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Abstract

This chapter surveys key concepts in convex duality theory and their application to the
analysis and numerical solution of problem archetypes in imaging.

1 Introduction

An image is worth a thousand words, the joke goes, but takes up a million times the memory. All
the more reason to be efficient when computing with images. Whether one is determining a “best”
image according to some criteria, or applying a “fast” iterative algorithm for processing images, the
theory of optimization and variational analysis lies at the heart of achieving these goals. Success or
failure hinges on the abstract structure of the task at hand. For many practitioners, these details
are secondary: if the picture looks good, it is good. For the specialist in variational analysis and
optimization, however, it is what is went into constructing the image that matters: if it is convex,
it is good.

This chapter surveys more than a half-a-century of work in convex analysis that has played
a fundamental role in the development of computational imaging, and to bring to light as many
of the contributors to this field as possible. There is no shortage of good books on convex and
variational analysis; we point interested readers to the modern references [3, 5, 15, 16, 19, 31, 42,
48, 49, 57, 64, 69, 73, 76, 77, 80, 81, 87]. References focused more on imaging and signal processing,
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but with a decidedly variational flavor, include [2, 24, 79]. For general references on numerical
optimization, see [11,20,26,58,68,85].

For many years the dominant distinction in applied mathematics between problem types has
rested upon linearity, or lack thereof. This categorization still holds sway today with nonlinear
problems largely regarded as “hard” while linear problems are generally considered “easy”. But
since the advent of the interior point revolution [67], at least in linear optimization, it is more or
less agreed that nonconvexity, not nonlinearity, more accurately delineates hard from easy. The
goal of this chapter is to make this case more broadly. Indeed, for convex sets topological, algebraic
and geometric notions often coincide, and so the tools of convex analysis provide not only for a
tremendous synthesis of ideas, but for key insights whose dividends are efficient algorithms for
solving large (infinite dimensional) problems, and indeed even large nonlinear problems.

We consider different instances of a single optimization model. This model accounts for the
vast majority of variational problems appearing in imaging science:

(1.1)
minimize
x∈C⊂X

Iϕ(x)

subject to Ax ∈ D.

Here X and Y are real Banach spaces with continuous duals X∗ and Y ∗, C and D are closed
and convex, A : X → Y is a continuous linear operator, and the integral functional Iϕ(x) :=∫
T ϕ(x(t))µ(dt) is defined on some vector subspace Lp(T, µ) of X for µ a complete totally finite

measure on some measure space T . The integral operator Iϕ is an entropy with integrand ϕ : R →
]−∞,+∞] a closed convex function. This provides an extremely flexible framework that specializes
to most of the instances of interest, and is general enough to extend results to non-Hilbert space
settings. The most common examples are

Burg entropy: ϕ(x) := − ln(x)(1.2)
Shannon-Boltzmann entropy: ϕ(x) := x ln(x)(1.3)

Fermi-Dirac entropy : ϕ(x) := x ln(x) + (1− x) ln(1− x)(1.4)

Lp-norm ϕ(x) :=
‖x‖p

p
(1.5)

Lp entropy ϕ(x) :=

{
xp

p x ≥ 0

+∞ else
(1.6)

total variation ϕ(x) := |∇x|.(1.7)

See [10,13,14,18,22,27,28,37,44,82] for these and other entropies.

There is a rich correspondence between the algorithmic approach to applications implicit in
the variational formulation (1.1) and the prevalent feasibility approach to problems. Here one
considers the problem of finding the point x that lies in the intersection of the constraint sets:

find x ∈ C ∩ S where S := {x ∈ X |Ax ∈ D} .

In the case where the intersection is quite large, one might wish to find the point in the intersection
in some sense closest to a reference point x0 (frequently the origin). It is the job of the objective
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in (1.1) to pick the element of C ∩ S that has the desired properties, that is, to pick the best
approximation. The feasibility formulation suggests very naturally projection algorithms for finding
the intersection whereby one applies the constraints one at a time in some fashion, e.g. cyclically, or
at random [4,26,33,86]. This is quite a powerful framework as it provides a great deal of flexibility
and is amenable to parallelization for large-scale problems. Many of the algorithms for feasibility
problems have counterparts for the more general best approximation problems [5, 8, 39, 60]. For
studies of these algorithms in nonconvex settings see [6, 7, 23, 35, 55, 56, 59–61]. The projection
algorithms that are central to convex feasibility and best approximation problems play a key role
in algorithms for solving the problems we will consider here.

Before detailing specific applications we state a general duality result for problem (1.1) that
motivates many of the tools we use. One of the more central tools we make use of is the Fenchel
conjugate [43] of a mapping f : X → [−∞,+∞] , denoted f∗ : X∗ → [−∞,+∞] and defined by

f∗(x∗) = sup
x∈X

{〈x∗, x〉 − f(x)}.

The conjugate is always convex (as a supremum of affine functions) while f = f∗∗ exactly if f
is convex, proper (not everywhere infinite) and lower semi-continuous (lsc) [19, 42]. Here and
below, unless otherwise specified X is a normed space with dual X∗. The following theorem uses
constraint qualifications involving the concept of the core of a set, the effective domain of a function
(dom f), and the points of continuity of a function (cont f).

Definition 1.1 (core). The core of a set F ⊂ X is defined by x ∈ core F if for each h ∈
{x ∈ X | ‖x‖ = 1}, there exists δ > 0 so that x+ th ∈ F for all 0 ≤ t ≤ δ.

It is clear from the definition that, int F ⊂ core F . If F is a convex subset of a Euclidean space,
or if F is closed, then the core and the interior are identical [15, Theorem 4.1.4].

Theorem 1.2 (Fenchel duality - Theorems 2.3.4 and 4.4.18 of [19]). Let X and Y be Banach
spaces, let f : X → (−∞,+∞] and g : Y → (−∞,+∞] and let A : X → Y be a bounded linear
map. Define the primal and dual values p, d ∈ [−∞,+∞] by the Fenchel problems

p = inf
x∈X

{f(x) + g(Ax)}

d = sup
y∗∈Y ∗

{−f∗(A∗y∗)− g∗(−y∗)}.(1.8)

Then these values satisfy the weak duality inequality p ≥ d.

If f, g are convex and satisfy either

(1.9) 0 ∈ core (dom g −Adom f) with f and g lsc,

or

(1.10) Adom f ∩ cont g 6= Ø,

then p = d, and the supremum to the dual problem is attained if finite.
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Applying Theorem 1.2 to problem (1.1) we have f(x) = Iϕ(x) + ιC(x) and g(y) = ιD(y) where
ιF is the indicator function of the set F :

(1.11) ιF (x) :=

{
0 if x ∈ F
+∞ else.

The tools of convex analysis and the phenomenon of duality are central to formulating, an-
alyzing and solving application problems. Already apparent from the general application above
is the necessity for a calculus of Fenchel conjugation in order to compute the conjugate of sums
of functions. In some specific cases, one can arrive at the same conclusion with less theoretical
overhead, but this is at the cost of missing out on more general structures that are not necessarily
automatic in other settings.

Duality has a long-established place in economics where primal and dual problems have direct
interpretations in the context of the theory of zero-sum games, or where Lagrange multipliers and
dual variables are understood, for instance, as shadow prices. In imaging there is not as often an
easy interplay between the physical interpretation of primal and dual problems. Duality has been
used towards a variety of ends in contemporary image and signal processing, the majority of them,
however, having to do with algorithms [9,17,18,27–29,34,36,38,47,50,62,84]. Nevertheless, the dual
perspective yields new statistical or information theoretic insight into image processing problems, in
addition to faster algorithms. Five main applications illustrate the variational analytical approach
to problem solving: linear inverse problems with convex constraints, compressive imaging, image
denoising and deconvolution, nonlinear inverse scattering, and finally Fredholm integral equations.
We briefly review these applications below. In subsequent sections we develop the tools for their
analysis. At the end of the chapter we revisit these applications in light of the convex analytical
tools collected along the way.

1.1 Linear inverse problems with convex constraints

Let X be a Hilbert space and ϕ(x) := 1
2‖x‖

2. The integral functional Iϕ is the usual L2 norm and
the solution is the closest feasible point to the origin:

(1.12)
minimize
x∈C⊂X

1
2‖x‖

2

subject to Ax = b.

Levi, for instance, used this variational formulation to determine the minimum energy band-
limited signal that matched N measurements b ∈ Rn with the model A : X → Rn [54]. Note
that the signal space is infinite dimensional while the measurement space is finite dimensional, a
common situation in practice. Potter and Arun [70] recognized a much broader applicability of
this variational formulation to remote sensing and medical imaging, and applied duality theory to
characterize solutions to (1.12) by x = PCA

∗(y), where y ∈ Y satisfies b = APCA
∗y [70, Theorem

1]. Particularly attractive is the feature that when Y is finite dimensional, these formulas yield a
finite dimensional approach to an infinite dimensional problem . The numerical algorithm suggested
by Potter and Arun is an iterative procedure in the dual variables:

(1.13) yj+1 = yj + γ(b−APCA
∗yj) j = 0, 1, 2, . . .
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The optimality condition and numerical algorithms are explored at the end of this chapter.

As satisfying as this theory is, there is a crucial assumption in the theorem of Potter and Arun
about the existence of y ∈ Y such that b = APCA

∗y; one need only consider linear least squares
for an example where the primal problem is well-posed but no such y exists [12]. To facilitate
the argument we specialize Theorem 1.2 to the case of linear constraints. The next corollary
is a specialization of Theorem 1.2 where g is the indicator function of the point b in the linear
constraint.

Corollary 1.3 (Fenchel duality for linear constraints). Given any f : X → (−∞,∞] , any bounded
linear map A : X → Y , and any element b ∈ Y , the following weak duality inequality holds:

inf
x∈X

{f(x) |Ax = b} ≥ sup
y∗∈Y ∗

{〈b, y∗〉 − f∗(A∗y∗)}.

If f is lsc and convex and b ∈ core (Adom f), then equality holds and the supremum is attained if
finite.

Suppose that C = X, a Hilbert space and A : X → X . The Fenchel dual to (1.12) is

(1.14) maximize
y∈X

〈y, b〉 − 1
2
‖A∗y‖2.

(The L2 norm is self-dual.) Suppose that the primal problem (1.12) is feasible, that is, b ∈ range(A).
The objective in (1.14) is convex and differentiable, so elementary calculus (Fermat’s rule) yields
the optimal solution y with AA∗y = b, assuming y exists. If the range of A is strictly larger than
that of AA∗, however, it is possible to have b ∈ range(A) but b /∈ range(AA∗), in which case the
optimal solution x to (1.12) is not equal to A∗y, since y is not attained. For a concrete example
see [12, Example 2.1].

