1(x) := max
0<r≤1

(〈e0, x〉+ 1, sup{r−1〈er, x〉}).

• Before we used an unbounded sequence
with a w*-cluster point; here that {r−1 er :
0 < r ≤ 1} has 0∗ in its bw* closure.∗

Theorem 5 More generally, let E be a Banach
space. TFAE:

i. E is finite dimensional.

ii. The graph of ∂f is norm×bw* closed for
each closed proper convex f on E.

iii. The graph of each maximal monotone T
on E is norm×bw* closed.

∗Built, after Namioka noted the bw* topology is nastier
than we knew; idea originates with Von Neumann.
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I Thus, all limiting constructions of gener-

alized gradients, that capture the convex

subdifferential, must fail to be closed for

general lower semi-continuous mappings,

unless they are locally bounded.

Question. Is Theorem 5 true if int D(T ) (int

dom f) is required to be non-empty?

I We conjecture “It is Not.”

That is, we think it possible, at least

in reflexive space, that:

The graph of every maximal mono-

tone T with D(T ) having nonempty in-

terior interior is norm × bw* closed.
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THE MONOTONE ‘ZOO’

Definition 1. Suppose T is a (monotone) set-
valued map from X to X∗.

Define set-valued maps T1, T0, T from X∗∗ to
X∗ via:

1. (x∗∗, x∗) ∈ Gr(T1), if there is a bounded
net (xα, x∗α) in Gr(T ) with xα →∗ x∗∗ and
x∗α → x∗.

2. (x∗∗, x∗) ∈ Gr(T0), if

inf(y,y∗)∈Gr(T )〈y∗ − x∗, y − x∗∗〉 = 0.

3. (x∗∗, x∗) ∈ Gr(T ), if

inf(y,y∗)∈Gr(T )〈y∗ − x∗, y − x∗∗〉 ≥ 0.

Then . . .
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Definition 2. We say

(i) T is dense type (D) if T1 = T . (Gossez
’76)

(ii) T is range-dense type (WD) if for every
x∗ ∈ R(T ), there is a bounded net (xα, x∗α) ∈
Gr(T ) with x∗α → x∗. (Simons ’95)

(iii) T is type (NI), if
inf(y,y∗)∈Gr(T )〈y∗ − x∗, y − x∗∗〉 ≤ 0, for all
(x∗∗, x∗) ∈ X∗∗ ×X∗. (Simons)

(iv) T is locally maximal monotone (FP), if
(Gr(T)T−1)∩(V ×X) is max. monotone in
V ×X, for every convex open V in X∗ with
V ∩R(T ) 6= ∅. (Fitzpatrick and Phelps ’92)

(v) T is unique, if all maximal monotone ex-
tensions of T in X∗∗ ×X∗ coincide.
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REFLEXIVE SPACES

. . . and there are other classes (Simons, Bauschke-

Borwein)!

. Convex subgradients have all these proper-

ties.

I Maximal monotone and dense type, or lo-

cally maximal monotone implies maximal

monotone.

I The converses hold in reflexive space, usu-

ally easily.

I Linear examples show this may fails in some

non-reflexive spaces (below).
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• In reflexive space the theory is fairly good:∗
sum rules, domain behaviour (Simons).

• Simons’ (1998) accounting of the non-reflexive
case is detailed and subtle (domain and
range behaviour).

• Generally, things are a mess with few counter-
examples. In part, because we can, unfor-
tunately, say a lot about the linear case:

∗At least when some core condition is in force.
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THE TRUTH ABOUT LINEAR MAPS

Proposition 6 Suppose T is a continuous lin-
ear operator from X to X∗. Then T is weakly
compact if and only if T1 = T ∗∗.

Also TFAE: (i) T is positive; (ii) T is mono-
tone; (iii) T is maximal monotone.

We rely also on the following easy-to-prove yet
immensely useful decomposition principle.

Proposition 7 Suppose T is a continuous lin-
ear operator from X to X∗. Then T can be
written uniquely as the sum of two continu-
ous linear operators, T = P + S, where P is
symmetric and S is skew:

Px = 1
2Tx+1

2T ∗x, Sx = 1
2Tx−1

2T ∗x, ∀x ∈ X.

• P (resp. S) is the symmetric part (resp.
skew part) of T .
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We are now ready for the main linear result.

Theorem 8 Suppose T is a continuous∗ linear

operator from X to X∗. Then TFAE:

(i) T is monotone and of dense type or range-

dense type or type (NI).

(ii) T is locally maximal monotone.

(iii T ∗ is monotone.

(iv) P and S∗ are monotone.

(v) P is monotone and S is of dense type or

range-dense type or type (NI) or locally

maximal monotone.

∗Closed and densely defined suffices (Phelps & Simons).
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I This slightly mind-numbing result says ”Lin-

ear maps can not distinguish any of the

classes”

• In particular, there is a bad positive map if

and only if it is not the case that X is such

that every bounded map from X to X∗
is weakly compact (X is a cms space).

• Moreover, if X is a Banach lattice TFAE:

– The adjoint of every positive (resp. skew)

map is positive (skew) iff X contains no

isometric copy of `1, as is the case for

C[0,1].