1.2 Imaging with missing data

Let X = Rn, and ϕ(x) := ‖x‖p for p = 0 or p = 1. The case p = 1 is the `1 norm, and by ‖x‖0 we
mean the function

‖x‖0 :=
∑
j

| sign(xj)|

where sign(0) := 0. One then has the optimization problem

(1.15)
minimize

x∈Rn
‖x‖p

subject to Ax = b.

This model has received a great deal of attention recently in applications where the number of
measurements is much smaller than the dimension of the signal space, that is b ∈ Rm for m� n.
This problem is well-known in statistics as the missing data problem.

For `1 optimization (p = 1), the seminal work of Candés and Tao establishes probabilistic
criteria for when the solution to (1.15) is unique and exactly matches the true signal x∗ [25].
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Sparsity of the original signal x∗ and the algebraic structure of the matrix A are key requirements.
Convex analysis easily yields a geometric interpretation of these facts. We develop the tools to
show that the dual to this problem is the linear program

(1.16)
maximize

y∈Rm
bT y

subject to (A∗y)j ∈ [−1, 1] j = 1, 2, . . . , n.

Elementary facts from linear programming guarantee that the solution includes a vertex of the
polyhedron described by the constraints, and hence, assuming A is full rank, there can be at most
m active constraints. The number of active constraints in the dual problem provides an upper
bound on the number of nonzero elements in the primal variable – the signal to be recovered.
Unless the number of nonzero elements of x∗ is less than the number of measurements m, there
is no hope of uniquely recovering x∗. The uniqueness of solutions to the primal problem is easily
understood in terms of the geometry of the dual problem, that is, whether or not solutions to the
dual problem reside along the edges or faces of the polyhedron. More refined details about how
sparse x∗ need be in order to have a reasonable hope of exact recovery requires more work, but
elementary convex analysis already provides the essential intuition.

For the function ‖x‖0 (p = 0 in (1.15)) the equivalence of the primal and dual problems is lost
due to the nonconvexity of the objective. The theory of Fenchel duality still yields weak duality,
but this is of limited use in this instance. The Fenchel dual to (1.15) is

(1.17)
maximize

y∈Rm
bT y

subject to (A∗y)j = 0 j = 1, 2, . . . , n.

If we denote the values of the primal (1.15) and dual problems (1.17) by p and d respectively,
then these values satisfy the weak duality inequality p ≥ d. The primal problem is a combinatorial
optimization problem, and hence NP -hard; the dual problem, however, is a linear program, which
is finitely terminating. Relatively elementary variational analysis provides a lower bound on the
sparsity of signals x that satisfy the measurements. In this instance, however, the lower bound
only reconfirms what we already know. Indeed, if A is full rank, then the only solution to the
dual problem is y = 0. In other words, the minimal sparsity of the solution to the primal problem
is zero, which is obvious. The loss of information in passing from primal to dual formulations of
nonconvex problems is a common phenomenon and underscores the importance of convexity.

The Fenchel conjugates of the `1 norm and the function ‖ · ‖0 are given respectively by

ϕ∗1(y) :=

{
0 ‖y‖∞ ≤ 1
+∞ else

(ϕ1(x) := ‖x‖1)(1.18)

ϕ∗0(y) :=

{
0 y = 0
+∞ else

(ϕ0(x) := ‖x‖0)(1.19)

It is not uncommon to consider the function ‖ · ‖0 as the limit of
(∑

j |xj |p
)1/p

as p → 0. We
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present an alternative approach based on regularization of the conjugates. for L and ε > 0 define

ϕε,L(y) :=(1.20) {
ε
(

(L+y) ln(L+y)+(L−y) ln(L−y)
2L ln(2) − ln(L)

ln(2)

)
(y ∈ [−L,L])

+∞ for |y| > L.

This is a scaled and shifted Fermi-Dirac entropy (1.4). It is also a smooth convex function on the
interior of its domain and so elementary calculus can be used to calculate the Fenchel conjugate,

(1.21) ϕ∗ε,L(x) =
ε

ln(2)
ln

(
4xL/ε + 1

)
− xL− ε.

For L > 0 fixed, in the limit as ε→ 0 we have

lim
ε→0

ϕε,L(y) =

{
0 y ∈ [−L,L]
+∞ else

and lim
ε→0

ϕ∗ε,L(x) = L|x|.

For ε > 0 fixed we have

lim
L→0

ϕε,L(x) =

{
0 y = 0
+∞ else

and lim
L→0

ϕ∗ε,L(x) := 0.

Note that ‖ · ‖0 and ϕ∗ε,0 := 0 have the same conjugate, but unlike ‖ · ‖0 the biconjugate of ϕ∗ε,0 is
itself. Also note that ϕε,L and ϕ∗ε,L are convex and smooth on the interior of their domains for all

ε, L > 0. This is in contrast to metrics of the form
(∑

j |xj |p
)

which are nonconvex for p < 1. We
therefore propose solving

(1.22)
minimize

x∈Rn
Iϕ∗ε,L

(x)

subject to Ax = b

as a smooth convex relaxation of the conventional `p optimization for 0 ≤ p ≤ 1.

1.3 Image Denoising and Deconvolution

We consider next problems of the form

(1.23) minimize
x∈X

Iϕ(x) +
1
2λ
‖Ax− y‖2

where X is a Hilbert space, Iϕ : X → (−∞,+∞] is a semi-norm on X, and A : X → Y , is
a bounded linear operator. This problem is explored in [9] as a general framework that includes
total variation minimization [78], wavelet shrinkage [40] and basis pursuit [30]. When A is the
identity, problem (1.23) amounts to a technique for denoising; here y is the received, noisy signal,
and the solution x is an approximation with the desired statistical properties promoted by the
objective Iϕ. When the linear mapping A is not the identity (for instance, A models convolution
against the point spread function of an optical system) problem (1.23) is a variational formulation
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of deconvolution, that is, recovering the true signal from the image y. The focus here is on total
variation minimization.

Total variation was first introduced by Rudin, Osher and Fatemi [78] as a regularization tech-
nique for denoising images while preserving edges and, more precisely, the statistics of the noisy
image. The total variation of an image x ∈ X = L1(T ) – for T and open subset of R2 – is defined
by

ITV (x) := sup
{∫

T
x(t) div ξ(t)dt

∣∣ ξ ∈ C1
c (T,R2), |ξ(t)| ≤ 1 ∀t ∈ T

}
.

The integral functional ITV is finite if and only if the distributional derivative Dx of x is a finite
Radon measure in T , in which case we have ITV (x) = |Dx|(T ). If, moreover, x has a gradient
∇x ∈ L1(T,R2), then ITV (x) =

∫
|∇x(t)|dt, or, in the context of the general framework established

at the beginning of this chapter, ITV (x) = Iϕ(x) where ϕ(x(t)) := |∇x(t)|. The goal of the original
total variation denoising problem proposed in [78] is then to

(1.24)
minimize

x∈X
ITV (x)

subject to
∫
T Ax =

∫
T x0 and

∫
T |Ax− x0|2 = σ2.

The first constraint corresponds to the assumption that the noise has zero mean and the second
assumption requires the denoised image to have a predetermined standard deviation σ. Under
reasonable assumptions [28], this problem is equivalent to the convex optimization problem

(1.25)
minimize

x∈X
ITV (x)

subject to ‖Ax− x0‖2 ≤ σ2.

Several authors have exploited duality in total variation minimization for efficient algorithms to
solve the above problem [27,29,38,47]. One can “compute” the Fenchel conjugate of ITV indirectly
by using the already mentioned property that the biconjugate of a proper, convex lsc function is
the function itself: f∗∗(x) = f(x) if (and only if) f is proper, convex and lsc at x. Rewriting ITV
as the Fenchel conjugate of some function, we have

ITV (x) = sup
v
〈x, v〉 − ιK(v)

where
K := {div ξ | ξ ∈ C1

c (T,R2) and |ξ(t)| ≤ 1 ∀t ∈ T }.

From this it is then clear that the Fenchel conjugate of ITV is the indicator function of the convex
set K, ιK .

In [27] duality is used to develop an algorithm, with proof of convergence, for the problem

(1.26) minimize
x∈X

ITV (x) +
1
2λ
‖x− x0‖2

with X a Hilbert space. First-order optimality conditions for this unconstrained problem are

(1.27) 0 ∈ x− x0 + λ∂ITV (x)
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where ∂ITV (x) is the subdifferential of ITV at x defined by

v ∈ ∂ITV (x) ⇐⇒ ITV (y) ≥ ITV (x) + 〈v, y − x〉 ∀y.

The optimality condition (1.27) is equivalent to [19, Prop. 4.4.5]

(1.28) x ∈ ∂I∗TV ((x0 − x)/λ)

or, since I∗TV = ιK ,
x0

λ
∈

(
I +

1
λ
∂ιK

)
(z)

where z = (x0 − x)/λ. (For the finite dimensional statement see [48, Prop. I.6.1.2].) Since K is
convex, standard facts from convex analysis determine that ∂ιK(z) is the normal cone mapping to
K at z, denoted NK(z) and defined by

NK(z) :=

{
{v ∈ X | 〈v, x− z〉 ≤ 0 for all x ∈ K } z ∈ K
Ø z /∈ K.

Note that this is a set-valued mapping. The resolvent
(
I + 1

λ∂ιK
)−1 evaluated at x0/λ is the

orthogonal projection of x0/λ onto K. That is, the solution to (1.26) is

x∗ = x0 − PK(x0/λ) = x0 − PλK(x0).

The inclusions disappear from the formulation due to convexity of K: the resolvent of the normal
cone mapping of a convex set is single-valued. The numerical algorithm for solving (1.26) then
amounts to an algorithm for computing the projection PλK . We develop below the tools from
convex analysis used in this derivation.

1.4 Inverse scattering

An important problem in applications involving scattering is the determination of the shape and
location of scatterers from measurements of the scattered field at a distance. Modern techniques
for solving this problem use indicator functions to detect the inconsistency or insolubility of an
Fredholm integral equation of the first kind parameterized by points in space. The shape and
location of the object is determined by those points where the auxiliary problem is solvable.
Equivalently, the technique determines the shape and location of the scatterer by determining
whether a sampling function, parameterized by points in space, is in the range of a compact linear
operator constructed from the scattering data.

These methods have enjoyed great practical success since their introduction in the later half of
the 1990’s. Recently Kirsch and Grinberg [51] established a variational interpretation of these ideas.
They observe that the range of a linear operator G : X → Y (X and Y are reflexive Banach spaces)
can be characterized by the infimum of the mapping h(ψ) : Y ∗ → R ∪ {−∞,+∞} := |〈ψ, Fψ〉|,
where F := GSG∗ for S : X∗ → X a coercive bounded linear operator. Specifically, they establish
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Theorem 1.4 (Thoerem 1.16 of [51]). Let X,Y be reflexive Banach spaces with duals X∗ and Y ∗.
Let F : Y ∗ → Y and G : X → Y be bounded linear operators with F = GSG∗ for S : X∗ → X a
bounded linear operator satisfying the coercivity condition

|〈ϕ, Sϕ〉| ≥ c‖ϕ‖2
X∗ for some c > 0 and all ϕ ∈ range(G∗) ⊂ X∗.

Then for any φ ∈ Y \ {0} φ ∈ range(G) if and only if

inf{h(ψ) | ψ ∈ Y ∗, 〈φ, ψ〉 = 1} > 0.

It is shown below that the infimal characterization above is equivalent to the computation of
the effective domain of the Fenchel conjugate of h,

(1.29) h∗(φ) := sup
ψ∈Y ∗

{〈φ, ψ〉 − h(ψ)} .

In the case of scattering, the operator F above is an integral operator whose kernel is made
up of the “measured” field on a surface surrounding the scatterer. When the measurement surface
is a sphere at infinity, the corresponding operator is known as the far field operator. The factor
G maps the boundary condition of the governing PDE (the Helmholtz equation) to the far field
pattern, that is, the kernel of the far field operator. Given the right choice of spaces, the mapping
G is compact, one-to-one and dense. There are two keys to using the above facts for determining
the shape and location of scatterers: first, the construction of the test function φ and, second, the
connection of the range of G to that of some operator easily computed from the far field operator F .
The secret behind the success of these methods in inverse scattering is, first, that the construction
of φ is trivial and, second, that there is (usually) a simpler object to work with than the infimum
in Theorem 1.4 that depends only on the far field operator (usually the only thing that is known).
Indeed, the test functions φ are simply far field patterns due to point sources: φz := e−ikbx·z where
x̂ is a point on the unit sphere (the direction of the incident field), k is a nonnegative integer (the
wavenumber of the incident field), and z is some point in space.

The crucial observation of Kirsch is that φz is in the range of G if and only if z is a point
inside the scatterer. If one does not know where the scatter is, let alone its shape, then one does
not know G, however, the Fenchel conjugate depends not on G but on the operator F which is
constructed from measured data. In general, the Fenchel conjugate, and hence the Kirsch-Grinberg
infimal characterization, is difficult to compute, but depending on the physical setting, there is
a functional U of F under which the ranges of U(F ) and G coincide. In the case where F is a
normal operator, U(F ) = (F ∗F )1/4; for non-normal F the functional U depends more delicately
on the physical problem at hand and is only known in a handful of cases. So the algorithm for
determining the shape and location of a scatterer amounts to determining those points z where
e−ikbx·z is in the range of U(F ) and where U and F are known and easily computed.

1.5 Fredholm integral equations

In the scattering application of the previous section the prevailing numerical technique is not to
calculate the Fenchel conjugate of h(ψ) but rather to explore the range of some functional of F .
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Ultimately, the computation involves solving a Fredholm integral equation of the first kind. This
brings us back to the more general setting with which we began. Let

(Ax)(s) =
∫
T
a(s, t)µ(dt) = b(s)

for reasonable kernels and operators. If A is compact, for instance, as in most deconvolution
problems of interest, the problem is ill-posed in the sense of Hadamard. Some sort of regularization
technique is therefore required for numerical solutions [41,45,46,53,83]. We explore regularization
in relation to the constraint qualifications (1.9) or (1.10).

Formulating the integral equation as an entropy minimization problem we have

(1.30)
minimize

x∈X
Iϕ(x)

subject to Ax = b.

Following [12, Example 2.2], let T and S be the interval [0, 1] with Lebesgue measures µ and
ν, and let a(s, t) be a continuous kernel of the Fredholm operator A mapping X := C([0, 1]) to
Y := C([0, 1]), both equipped with the supremum norm. The adjoint operator is given by A∗y ={∫

S a(s, t)λ(ds)
}
µ(dt) where the dual spaces are the spaces of Borel measures, X∗ = M([0, 1]) and

Y ∗ = M([0, 1]). Every element of the range is therefore µ-absolutely continuous and A∗ can be
viewed as having its range in L1([0, 1], µ). It follows from [75] that the Fenchel dual of (1.30) for
the operator A is therefore

(1.31) max
y∗∈Y ∗

〈b, y∗〉 − Iϕ∗(A∗y∗).

Note that the dual problem, unlike the primal, is unconstrained. Suppose that A is injective and
that b ∈ range(A). Assume also that ϕ∗ is everywhere finite and differentiable. Assuming the
solution y to the dual is attained, then naive application of calculus provides that

(1.32) b = A

(
∂ϕ∗

∂r
(A∗y)

)
and xϕ =

(
∂ϕ∗

∂r
(A∗y)

)
.

Similar to the counterexample explored in subsection 1.1, it is quite likely that A
(
∂ϕ∗

∂r (range(A∗))
)

is smaller than the range of A, hence it is possible to have b ∈ range(A) but not in
A

(
∂ϕ∗

∂r (range(A∗))
)
. Thus the assumption that the solution to the dual problem is attained

cannot hold and the primal-dual relationship is broken.

For a specific example, following [12, Example 2.2], consider the Laplace transform restricted
to [0, 1]: a(s, t) := e−st (s ∈ [0, 1]), and let ϕ be either the Boltzmann-Shannon entropy, Fermi-
Dirac entropy, or an Lp norm with p ∈ (1, 2), equations (1.3)-(1.5) respectively. Take b(s) :=∫
[0,1] e

−stx(t)dt for x := α|t − 1
2 | + β, a solution to (1.30). It can be shown that the restricted

Laplace operator defines an injective linear operator from C([0, 1]) to C([0, 1]). However, xϕ given
by (1.32) is continuously differentiable, and thus cannot match the known solution x which is not
differentiable. Indeed, in the case of the Boltzmann-Shannon entropy, the conjugate function and
A∗y are entire hence the ostensible solution xϕ must be infinitely differentiable on [0, 1]. One
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could guarantee that the solution to the primal problem (1.30) is attained by replacing C([0, 1])
with Lp([0, 1]) , but this does not resolve the problem of attainment in the dual problem.

To recapture the correspondence between primal and dual problems it is necessary to regularize
or, alternatively, relax the problem, or to require the constraint qualification b ∈ core (Adom ϕ).
Such conditions usually require A to be surjective, or at least to have closed range.

2 Background

As this is meant to be a survey of some of the more useful milestones in convex analysis, the focus
is more on the connections between ideas than their proofs. For the proofs we point the reader to
a variety of sources for the sake of diversity. The presentation is by default in a normed space X
with dual X∗, though if statements become too technical we will specialize to Euclidean space. E
denotes a finite-dimensional real vector space Rn for some n ∈ N endowed with the usual norm.
Typically, X will be reserved for a real infinite-dimensional Banach space. A common convention
in convex analysis is to include one or both of −∞ and +∞ in the range of functions (typically
only +∞). This is denoted by the (semi-) closed interval, (−∞,+∞] or [−∞,+∞].

A set C ⊂ X is said to be convex if it contains all line segments between any two points in C:
λx+(1−λ)y ∈ C for all λ ∈ [0, 1] and x, y ∈ C. Much of the theory of convexity is centered on the
analysis of convex sets, however sets and functions are treated interchangeably through the use of
level sets, epigraphs and indicator functions. The lower level sets of a function f : X → [−∞,+∞]
are denoted lev≤α f and defined by lev α f := {x ∈ X | f(x) ≤ α} where α ∈ R. The epigraph of
a function f : X → [−∞,+∞] is defined by

epi f := {(x, t) ∈ E × R | f(x) ≤ t} .

This leads to the very natural definition of a convex function as one whose epigraph is a convex
set. More directly, a convex function is defined as a mapping f : X → [−∞,+∞] with convex
domain and

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) for any x, y ∈ dom f and λ ∈ [0, 1].

A proper convex function f : X → [−∞,+∞] is strictly convex if the above inequality is strict
for all distinct x and y in the domain of f and all 0 < λ < 1. A function is said to be closed if its
epigraph is closed; whereas a lower semi-continuous (lsc) function f satisfies lim infx→x f(x) ≥ f(x)
for all x ∈ X. These properties are in fact equivalent:

Proposition 2.1. The following properties of a function f : X → [−∞,+∞] are equivalent:

(i) f is lsc;

(ii) epi f is closed in X × R;

(iii) the level sets lev≤α f are closed on X for each α ∈ R.

12



Guide. For Euclidean spaces, this is shown in [77, Theorem 1.6]. In the Banach space setting
this is [19, Proposition 4.1.1]. This is left as an exercise for the Hilbert space setting in [32, Exercise
2.1].

Our principal focus is on proper functions, that is f : E → [−∞,+∞] with nonempty domain.
One passes from sets to functions through the indicator function

ιC(x) :=

{
0 x ∈ C
+∞ else.

For C ⊂ X convex, we may refer to f : C → [−∞,+∞] as a convex function if the extended
function

f(x) :=

{
f(x) x ∈ C
+∞ else

is convex.

2.1 Lipschitzian Properties

Convex functions have the remarkable, yet elementary, property that local boundedness and local
Lipschitz properties are equivalent without any additional assumptions on the function. In the
following statement of this fact, we denote the unit ball by BX := {x ∈ X | ‖x‖ ≤ 1}.

Lemma 2.2. Let f : X → (−∞,+∞] be a convex function and suppose that C ⊂ X is a bounded
convex set. If f is bounded on C + δBX for some δ > 0, then f is Lipschitz on C.

Guide. See [19, Lemma 4.1.3].

With this fact, one can easily establish the following.

Proposition 2.3 (convexity and continuity in normed spaces). Let f : X → (−∞,+∞] be proper
and convex, and let x ∈ dom f . The following are equivalent:

(i) f is Lipschitz on some neighborhood of x;

(ii) f is continuous at x;

(iii) f is bounded on a neighborhood of x;

(iv) f is bounded above on a neighborhood of x.

Guide. See [19, Proposition 4.1.4] or [16, Section 4.1.2].

In finite dimensions, convexity and continuity are much more tightly connected.
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Proposition 2.4 (convexity and continuity in Euclidean spaces). Let f : E → (−∞,+∞] be
convex. Then f is locally Lipschitz, and hence continuous, on the interior of its domain.

Guide. See [19, Theorem 2.1.12], or [49, Theorem 3.1.2]

Unlike finite-dimensions, in infinite-dimensions a convex function need not be continuous. A
Hamel basis, for instance – i.e. an algebraic basis for the vector space – can be used to define
discontinuous linear functionals [19, Exercise 4.1.21]. For lsc convex functions, however, the corre-
spondence follows through. The following statement uses the notion of the core of a set given by
Definition 1.1.