I The—only—two fundamental examples are

due to Gossez and Fitzpatrick & Phelps:
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’SMOOTH’ & SO-SO OPERATORS

♠ There are three mutually exclusive cases:

• T is “good”: S∗ and −S∗ are monotone.

• T is “so-so”: one of S∗ or −S∗ is mono-
tone.

• T is “bad”: neither S∗ nor −S∗ is mono-
tone.

Here is an example of a “so-so” operator.

Example 9 (Gossez) Consider G : `1 → `∞
with

(Gx)n := −
∑

k<n

xk+
∑

k>n

xk, ∀x = (xk) ∈ `1, n ∈ N.

Then G and −G are skew operators from `1
to `∞ and G∗ is not monotone but −G∗ is
and so both of dense type and locally maximal
monotone.
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A BAD OPERATOR

I Surprisingly, the “continuous” version of the
(negative) Gossez operator is “bad”.

Example 10 (Fitzpatrick and Phelps) Define
F : L1[0,1] → L∞[0,1] by

(Fx)(t) :=
∫ t

0
x(s)ds−

∫ 1

t
x(s)ds, ∀x ∈ L1[0,1],

for t ∈ [0,1].
Then F , −F are skew from L1[0,1] to L∞[0,1]
but neither F ∗ nor −F ∗ is monotone.
Consequently, neither F or −F is of type (NI)
nor locally maximal monotone.

• Adding a regularizing term (duality map,
subgradient) provably can not worsen things.

• We have exhausted all known counter-examples:

A conjecture is brewing
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ASPLUND’S DECOMPOSITION

F Studying a reworded version of Asplund’s
result to the stew reinforces this feeling:

Theorem 11 (Asplund, Theorem 2) Suppose
that T is a single-valued maximal monotone
operator defined on a set D in X∗ (resp. X)
whose weak∗ (resp. weak) closure has norm
interior, and is norm-to-norm continuous (on
D) at a point in this interior.

There is a convex subgradient operator G = ∂f
and an acyclically monotone S such that

T = ∂f + S.

• Linear mappings are acyclic iff skew.

F In finite dimensions, directly, a C2 mono-
tone is the sum of a convex gradient and
a skew linear mapping.
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F The basic reason why we may decompose

T as

T = ∂f + S

is · · ·

• A delicate ‘Zornification’ to obtain a max-

imally cyclic part.

– The interiority condition enforces con-

vergence of cyclically increasing nets

• Rockafellar’s result makes this cyclic part

a convex subgradient

• Maximality (in the cyclic order) forces the

remainder to be acyclically monotone.
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· · · AND EXTENSIONS

F Put in a modern context we have:

Theorem 12 (Asplund, Theorem 2′) Suppose

T is a multivalued-maximal monotone opera-

tor, D(T ) has non-empty interior and X is re-

flexive Banach space (or Asplund, or X is weak

Asplund and T is bounded).

Then the same decomposition result as in The-

orem 11 holds.

In particular, whenever

coreD(T ) 6= 0,

locally T decomposes as the sum of a convex

subgradient, ∂f , and an acyclically monotone

operator, S.

25



Proof sketch. (In Asplund space with D(T )
open.)

• Replace D(T ) by a generic subset D where
T is single-valued and norm continuous.

• Then, by Asplund’s result

T|D ⊂ (∂f)|D + S|D.

• Now use the fact that T is a minimal cusco
to deduce

T ⊂ ∂f + CUSCO(S|D).

• Finally, S := CUSCO(S|D) is still acyclic.

♥♠♦♣ Maximal monotone operators’ domains/ranges,
local boundedness and outer continuity, etc.
were not well understood when Asplund
died 30 years ago (1974).
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MY SUBGRADIENT CONJECTURES

• So after many years and failures I have the
following Structure Conjectures”

1. All known “nice” monotone classes, M, are
closed under addition of a subgradient:

M+ ∂f ⊂M

2. All these “nice” classes, M, coincide.

3. “Bad” operators can be realized by skew
(linear).

4. “Nice” monotone operator are locally sums
of subgradients and acyclic (often skew lin-
ear) maps.

r In short, subgradients and ’skews’ are ubiq-
uitous.
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CONCLUSIONS and QUESTIONS

Epiphany: Informal is not the same as sloppy:

(www.colab.sfu.ca)

1. ‘de-Zornification’: make Asplund’s decom-
position more explicit or constructive, at
least for special spaces or operators?

2. Are there other interesting variants (e.g.,
conditions on T (‘compact’) or D(T ) (‘small’)?
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GEORGES IFRAH

‘A wealthy (15th Century) German mer-
chant, seeking to provide his son with
a good business education, consulted a
learned man as to which European in-
stitution offered the best training. “If
you only want him to be able to cope
with addition and subtraction,” the ex-
pert replied, “then any French or Ger-
man university will do. But if you are
intent on your son going on to multipli-
cation and division—assuming that he
has sufficient gifts—then you will have
to send him to Italy.” ’

• From page 577 of The Universal History
of Numbers: From Prehistory to the Inven-
tion of the Computer, Wiley, 2000.

• Emphasizing how great an advance posi-
tional notation was.
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