Example 2.5 (a discontinuous linear functional). Let c00 denote the normed subspace of all
finitely supported sequences in c0, the vector space of sequences in X converging to 0; obviously
c00 is open. Define Λ : c00 → R by Λ(x) =

∑
xj where x = (xj) ∈ c00. This is clearly a linear

functional, and discontinuous at 0. Now extend Λ to a functional Λ̂ on the Banach space c0 by
taking a basis for c0 considered as a vector space over c00. In particular, C := Λ̂−1([−1, 1]) is a
convex set with empty interior for which 0 is a core point. Moreover, C = c0 and Λ̂ is certainly
discontinuous.

Proposition 2.6 (convexity and continuity in Banach spaces). Suppose X is a Banach space and
f : X → (−∞,+∞] is lsc, proper and convex. Then the following are equivalent

(i) f is continuous at x;

(ii) x ∈ int dom f ;

(iii) x ∈ core dom f .

Guide. This is [19, Theorem 4.1.5]. See also [16, Theorem 4.1.3].

The above result is helpful since it is often easier to verify that a point is in the core of the domain
of a convex function than in the interior.

2.2 Subdifferentials

The analog to the linear function in classical analysis is the sublinear function in convex analysis.
A function f : X → [−∞,+∞] is said to be sublinear if

f(λx+ γy) ≤ λf(x) + γf(y) for all x, y ∈ X and λ, γ ≥ 0.

For this we use the convention that 0 · (+∞) = 0. Sometimes sublinearity is defined as a function
f that is positively homogeneous (of degree 1) – i.e. 0 ∈ dom f and f(λx) = λf(x) for all x and
all λ > 0 – and is subadditive

f(x+ y) ≤ f(x) + f(y) for all x and y.
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Example 2.7 (norms). A norm on a vector space is a sublinear function. Recall that a nonnegative
function ‖ · ‖ on a vector space X is a norm if

(i) ‖x‖ ≥ 0 for each x ∈ X;

(ii) ‖x‖ = 0 if and only if x = 0;

(iii) ‖λx‖ = |λ‖x‖ for every x ∈ X and scalar λ;

(iv) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for every x, y ∈ X.

A normed space is a vector space endowed with such a norm and is called a Banach space if it is
complete which is to say that all Cauchy sequences converge.

Another important sublinear function is the directional derivative of the function f at x in the
direction d defined by

f ′(x; d) := lim
t↘0

f(x+ td)− f(x)
t

whenever this limit exists.

Proposition 2.8 (sublinearity of the directional derivative). Let X be a Banach space and let
f : X → (−∞,+∞] be a convex function. Suppose that x ∈ core (dom f). Then the directional
derivative f ′(x; ·) is everywhere finite and sublinear.

Guide. See [16, Proposition 4.2.4]. For the finite dimensional analog see [49, Proposition
D.1.1.2] or [19, Proposition 2.1.17].

Another important instance of sublinear functions are support functions of convex sets which, in
turn, permit local first order approximations to convex functions. A support function of a nonempty
subset S of the dual space X∗, usually denoted σS , is defined by σS(x) := sup {〈s, x〉 | s ∈ S }.
The support function is convex, proper (not everywhere infinite), and 0 ∈ dom σS .

Example 2.9 (support functions and Fenchel conjugation). From the definition of the support
function it follows immediately that, for a closed convex set C,

ι∗C = σC and ι∗∗C = ιC .

A powerful observation is that any closed sublinear function can be viewed as a support func-
tion. To see this we represent closed convex functions via affine minorants. This is the content of
the Hahn-Banach theorem, which we state in infinite dimensions as we will need this below.
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Theorem 2.10 (Hahn-Banach: analytic form). Let X be a normed space and σ : X → R be
a continuous sublinear function with dom σ = X. Suppose that L is a linear subspace of X and
that the linear function h : L → R is dominated by σ on L, that is σ ≥ h on L. Then there is
a linear function minorizing σ on X, that is, there exists a x∗ ∈ X∗ dominated by σ such that
h(x) = 〈x∗, x〉 ≤ σ(x) for all x ∈ L.

Guide. The proof can be carried out in finite dimensions with elementary tools, constructing
x∗ from h sequentially by one dimensional extensions from L. See [49, Theorem C.3.1.1], [19,
Proposition 2.1.18]. The technique can be extended to Banach spaces using Zorn’s lemma and a
verification that the linear functionals so constructed are continuous (guaranteed by the domination
property) [19, Theorem 4.1.7]. See also and [80, Theorem 1.11].

An important point in the Hahn-Banach extension theorem is the existence of a minorizing
linear function, and hence the existence of the set of linear minorants. In fact, σ is the supremum
of the linear functions minorizing it. In other words, σ is the support function of the nonempty
set

Sσ := {s ∈ X∗ | 〈s, x〉 ≤ σ(x) for all x ∈ X } .

A number of facts follow from Theorem 2.10, in particular the nonemptiness of the subdifferential,
a sandwich theorem and, thence, Fenchel Duality (respectively Theorems 2.14, 2.17 and 3.10). It
turns out that the converse also holds, and thus these facts are actually equivalent to nonemptiness
of the subdifferential. This is the so-called Hahn-Banach/Fenchel duality circle.

As stated in Proposition 2.8, the directional derivative is everywhere finite and sublinear for a
convex function f at points in the core of its domain. In light of the Hahn-Banach theorem, we
then can express f ′(x, ·) for all d ∈ X in terms of its minorizing function:

f ′(x, d) = σS(d) = max
v∈S

{〈v, d〉}.

The set S for which f ′(x, d) is the support function has a special name: the subdifferential of
f at x. It is tempting to define the subdifferential this way, however there is a more elemental
definition that does not rely on directional derivatives or support functions, or indeed even the
convexity of f . We prove the correspondence between directional derivatives of convex functions
and the subdifferential below as a consequence of the Hahn-Banach theorem.

Definition 2.11 (subdifferential). For a function f : X → (−∞,+∞] and a point x ∈ dom f ,
the subdifferential of f at x, denoted ∂f(x) is defined by

∂f(x) := {v ∈ X∗ | v(x)− v(x) ≤ f(x)− f(x), for all x ∈ X } .

when x /∈ dom f we define ∂f(x) = Ø.

In Euclidean space the subdifferential is just

∂f(x) = {v ∈ E | 〈v, x〉 − 〈v, x〉 ≤ f(x)− f(x), for all x ∈ E } .

An element of ∂f(x) is called a subgradient of f at x. See [16,64,77] for more in-depth discussion
of the regular, or limiting subdifferential we have defined here, in addition to other useful varieties.
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This is a generalization of the classical gradient. Just as the gradient need not exist, the subdif-
ferential of a lsc convex function may be empty at some points in its domain. Take, for example,
f(x) = −

√
1− x2 for −1 ≤ x ≤ 1. Then ∂f(x) = Ø for x = ±1.

Example 2.12 (common subdifferentials).

(i) Gradients. A function f : X → R is said to be strictly differentiable at x if

lim
x→x,u→x

f(x)− f(u)−∇f(x)(x− u)
‖x− u‖

= 0.

This is a stronger differentiability property than Fréchet differentiability since it requires
uniformity in pairs of points converging to x. Luckily for convex functions the two notions
agree. If f is convex and strictly differentiable at x, then the subdifferential is exactly
the gradient. (This follows from the equivalence of the subdifferential in Definition 2.11
and the basic limiting subdifferential defined in [64, Definition 1.77] for convex functions,
and [64, Corollary 1.82].) In finite dimensions, at a point x ∈ dom f for f convex, Fréchet and
Gâteaux differentiability coincide, and the subdifferential is a singleton [19, Theorem 2.2.1].
In infinite dimensions, a convex function f that is continuous at x is Gâteaux differentiable
at x if and only if the ∂f(x) is a singleton [19, Corollary 4.2.11].

(ii) The subdifferential of the indicator function.

∂ιC(x) = NC(x)

where C ⊂ X is closed and convex, X is a Banach, and NC(x) ⊂ X∗ is the normal cone
mapping to C at x defined by

(2.1) NC(x) :=

{
{v ∈ X∗ | 〈v, x− x〉 ≤ 0 for all x ∈ C } x ∈ C
Ø x /∈ C.

See (3.6) for alternative definitions and further discussion of this important mapping.

(iii) Absolute value. For x ∈ R,

∂| · |(x) =


−1 x < 0
[−1, 1] x = 0
1 x > 0

The following elementary observation suggests the fundamental significance of subdifferential
in optimization.

Theorem 2.13 (subdifferential at optimality: Fermat’s rule). Let X be a normed space, and let
f : X → (−∞,+∞] be proper and convex. Then f has a (global) minimum at x if and only if
0 ∈ ∂f(x).
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Guide. The first implication of the global result follows from a more general local result
[64, Proposition 1.114] by convexity; the converse statement follows from the definition of the
subdifferential and convexity.

Returning now to the correspondence between the subdifferential and the directional derivative
of a convex function f ′(x; d), on has the following fundamental result.

Theorem 2.14 (max formula - existence of ∂f). Let X be a normed space, d ∈ X and let
f : X → (−∞,+∞] be convex. Suppose that x ∈ cont f . Then ∂f(x) 6= Ø and

f ′(x, d) = max {〈x∗, d〉 |x∗ ∈ ∂f(x)}

Proof. The tools are in place for a simple proof that synthesizes many of the facts tabulated so
far. By Proposition 2.8 f ′(x; ·) is finite so, for fixed d ∈ {x ∈ X | ‖x‖ = 1}, let α = f ′(x; d) <∞.
The stronger assumption that x ∈ cont f and the convexity of f ′(x; ·) yield that the directional
derivative is Lipschitz continuous with constant K. Let S := {td | t ∈ R} and define the linear
function Λ : S → R by Λ(td) := tα for t ∈ R. Then Λ(·) ≤ f ′(x; ·) on S. The Hahn-Banach
theorem 2.10 then guarantees the existence of φ ∈ X∗ such that

φ = Λ on S, φ(·) ≤ f ′(x; ·) on X.

Then φ ∈ ∂f(x) and φ(sd) = f ′(x; sd) for all s ≥ 0.

A simple example on R illustrates the importance of the qualification x ∈ cont f . Let

f(x) : R → (−∞,+∞] :=

{
−
√
x, x ≥ 0

+∞ otherwise.

For this example ∂f(0) = Ø.

An important application of the Max formula in finite dimensions is the mean value theorem
for convex functions.

Theorem 2.15 (convex mean value theorem). Let f : E → (−∞,+∞] be convex and continuous.
For u, v ∈ E there exists a point z ∈ E interior to the line segment [u, v] with

f(u)− f(v) ≤ 〈w, u− v〉 , for all w ∈ ∂f(z).

Guide. See [64,77] for extensions of this result and detailed historical background.

The next theorem is a key tool in developing a subdifferential calculus. It relies on assumptions
that are used frequently enough that we present them separately.

Assumption 2.16. Let X and Y be Banach spaces and let T : X → Y be a bounded linear
mapping. Let f : X → (−∞,+∞] and g : Y → (−∞,+∞] satisfy one of

(2.2) 0 ∈ core (dom g − T dom f) and both f and g are lsc,

or

(2.3) T dom f ∩ cont g 6= Ø.

18



The later assumption can be used in incomplete normed spaces as well.

Theorem 2.17 (sandwich theorem). Let X and Y be Banach spaces and let T : X → Y be a
bounded linear mapping. Suppose that f : X → (−∞,+∞] and g : Y → (−∞,+∞] are proper
convex functions with f ≥ −g ◦ T and which satisfy Assumption 2.16. Then there is an affine
function A : X → R defined by Ax := 〈T ∗y∗, x〉 + r satisfying f ≥ A ≥ −g ◦ T . Moreover, for
any x satisfying f(x) = (−g ◦ T )(x), we have −y∗ ∈ ∂g(Tx).

Guide. By our development to this point, we would use the Max formula [19, Theorem 4.1.18]
to prove the result. For a vector space version see [80, Corollary 2.1]. Another route is via Fenchel
duality which we explore in the next section. A third approach closely related to the Fenchel
duality approach [16, Theorem 4.3.2] is based on a decoupling lemma presented in the next section
(Lemma 3.9).

Corollary 2.18 (basic separation). Let C ⊂ X be a nonempty convex set with nonempty interior
in a normed space, and suppose x0 /∈ intC. Then there exists φ ∈ X∗ \ {0} such that

sup
C
φ ≤ φ(x0) and φ(x) < φ(x0) for all x ∈ intC.

If x0 /∈ C then we may assume supC φ < φ(x0).

Proof. Assume without loss of generality that 0 ∈ int C and apply the sandwich theorem with
f = ι{x0}, T the identity mapping on X and g(x) = inf {r > 0 |x ∈ rC } − 1. See [16, Theorem
4.3.8] and [19, Corollary 4.1.15].

The Hahn-Banach theorem 2.10 can be seen as an easy consequence of the sandwich theorem
2.17, which completes part of the circle. Figure 1 illustrates these ideas

(a) Success (b) Failure

Figure 1: Hahn Banach sandwich theorem and its failure.
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In the next section we will add Fenchel duality to this cycle. Before doing so, we finish with a
calculus of subdifferentials and a few fundamental results connecting the subdifferential to classical
derivatives and monotone operators.

Theorem 2.19 (subdifferential sum rule). Let X and Y be Banach spaces, T : X → Y a bounded
linear mapping and let f : X → (−∞,+∞] and g : Y → (−∞,+∞] be convex functions. Then
at any point x ∈ X we have

∂ (f + g ◦ T ) (x) ⊃ ∂f(x) + T ∗(∂g(Tx)),

with equality if Assumption 2.16 holds.

Proof sketch. The inclusion is clear. Proving equality permits an elegant proof using the
sandwich theorem [19, Theorem 4.1.19], which we sketch here. Take φ ∈ ∂ (f + g ◦ T ) (x) and
assume without loss of generality that

x 7→ f(x) + g(Tx)− φ(x)

attains a minimum of 0 at x. By Theorem 2.17 there is an affine function A := 〈T ∗y∗, ·〉+ r with
−y∗ ∈ ∂g(Tx) such that

f(x)− φ(x) ≥ Ax ≥ −g(Ax).

Equality is attained at x = x. It remains to check that φ+ T ∗y∗ ∈ ∂f(x).

The next result is a useful extension to Proposition 2.3.

Theorem 2.20 (convexity and regularity in normed spaces). Let f : X → (−∞,+∞] be proper
and convex, and let x ∈ dom f . The following are equivalent:

(i) f is Lipschitz on some neighborhood of x;

(ii) f is continuous at x;

(iii) f is bounded on a neighborhood of x;

(iv) f is bounded above on a neighborhood of x.

(v) ∂f maps bounded subsets of X into bounded nonempty subsets of X∗.

Guide. See [19, Theorem 4.1.25].

The next results relate to Example 2.12 and provide additional tools for verifying differentia-
bility of convex functions. The notation →w∗ to denotes weak∗ convergence.

Theorem 2.21 (Šmulian). Let the convex function f be continuous at x.

(i) The following are equivalent:
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(a) f is Fréchet differentiable at x.

(b) For each sequence xn → x and φ ∈ ∂f(x), there exist n ∈ N and φn ∈ ∂f(xn) for n ≥ n
such that φn → φ.

(c) φn → φ whenever φn ∈ ∂f(xn), φ ∈ ∂f(x).

(ii) The following are equivalent:

(a) f is Gâteaux differentiable at x.

(b) For each sequence xn → x and φ ∈ ∂f(x), there exist n ∈ N and φn ∈ ∂f(xn) for n ≥ n
such that φn →w∗ φ.

(c) φn →w∗ φ whenever φn ∈ ∂f(xn), φ ∈ ∂f(x).

A more complete statement of these facts and their provenance can be found in [19, Theorem
4.2.8-9]. In particular, in every infinite dimensional normed space there is a continuous convex
function which is Gâteaux but not Fréchet differentiable at the origin.

An elementary but powerful observation about the subdifferential viewed as a multi-valued
mapping will conclude this section. A multi-valued mapping T from X to X∗ is denoted with
double arrows, T : X ⇒ X∗ . Then T is monotone if

〈v2 − v1, x2 − x1〉 ≥ 0 whenever v1 ∈ T (x1), v2 ∈ T (x2).

Proposition 2.22 (monotonicity and convexity). Let f : X → (−∞,+∞] be proper and convex
on a normed space. Then the subdifferential mapping ∂f : X ⇒ X∗ is monotone.

Proof. Add the subdifferential inequalities in the Definition 2.11 applied to f(x1) and f(x0)
for v1 ∈ ∂f(x1) and v0 ∈ ∂(f(x0).

3 Duality and Convex Analysis

The Fenchel conjugate is to convex analysis what the Fourier transform is to harmonic analysis.
We begin by collecting some basic facts about this fundamental tool.

3.1 Fenchel Conjugation

The Fenchel conjugate, introduced in [43], of a mapping f : X → [−∞,+∞] , as mentioned above
is denoted f∗ : X∗ → [−∞,+∞] and defined by

f∗(x∗) = sup
x∈X

{〈x∗, x〉 − f(x)}.

The conjugate is always convex (as a supremum of affine functions). If the domain of f is nonempty,
then f∗ never takes the value −∞.
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Example 3.1 (important Fenchel conjugates).

(i) Absolute value.

f(x) = |x| (x ∈ R), f∗(y) =

{
0 y ∈ [−1, 1]
+∞ else.

(ii) Lp norms (p > 1).

f(x) =
1
p
‖x‖p (p > 1), f∗(y) =

1
q
‖y‖q

(
1
p + 1

q = 1
)
.

In particular, note that the 2-norm is “self-conjugate”.

(iii) Indicator functions.
f = ιC , f∗ = σC

where σC is the support function of the set C. Note that if C is not closed and convex,
then the conjugate of σC , that is the biconjugate of ιC , is the closed convex hull of C. (See
Proposition 3.3(ii) below.)

(iv) Boltzmann-Shannon entropy.

f(x) =

{
x lnx− x (x > 0)
0 (x = 0)

, f∗(y) = ey (y ∈ R).

(v) Fermi-Dirac entropy.

f(x) =

{
x lnx+ (1− x) ln(1− x) (x ∈ (0, 1))
0 (x = 0, 1)

, f∗(y) = ln(1 + ey) (y ∈ R).

Some useful properties of conjugate functions are tabulated below.

Proposition 3.2 (Fenchel-Young inequality). Let X be a normed space and let f : X →
[−∞,+∞] . Suppose that x∗ ∈ X∗ and x ∈ dom f . Then

(3.1) f(x) + f∗(x∗) ≥ 〈x∗, x〉 .

Equality holds if and only if x∗ ∈ ∂f(x).

Proof sketch. The proof follows by elementary application of the definitions of the Fenchel
conjugate and the subdifferential. See [73] for the finite dimensional case. The same proof works
in the normed space setting.

The conjugate, as the supremum of affine functions, is convex. In the following, we denote the
closure of a function f by f , and we let conv f be the function whose epigraph is the closed convex
hull of the epigraph of f .
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Proposition 3.3. Let X be a normed space and let f : X → [−∞,+∞] .

(i) If f ≥ g then g∗ ≥ f∗.

(ii) f∗ =
(
f
)∗ = (conv f)∗

Proof. The definition of the conjugate immediately implies (i). This immediately yields f∗ ≤(
f
)∗ ≤ (conv f)∗. To show (ii) it remains to show that f∗ ≥ (conv f)∗. Choose any φ ∈ X∗. If

f∗(φ) = +∞ the conclusion is clear, so assume f∗(φ) = α for some α ∈ R. Then φ(x)− f(x) ≤ α
for all x ∈ X. Define g := φ − f . Then g ≤ conv f and, by (i) (conv f)∗ ≤ g∗. But g∗ = α, so
(conv f)∗ ≤ α = f∗(φ).

Application of Fenchel conjugation twice, or biconjugation denoted by f∗∗, is a function on X∗∗.
In certain instances biconjugation is the identity – in this way, the Fenchel conjugate resembles
the Fourier transform. Indeed, Fenchel conjugation plays a role in convex analysis similar to the
Fourier transform in harmonic analysis, and has a contemporaneous provenance dating back to
Legendre.

Proposition 3.4 (biconjugation). Let f : X → (−∞,+∞] , x ∈ X and x∗ ∈ X∗.

(i) f∗∗|X ≤ f .

(ii) If f is convex and proper, then f∗∗(x) = f(x) at x if and only if f is lsc at x. In particular,
f is lsc if and only if f∗∗X = f .

(iii) f∗∗|X = conv f if conv f is proper.

Guide. (i) follows from Fenchel-Young, Theorem 3.2 and the definition of the conjugate. (ii)
follows from (i) and an epi-separation property [19, Proposition 4.4.2]. (iii) follows from (ii) of this
proposition and 3.3(ii).

The next results highlight the relationship between the Fenchel conjugate and the subdifferen-
tial that we have already made use of in (1.28).

Proposition 3.5. Let f : X → (−∞,+∞] be a function and x ∈ dom f . If φ ∈ ∂f(x) then
x ∈ ∂f∗(ψ). If, additionally, f is convex and lsc at x, then the converse holds, namely x ∈ ∂f∗(φ)
implies φ ∈ ∂f(x).

Guide. See [49, Corollary 1.4.4] for the finite dimensional version of this fact that, with some
modification, can be extended to normed spaces.

To close this subsection we introduce infimal convolutions. Among their many applications are
smoothing and approximation—just as is the case for integral convolutions.
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Definition 3.6 (infimal convolution). Let f and g be proper extended real-valued functions on a
normed space X. The infimal convolution of f and g is defined by

(f�g)(x) := inf
y∈X

f(y) + g(x− y).

The infimal convolution of f and g is the largest extended real-valued function whose epigraph
contains the sum of epigraphs of f and g; consequently it is a convex function when f and g are
convex.

The next lemma follows directly from the definitions and careful application of the properties
of suprema and infima.

Lemma 3.7. Let X be a normed space and let f and g be proper functions on X , then (f�g)∗ =
f∗ + g∗.

An important example of infimal convolution is Yosida approximation.

Theorem 3.8 (Yosida approximation). Let f : X → R be convex and bounded on bounded sets.
Then both f�n‖ · ‖2 and f�n‖ · ‖ converge uniformly to f on bounded sets.

Guide. This follows from the above lemma and basic approximation facts.

In the inverse problems literature
(
f�n‖ · ‖2

)
(0) is often referred to as Tikhonov regularization;

elsewhere, f�n‖ · ‖2 is referred to as Moreau-Yosida regularization because f�1
2‖ · ‖

2, the Moreau
envelope, was studied in depth by Moreau [65, 66]. The argmin mapping corresponding to the
Moreau envelope—that is the mapping of x ∈ X to the point y ∈ X at which the value of
f�1

2‖ · ‖
2 is attained—is called the proximal mapping [65, 66,77]

(3.2) proxλ,f (x) := argmin y∈X f(y) +
1
2λ
‖x− y‖2.

When f is the indicator function of a closed convex set C, the proximal mapping is just the metric
projection onto C, denoted by PC(x): proxλ,ιC (x) = PC(x).

3.2 Fenchel duality

Fenchel duality can be proved by Theorem 2.14 and the sandwich theorem 2.17 [19, Theorem
4.4.18]. According to our development, then, this places Fenchel duality as a consequence of the
Hahn-Banach theorem. In order to close the Fenchel duality/Hahn-Banach circle of ideas, however,
following [16] we prove the main duality result of this section using the Fenchel-Young inequality
and the next important lemma.

Lemma 3.9 (decoupling). Let X and Y be Banach spaces and let T : X → Y be a bounded linear
mapping. Suppose that f : X → (−∞,+∞] and g : Y → (−∞,+∞] are proper convex functions
which satisfy Assumption 2.16. Then there is a y∗ ∈ Y ∗ such that for any x ∈ X and y ∈ Y ,

p ≤ (f(x)− 〈y∗, Tx〉) + (g(y) + 〈y∗, y〉) ,

where p := infX{f(x) + g(Tx)}.

24



Guide. Define the perturbed function h : Y → [−∞,+∞] by

h(u) := inf
x∈X

{f(x) + g(Tx+ u)}

which has the property that h is convex, dom h = dom g−T dom f and (the most technical part of
the proof) 0 ∈ int (dom h). This can be proved by assuming the first of the constraint qualifications
(2.2). The second condition (2.3) implies (2.2). Then by Theorem 2.14 we have ∂h(0) 6= Ø, which
guarantees the attainment of a minimum of the perturbed function. The decoupling is achieved
through a particular choice of the perturbation u. See [16, Lemma 4.3.1].

One can now provide an elegant proof of Theorem 1.2, which is restated here for convenience.

Theorem 3.10 (Fenchel duality). Let X and Y be normed spaces, consider the functions f : X →
(−∞,+∞] and g : Y → (−∞,+∞] and let T : X → Y be a bounded linear map. Define the
primal and dual values p, d ∈ [−∞,+∞] by the Fenchel problems

p = inf
x∈X

{f(x) + g(Tx)}(3.3)

d = sup
y∗∈Y ∗

{−f∗(T ∗y∗)− g∗(−y∗)}.(3.4)

These values satisfy the weak duality inequality p ≥ d.

If X,Y are Banach, f, g are convex and satisfy Assumption 2.16 then p = d, and the supremum
to the dual problem is attained if finite.

Proof. Weak duality follows directly from the Fenchel-Young inequality.

For equality assume that p 6= −∞ (this case is clear). Then Assumption 2.16 guarantees that
p < +∞, and by the decoupling lemma (Lemma 3.9) there is a φ ∈ Y ∗ such that for all x ∈ X
and y ∈ Y

p ≤ (f(x)− 〈φ, Tx〉) + (g(y)− 〈−φ, y〉) .

Taking the infimum over all x and then over all y yields

p ≤ −f∗(T ∗, φ)− g∗(−φ) ≤ d ≤ p

hence φ attains the supremum in (3.4), and p = d.

Fenchel duality for linear constraints, Corollary 1.3, follows immediately by taking g := ι{b}.

3.3 Applications

Calculus. Fenchel duality is, in some sense, the dual space representation of the sandwich theorem.
It is a straight forward exercise to derive Fenchel duality from the Theorem 2.17. Conversely, the
existence of a point of attainment in Theorem 3.10 yields an explicit construction of the linear
mapping in Theorem 2.17: A := 〈T ∗φ, ·〉 + r where φ is the point of attainment in (3.4) and
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r ∈ [a, b] where a := infx∈X f(x)− 〈T ∗φ, x〉 and b := supz∈X −g(Tz)− 〈T ∗φ, z〉. One could then
derive all the theorems using the sandwich theorem, in particular the Hahn-Banach theorem 2.10
and the subdifferential sum rule, Theorem 2.19, as consequences of Fenchel duality instead. This
establishes the Hahn-Banach/Fenchel duality circle: each of these facts is equivalent and easily
interderivable with the nonemptiness of the subgradient of a function at a point of continuity.

An immediate consequence of Fenchel duality is a calculus of polar cones. Define the negative
polar cone of a set K in a Banach space X by

(3.5) K− = {x∗ ∈ X∗ | 〈x∗, x〉 ≤ 0 ∀ x ∈ K } .

An important example of a polar cone that we have seen in the applications is the normal cone of
a convex set K at a point x ∈ K, defined by (2.1). Note that

(3.6) NK(x) := (K − x)−

Corollary 3.11 (polar cone calculus). Let X and Y be Banach spaces and K ⊂ X and H ⊂ Y
be cones, and let A : X → Y be a bounded linear map. Then

K− +A∗H− ⊂
(
K +A−1H

)−
where equality holds if K and H are closed convex cones which satisfy H −AK = Y .

This can be used to easily establish the normal cone calculus for closed convex sets C1 and C2 at
a point x ∈ C1 ∩ C2

NC1∩C2(x) ⊃ NC1(x) +NC2(x)

with equality holding if, in addition, 0 ∈ core (C1 − C2) or C1 ∩ int C2 6= Ø.

Optimality Conditions. Another important consequence of these ideas is the Pshenichnyi-
Rockafellar [71,73] condition for optimality for nonsmooth constrained optimization.

Theorem 3.12 (Pshenichnyi-Rockafellar conditions). Let X be a Banach space, let C ⊂ X be
closed and convex, and let f : X → (−∞,+∞] be a convex function. Suppose that either int C ∩
dom f 6= Ø and f is bounded below on C, or C ∩ cont f 6= Ø. Then there is an affine function
α ≤ f with infC f = infC α. Moreover, x is a solution to

(P0)
minimize

x∈X
f(x)

subject to x ∈ C

if and only if
0 ∈ ∂f(x) +NC(x)

Guide. Apply the subdifferential sum rule to f + ιC at x.

A slight generalization extends this to linear constraints

(Plin)
minimize

x∈X
f(x)

subject to Tx ∈ D
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Theorem 3.13 (first-order necessary and sufficient). Let X and Y be Banach spaces with D ⊂ Y
convex, and let f : X → (−∞,+∞] be convex and T : X → Y a bounded linear mapping. Suppose
further that one of the following holds:

(3.7) 0 ∈ core (D − T dom f), D is closed and f is lsc,

or

(3.8) T dom f ∩ int (D) 6= Ø.

Then the feasible set C := {x ∈ X |Tx ∈ D} satisfies

(3.9) ∂(f + ιC)(x) = ∂f(x) + T ∗(ND(Tx)),

and x is a solution to (Plin) if and only if

(3.10) 0 ∈ ∂f(x) + T ∗(ND(Tx)).

A point y∗ ∈ Y ∗ satisfying T ∗y∗ ∈ −∂f(x) in Theorem 3.13 is a Lagrange multiplier.

Lagrangian duality. We limit the setting to Euclidean space and consider the general convex
program

(Pcvx)
minimize

x∈E
f0(x)

subject to fj(x) ≤ 0 (j = 1, 2, . . . ,m)

where the functions fj for j = 0, 1, 2, . . . ,m are convex and satisfy

(3.11)
m⋂
j=0

dom fj 6= Ø.

Define the Lagrangian L : E × Rm
+ → (−∞,+∞] by

L(x, λ) := f0(x) + λTF (x)

where F := (f1, f2, . . . , fm)T . A Lagrange multiplier in this context is a vector λ ∈ Rm
+ for a

feasible solution x if x minimizes the function L(·, λ) over E and λ satisfies the so-called compli-
mentary slackness conditions : λj = 0 whenever fj(x) < 0. On the other hand, if x is feasible for
the convex program (Pcvx) and there is a Lagrange multiplier, then x is optimal. Existence of the
Lagrange multiplier is guaranteed by the following Slater constraint qualification first introduced
in the 1950s.

Assumption 3.14 (Slater constraint qualification). There exists an x̂ ∈ dom f0with fj(x̂) < 0
for j = 1, 2, . . . ,m.

Theorem 3.15 (Lagrangian necessary conditions). Suppose that x ∈ dom f0 is optimal for the
convex program (Pcvx) and that Assumption 3.14 holds. Then there is a Lagrange multiplier vector
for x.
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Guide. See [15, Theorem 3.2.8].

Denote the optimal value of (Pcvx) by p. Note that, since

sup
λ∈Rm

+

L(x, λ) =

{
f(x) if x ∈ dom f

+∞ otherwise,

then

(3.12) p = inf
x∈E

sup
λ∈Rm

+

L(x, λ).

It is natural, then to consider the problem

(3.13) d = sup
λ∈Rm

+

inf
x∈E

L(x, λ)

where d is the dual value. It follows immediately that p ≥ d. The difference between d and p is
called the duality gap. The interesting problem is to determine when the gap is zero, that is when
d = p.

Theorem 3.16 (dual attainment). If Assumption 3.14 holds for the convex programming problem
(Pcvx), then the primal and dual values are equal and the dual value is attained if finite.

Guide. For a more detailed treatment of the theory of Lagrangian duality see [15, Section 4.3]

3.4 Optimality and Lagrange Multipliers

In the previous sections we introduced duality theory via the Hahn-Banach/Fenchel duality circle
of ideas to provide many entry points to the theory of convex and variational analysis. For our
purposes, however, the real significance of duality lies with its power to illuminate duality in convex
optimization, not only as a theoretical phenomenon, but as an algorithmic strategy.

In order to get to optimality criteria and the existence of solutions to convex optimization
problems, we turn our focus to the approximation of minima, or more generally the regularity
and well-posedness of convex optimization problems. Due to its reliance on the Slater constraint
qualification 3.14, Theorem 3.16 is not adequate for problems with equality constraints:

(Peq)
minimize

x∈S
f0(x)

subject to F (x) = 0

for S ⊂ E closed and F : E → Y a Fréchet differentiable mapping between the Euclidean spaces
E and Y .

More generally, we consider problems of the form

(3.14) (PE)
minimize

x∈S
f0(x)

subject to F (x) ∈ D
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for E and Y Euclidean spaces, and S ⊂ E and D ⊂ Y , are convex but not necessarily with
nonempty interior.

Example 3.17 (simple Karush Kuhn-Tucker). For linear optimization problems, relatively ele-
mentary linear algebra is all that is needed to assure the existence of Lagrange multipliers. Consider

(PE)
minimize

x∈S
f0(x)

subject to fj(x) ∈ Dj , j = 1, 2, . . . ,m

for fj : Rn → R (j = 0, 1, 2, . . . , s) continuously differentiable, fj : Rn → R (j = s + 1, . . . ,m)
linear. Suppose S ⊂ E is closed and convex, while Di := (−∞, 0] for j = 1, 2, . . . , s and Dj := {0}
for j = s+ 1, . . . ,m.

Theorem 3.18. Denote by f ′J(x) the submatrix of the Jacobian of (f1, . . . , fs)T (assuming this is
defined at x) consisting only of those f ′j for which fj(x) = 0. In other words, f ′J(x) is the Jacobian
of the active inequality constraints at x. Let x be a local minimizer for (PE) at which fj are
continuously differentiable (j = 0, 1, . . . , s) and the matrix

(3.15)
(
f ′J(x)
A

)
is full-rank where A := (∇fs+1, . . . ,∇fm)T . Then there are λ ∈ Rs and µ ∈ Rm satisfying

λ ≥ 0(3.16a)
(f1(x), . . . , fs(x))λ = 0(3.16b)

f ′0(x) +
s∑
j=1

λjf
′
j(x) + µTA = 0(3.16c)

Guide. An elegant and elementary proof is given in [21].

For more general constraint structure, regularity of the feasible region is essential for the normal
cone calculus which plays a key role in the requisite optimality criteria. More specifically, we
consider the following constraint qualification.

Assumption 3.19 (basic constraint qualification).

y = (0, . . . , 0) is the only solution in ND(F (x)) to 0 ∈ ∇F T (x)y +NS(x)

Theorem 3.20 (optimality on sets with constraint structure). Let

C = {x ∈ S |F (x) ∈ D}

for F = (f1, f2, . . . , fm) : E → Rm with fj continuously differentiable (j = 1, 2, . . . ,m), S ⊂ E
closed, and for D = D1 ×D2 × . . . Dm ⊂ Rm with Dj closed intervals (j = 1, 2, . . . ,m). Then for
any x ∈ C at which Assumption 3.19 is satisfied one has

(3.17) NC(x) = ∇F T (x)ND(F (x)) +NS(x).

If, in addition, f0 is continuously differentiable and x is a locally optimal solution to (PE) then there
is a vector y ∈ ND(F (x)), called a Lagrange multiplier such that 0 ∈ ∇f0(x) +∇F T (x)y+NS(x).

Guide. See [77, Theorems 6.14–6.15].
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3.5 Variational principles

The Slater condition (3.14) is an interiority condition on the solutions to optimization problems.
Interiority is just one type of regularity required of the solutions, wherein one is concerned with
the behavior of solutions under perturbations. The next classical result lays the foundation for
many modern notions of regularity of solutions.

Theorem 3.21 (Ekeland’s variational principle). Let (X, d) be a complete metric space and let
f : X → (−∞,+∞] be a lsc function bounded from below. Suppose that ε > 0 and z ∈ X satisfy

f(z) < inf
X
f + ε.

For a given fixed λ > 0, there exists y ∈ X such that

(i) d(z, y) ≤ λ,

(ii) f(y) + ε
λd(z, y) ≤ f(z), and

(iii) f(x) + ε
λd(x, y) > f(y), for all x ∈ X \ {y}.

Guide. For a proof see [42].

An important application of Ekeland’s variational principle is to the theory of subdifferentials.
Given a function f : X → (−∞,+∞] , a point x0 ∈ dom f and ε ≥ 0, the ε-subdifferential of f at
x0 is defined by

∂εf(x0) = {φ ∈ X∗ | 〈φ, x− x0〉 ≤ f(x)− f(x0) + ε, ∀x ∈ X } .

If x0 /∈ dom f then by convention ∂εf(x0) := Ø. When ε = 0 we have ∂εf(x) = ∂f(x). For ε > 0
the domain of the ε-subdifferential coincides with dom f when f is a proper convex lsc function.

Theorem 3.22 (Brønsted-Rockafellar). Suppose f is a proper lsc convex function on a Banach
space X. Then given any x0 ∈ dom f ,ε > 0, λ > 0 and w0 ∈ ∂εf(x0) there exist x ∈ dom f and
w ∈ X∗ such that

w ∈ ∂f(x), ‖x− x0‖ ≤ ε/λ and ‖w − w0‖ ≤ λ.

In particular, the domain of ∂f is dense in dom f .

Guide. Define g(x) := f(x) − 〈w0, x〉 on X, a proper lsc convex function with the same
domain as f . Then g(x0) ≤ infX g(x) + ε. Apply Theorem 3.21 to yield a nearby point y that is
the minimum of a slightly perturbed function, g(x) + λ‖x− y‖. Define the new function h(x) :=
λ‖x−y‖−g(y) so that h(x) ≤ g(x) for all X. The sandwich theorem 2.17 establishes the existence
of an affine separator α+ φ which is used to construct the desired element of ∂f(x).

A nice application of Ekeland’s variational principle provides an elegant proof of Klee’s problem
in Euclidean spaces [52]: is every C̆ebyc̆ev set C convex? Here a C̆ebyc̆ev set is one with the
property that every point in the space has a unique best approximation in C. A famous result is:
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Theorem 3.23. Every C̆ebyc̆ev set in a Euclidean space is closed and convex.

Guide. Since, for every finite dimensional Banach space with smooth norm, approximately
convex sets are convex, it suffices to show that C is approximately convex, that is, that for every
closed ball disjoint from C there is another closed ball disjoint from C of arbitrarily large radius
containing the first. This follows from the mean value theorem 2.15 and Theorem 3.21 . See [19,
Theorem 3.5.2]. It is not known whether the same holds for Hilbert space.

3.6 Fixed point theory and monotone operators

Another application of Theorem 3.21 is Banach’s fixed point theorem.

Theorem 3.24. Let (X, d) be a complete metric space and let φ : X → X . Suppose there is a
γ ∈ (0, 1) such that d(φ(x), φ(y)) ≤ γd(x, y) for all x, y ∈ X. Then there is a unique fixed point
x ∈ X such that φ(x) = x.

Guide. Define f(x) := d(x, φ(x)). Apply Theorem 3.21 to f with λ = 1 and ε = 1 − γ. The
fixed point x satisfies f(x) + εd(x, x) ≥ f(x) for all x ∈ X.

The next theorem is a celebrated result in convex analysis concerning the maximality of lsc
proper convex functions. A monotone operator T on X is maximal if gphT cannot be enlarged in
X ×X without destroying the monotonicity of T .

Theorem 3.25 (maximal monotonicity of subdifferentials). Let f : X → (−∞,+∞] be a lsc
proper convex function on a Banach space. Then ∂f is maximal monotone.

Guide. The result was first shown by Moreau for Hilbert spaces [66, Proposition 12.b.], and
shortly thereafter extended to Banach spaces by Rockafellar [72,74]. For a modern infinite dimen-
sional proof see [1, 19]. This result fails badly in incomplete normed spaces [19].

Maximal monotonicity of subdifferentials of convex functions lies at the heart of the success
of algorithms as this is equivalent to firm nonexpansiveness of the resolvent of the subdifferential
(I + ∂f)−1 [63]. An operator T is firmly nonexpansive on a closed convex subset C ⊂ X when

(3.18) ‖Tx− Ty‖2 ≤ 〈x− y, Tx− Ty〉 for all x, y ∈ X;

T is just nonexpansive on the closed convex subset C ⊂ X if

(3.19) ‖Tx− Ty‖ ≤ ‖x− y‖ for all x, y ∈ C.

Clearly, all firmly nonexpansive operators are nonexpansive. One of the most longstanding ques-
tions in geometric fixed point theory is whether a nonexpansive self-map T of a closed bounded
convex subset C of a reflexive space X must have a fixed point. This is known to hold in Hilbert
space.
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4 Case Studies

One can now collect the dividends from the analysis outlined above for problems of the form

(4.1)
minimize
x∈C⊂X

Iϕ(x)

subject to Ax ∈ D

where X and Y are real Banach spaces with continuous duals X∗ and Y ∗, C and D are closed
and convex, A : X → Y is a continuous linear operator, and the integral functional Iϕ(x) :=∫
T ϕ(x(t))µ(dt) is defined on some vector subspace Lp(T, µ) of X.

4.1 Linear inverse problems with convex constraints

Suppose X is a Hilbert space, D = {b} ∈ Rm and ϕ(x) := 1
2‖x‖

2. To apply Fenchel duality, we
rewrite (1.12) using the indicator function

(4.2)
minimize

x∈X
1
2‖x‖

2 + ιC(x)

subject to Ax = b.

Note that the problem is posed on an infinite dimensional space, while the constraints (the measure-
ments) are finite dimensional. Here we use of Fenchel duality to transform an infinite dimensional
problem into a finite dimensional problem. Let F := {x ∈ C ⊂ E |Ax = b} and let G denote the
extensible set in E consisting of all measurement vectors b for which F is nonempty. Potter and
Arun show that the existence of y ∈ Rm such that b = APCA

∗y is guaranteed by the constraint
qualification b ∈ ri G where ri denotes the relative interior [70, Corollary 2]. This is a special
case of Assumption 2.16, which here reduces to b ∈

∫
A(C). Though at first glance the latter

condition is more restrictive, it is no real loss of generality since, if it fails, we restrict ourselves
to range(A) which is closed. Then it turns out that b ∈ Aqri C, the image of the quasi-relative
interior of C [15, Exercise 4.1.20]. Assuming this holds, Fenchel duality, Theorem 3.10, yields the
dual problem

(4.3) sup
y∈Rm

〈b, y〉 −
(

1
2‖ · ‖

2 + ιC
)∗ (A∗y)

whose value is equivalent to the value of the primal problem. This is a finite dimensional uncon-
strained convex optimization problem whose solution is characterized by the inclusion (Theorem
2.13)

(4.4) 0 ∈ ∂
(

1
2‖ · ‖

2 + ιC
)∗ (A∗y)− b.

Now from Lemma 3.7, Example 3.1(ii)-(iii) and (3.2),(
1
2‖ · ‖

2 + ιC
)∗ (x) = (σC�1

2‖ · ‖)(x) = inf
z∈X

σC(z) + 1
2‖x− z‖2.

The argmin of the Yosida approximation above (see Theorem 3.8) is the proximal operator (3.2).
Applying the sum rule for differentials, Theorem 2.19 and Proposition 3.5 yields

(4.5) prox1,σC
(x) = argmin z∈X

{
σC(z) + 1

2‖z − x‖2
}

= x− PC(x)
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where PC is the orthogonal projection onto the set C. This together with (4.4) yields the optimal
solution y to (4.3):

(4.6) b = APC(A∗y).

Note that the existence of a solution to (4.6) is guaranteed by Assumption 2.16. This yields the
solution to the primal problem as x = PC(A∗y).

With the help of (4.5), the iteration proposed in [70] can be seen as a subgradient descent
algorithm for solving

inf
y∈Rm

h(y) := σC(A∗y − PC(A∗y)) + 1
2‖PC(A∗y)‖2 − 〈b, y〉 .

The proposed algorithm is, given y0 ∈ Rm, generate the sequence {yn}∞n=0 by

yn+1 = yn − λ∂h(yn) = yn + λ (b−APCA
∗yn) .

For convergence results of this algorithm in a much larger context see [34].

4.2 Imaging with missing data

This application is formally simpler than the previous example since there is no abstract constraint
set. As discussed in subsection 1.2 we consider relaxations to the conventional problem

(4.7)
minimize

x∈Rn
Iϕ∗ε,L

(x)

subject to Ax = b.

where

(4.8) ϕ∗ε,L(x) =
ε

ln(2)
ln

(
4xL/ε + 1

)
− xL− ε.

Using Fenchel duality, the dual to this problem is the concave optimization problem

sup
y∈Rm

yT b− Iϕε,L(A∗y)

where

ϕε,L(x) := ε

(
(L+ x) ln(L+ x) + (L− x) ln(L− x)

2L ln(2)
− ln(L)

ln(2)

)
L, ε > 0x ∈ [−L,L].

If there exists a point y satisfying b = AA∗y, then the optimal value in the dual problem is attained
and the primal solution is given by A∗y. The objective in the dual problem is smooth and convex,
so we could apply any number of efficient unconstrained optimization algorithms. Also, for this
relaxation, the same numerical techniques can be used for all L→ 0.
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4.3 Inverse scattering

Theorem 4.1. Let X,Y be reflexive Banach spaces with duals X∗ and Y ∗. Let F : Y ∗ → Y
and G : X → Y be bounded linear operators with F = GSG∗ for S : X∗ → X a bounded linear
operator satisfying the coercivity condition

|〈ϕ, Sϕ〉| ≥ c‖ϕ‖2
X∗ for some c > 0 and all ϕ ∈ range(G∗) ⊂ X∗.

Define h(ψ) : Y ∗ → (−∞,+∞] := |〈ψ, Fψ〉|, and let h∗ denote the Fenchel conjugate of h. Then
range(G) = dom h∗.

Proof. Following [51, Theorem 1.16], we show that h∗(φ) = ∞ for φ /∈ range(G). To do this
we work with a dense subset of range G: G∗(C) for C := {ψ ∈ Y ∗ | 〈ψ, φ〉 = 0} . It was shown
in [51, Theorem 1.16] that G∗(C) is dense in range(G).

Now by the Hahn-Banach theorem 2.10 there is a φ̂ ∈ Y ∗ such that
〈
φ̂, φ

〉
= 1. Since G∗(C)

is dense in range(G∗) there is a sequence {ψn}∞n=1 ⊂ C with

G∗ψn → −G∗φ̂, n→∞.

Now set ψn := ψ̂n + φ̂. Then 〈φ, αψn〉 = α and G∗(αψn) = αG∗ψn → 0 for any α ∈ R. Using the
factorization of F we have

| 〈ψn, Fψn〉 | = | 〈G∗ψn, SG∗ψn〉 | ≤ ‖S‖‖G∗ψn‖2
X∗

hence α2 〈ψn, Fψn〉 → 0 as n → ∞ for all α, but 〈φ, αψn〉 = α, that is, 〈φ, αψn〉 − h(αψn) → α
and h∗(φ) = ∞.

In the scattering application, we have a scatterer supported on a domain D ⊂ Rm (m = 2 or
3) that is illuminated by an incident field. The Helmholtz equation models the behavior of the
fields on the exterior of the domain and the boundary data belongs to X = H1/2(Γ). On the
sphere at infinity the leading-order behavior of the fields, the so-called far field pattern, lies in
Y = L2(S). The operator mapping the boundary condition to the far field pattern – the data-to-
pattern operator – is G : H1/2(Γ) → L2(S) . Assume that the far field operator F : L2(S) → L2(S)
has the factorization F = GS∗G∗, where S : H−1/2(Γ) → H1/2(Γ) is a single layer boundary
operator defined by

(Sϕ) (x) :=
∫

Γ
Φ(x, y)ϕ(y)ds(y), x ∈ Γ,

for Φ(x, y) the fundamental solution to the Helmholtz equation. With a few results about the
denseness of G and the coercivity of S, which, though standard, we will not go into here, we have
the following application to inverse scattering.

Corollary 4.2 (Application to Inverse Scattering). Let D ⊂ Rm (m = 2 or 3) be an open bounded
domain with connected exterior and boundary Γ. Let G : H1/2(Γ) → L2(S), be the data-to-pattern
operator, S : H−1/2(Γ) → H1/2(Γ) , the single layer boundary operator and let the far field pattern
F : L2(S) → L2(S) have the factorization F = GS∗G∗. Assume k2 is not a Dirichlet eigenvalue
of −4 on D. Then rangeG = dom h∗ where h(ψ) : L2(S) → (−∞,+∞] := |〈ψ, Fψ〉|.
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4.4 Fredholm integral equations

We showed in the introduction the failure of Fenchel duality for Fredholm integral equations. Here
we briefly sketch a result on regularizations, or relaxations, that recovers duality relationships. The
result will show that by introducing a relaxation, we can recover the solution to ill-posed integral
equations as the norm limit of solutions computable from a dual problem of maximum entropy
type.

Theorem 4.3 (Theorem 3.1 of [12]). Let X = L1(T, µ) on a complete measure finite measure
space and let (Y, ‖ · ‖) be a normed space. The infimum infx∈X {Iϕ(x) |Ax = b} is attained when
finite. In the case where it is finite, consider the relaxed problem for ε > 0

(PεMEP )
minimize

x∈X
Iϕ(x)

subject to ‖Ax− b‖ ≤ ε.

Let pε denote the value of (PεMEP ). The value of pε equals dε, the value of the dual problem

(PεDEP ) maximize
y∗∈Y ∗

〈b, y∗〉 − ε‖y∗‖∗ − Iϕ∗(A∗y∗),

and the unique optimal solution of (PεMEP ) is given by

xϕ,ε :=
∂ϕ∗

∂r
(A∗y∗ε )

where y∗ε is any solution to (PεDEP ). Moreover, as ε → 0+, xϕ,ε converges in mean to the unique
solution of (P0

MEP ) and pε → p0.

Guide. Attainment of the infimum in infx∈X {Iϕ(x) |Ax = b} follows from strong convex-
ity of Iϕ [14, 82]: strictly convex with weakly-compact lower level sets and with the Kadec
property, i.e. that weak convergence together with convergence of the function values implies
norm convergence. Let g(y) := ιS(y) for S = {y ∈ Y | b ∈ y + εBY } and rewrite (PεMEP ) as
inf {Iϕ(x) + g(Ax) |x ∈ X }. An elementary calculation shows that the Fenchel dual to (PεMEP )
is (PεDEP ). The relaxed problem (PεMEP ) has a constraint for which a Slater-type constraint qual-
ification holds at any feasible point for the unrelaxed problem. The value dε is thus attained and
equal to pε. Subgradient arguments following [13] show that xϕ,ε is feasible for (PεMEP ) and is
the unique solution to (PεMEP ). Convergence follows from weak compactness of the lower level set
L(p0) := {x | Iϕ(x) ≤ p0 }, which contains the sequence (xϕ,ε)ε>0. Weak convergence of xϕ,ε to the
unique solution to the unrelaxed problem follows from strict convexity of Iϕ. Convergence of the
function values and strong convexity of Iϕ then yields norm convergence.

Notice that the dual in Theorem 4.3 is unconstrained and easier to compute with, especially
when there are finitely many constraints. This theorem remains valid for objectives of the form
Iϕ(x) + 〈x∗, x〉 for x∗ in L∞(T ). This enables one to apply them to many Bregman distances –
that is, integrands of the form φ(x)−φ(x0)−〈φ′(x0), x− x0〉 where φ, is closed and convex on R.
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5 Open Questions

Regrettably, due to space constraints, we have omitted fixed point theory and many facts about
monotone operators that are useful in proving convergence of algorithms. However, it is worthwhile
noting two long-standing problems that impinge on fixed point and monotone operator theory.

(i) Klee’s problem: is every C̆ebyc̆ev set C in a Hilbert space convex?

(ii) Must a nonexpansive self-map T of a closed bounded convex subset C of a reflexive space X
have a fixed point?

6 Conclusion

Duality and convex programming provides powerful techniques for solving a wide range of imaging
problems. While frequently a means toward computational ends, the dual perspective can also yield
new insight into image processing problems and the information content of data implicit in certain
models. Five main applications illustrate the convex analytical approach to problem solving and
the use of duality: linear inverse problems with convex constraints, compressive imaging, image
denoising and deconvolution, nonlinear inverse scattering, and finally Fredholm integral equations.
These are certainly not exhaustive, but serve as good templates. The Hahn-Banach/Fenchel duality
cycle of ideas developed here not only provides a variety of entry points into convex and variational
analysis, but also underscores duality in convex optimization as both a theoretical phenomenon
and an algorithmic strategy.

As readers of this volume will recognize, not all problems of interest are convex. But just as
nonlinear problems are approached numerically by sequences of linear approximations, nonconvex
problems can be approached by sequences of convex approximations. Convexity is the central
organizing principle and has tremendous algorithmic implications, including not only computable
guarantees about solutions, but efficient means towards that end. In particular, convexity im-
plies the existence of implementable, polynomial-time, algorithms. This chapter is meant to be a
foundation for more sophisticated methodologies applied to more complicated problems.

7 Cross References

Readers of the present chapter will find the following chapters of particular interest: Compres-
sive Sensing, Inverse Scattering, Iterative Solution Methods, Numerical Methods for Variational
Approach in Image Analysis, Regularization Methods for Ill-Posed Problems, Total Variation in
Imaging, Variational Approach in Image Analysis, and Variational methods and Shape Spaces.
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