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Abstract

We undertake a thorough investigation of the moments of Ramanujan’s alterna-
tive elliptic integrals and of related hypergeometric functions. Along the way we are
able to give some surprising closed forms for Catalan-related constants and various
new hypergeometric identities.
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1 Introduction and background

As in [7, pp. 178-179], for 0 ≤ s < 1/2 and 0 ≤ k ≤ 1, let

Ks(k) :=
π

2
2F1

(
1
2
− s, 1

2
+ s

1

∣∣∣∣k2) (1)

and

Es(k) :=
π

2
2F1

(
−1

2
− s, 1

2
+ s

1

∣∣∣∣k2) . (2)

We use the standard notation for hypergeometric functions, namely

2F1

(
a, b

c

∣∣∣∣z) :=
∞∑
n=0

(a)n(b)n
(c)n

zn

n!
,
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and its analytic continuation, where (a)n := Γ(a + n)/Γ(a) = a(a + 1) · · · (a + n − 1) is
the rising factorial or Pochhammer symbol ; likewise,

3F2

(
a, b, c

d, e

∣∣∣∣z) :=
∞∑
n=0

(a)n(b)n(c)n
(d)n(e)n

zn

n!
.

One of the key early results, due to Gauss (1812), is the closed form

2F1

(
a, b

c

∣∣∣∣1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

(3)

when Re(c− a− b) > 0.
We are interested in the moments given by

Kn = Kn,s :=

∫ 1

0

knKs(k) dk, En = En,s :=

∫ 1

0

knEs(k) dk. (4)

for both integer and real values of n. We immediately note that Ks = K(−s). Also, Euler’s
transform [3, Eqn. (2.2.7)] and a contiguous relation yield

E(−s) =
4s (1− k2)

2s− 1
Ks +

2s+ 1

2s− 1
Es.

The corresponding integral form of Ks may be obtained by expanding (1 − k2t)s−1/2
and using the identity Γ(1/2− s)Γ(1/2 + s) = π/ cos(πs):

Ks(k) =
cos πs

2

∫ 1

0

ts−1/2

(1− t)1/2+s(1− k2 t)1/2−s
dt (5)

= cos (π s)

∫ π/2

0

tan2s(θ)(
1− k2 sin2 θ

)1/2−s dθ. (6)

The latter has the nice feature of looking like the cleanest classical definition when s = 0.
These and many more forms for Ks, Es can be obtained from http://dlmf.nist.gov/

15.6. There are four values for which these integrals are truly special:

s ∈ Ω :=

{
0,

1

6
,
1

4
,
1

3

}
,

that is, when cos2(πs) is rational.
These are Ramanujan’s alternative elliptic integrals as displayed in [13] and first de-

coded in [7]. A comprehensive study is given in [5] (see also [11] and [2]). These four cases
are all produce modular functions [7, §5.5] and study is currently experiencing a renewal
of interest, especially regarding related elliptic series for 1/π ([6], [7, §5.5] and [8]).

2

http://dlmf.nist.gov/15.6
http://dlmf.nist.gov/15.6


1.1 Reciprocal series for π

Truly novel series for 1/π, based on elliptic integrals, were discovered by Ramanujan
around 1910 [6, 7]. The most famous, with s = 1/4 is:

1

π
=

2
√

2

9801

∞∑
k=0

(4k)! (1103 + 26390k)

(k!)43964k
. (7)

Each term of (7) adds eight correct digits. Gosper used (7) for the computation of a
then-record 17 million digits of π in 1985 — thereby completing the first proof of (7) [7,
Ch. 3]. Shortly thereafter, David and Gregory Chudnovsky found the following variant,
which uses s = 1/3 and lies in the quadratic number field Q(

√
−163) rather than Q(

√
58):

1

π
= 12

∞∑
k=0

(−1)k (6k)! (13591409 + 545140134k)

(3k)! (k!)3 6403203k+3/2
. (8)

Each term of (8) adds 14 correct digits. The brothers used this formula several times, cul-
minating in a 1994 calculation of π to over four billion decimal digits. Their extraordinary
story was told in a prizewinning New Yorker article by Richard Preston. Remarkably, (8)
was used again in late 2009 for the then-record computation of π to 2.7 trillion places. In
consequence, Fabrice Bellard has provided access to two trillion-digit integers whose ratio
is bizarrely close to π. A striking recent series due to Yao, see [16], is

1

π
=

√
15

18

∞∑
n=0

∑n
k=0

(
n
k

)4
(4n+ 1)

36n
. (9)

1.2 Classical results

The coupling equation between Es and Ks is given in [7, p. 178] and can be derived from
the generalized hypergeometric differential equation (see http://dlmf.nist.gov/15.10).
It is

Es = (1− k2)Ks +
k(1− k2)

1 + 2s

d

dk
Ks. (10)

Integrating this by parts leads to

K2,s =
(1 + 2s)E0,s − 2sK0,s

2− 2s
. (11)

In the same fashion, multiplying by kn before integrating the coupling provides a recursion
for Kn+2,s:

Kn+2,s =
(n− 2 s)Kn,s + (1 + 2 s)En,s

n+ 2 (1− s)
. (12)

We also consider the complementary integrals:

K
′s(k) := Ks(

√
1− k2) and E

′s(k) := Es(
√

1− k2).
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The four integrals then satisfy a version of Legendre’s identity,

EsK ′
s

+KsE ′
s −KsK ′

s
=
π

2

cosπs

1 + 2s
(13)

for all 0 ≤ k ≤ 1.
In [7, pp. 198-99] the moments are determined for the classical case of s = 0 which

give the original complete elliptic integrals K and E. These are linked by the equations
(see [7, p. 9])

E = (1− k2)K + k(1− k2)dK

dk
, (14)

which is (10) with s = 0 and

E = K + k
dE

dk
, (15)

from which we derive the following recursions:

Theorem 1 (s = 0) For n = 0, 1, 2, . . .

(a) Kn+2 =
nKn + En
n+ 2

and (b) En =
Kn + 1

n+ 2
. (16)

The recursion holds for real n. Moreover,

K0 = 2G, K1 = 1, (17)

E0 = G+
1

2
, E1 =

2

3
. (18)

Here

G :=
∑
n≥0

(−1)n

(2n+ 1)2
= L−4(2)

is Catalan’s constant whose irrationality is still not proven. This ignorance is part of our
motivation for the current study. Indeed [1] uses this moment as a definition of G!

The current record for computation of G is 31.026 billion decimal digits in 2009.
Computations often use the following central binomial formula due to Ramanujan [7, last
formula] or its recent generalizations [10]:

3

8

∞∑
n=0

1(
2n
n

)
(2n+ 1)2

+
π

8
log(2 +

√
3) = G. (19)

Early in 2011, a string of base-4096 digits of Catalan’s constant beginning at position
10 trillion was computed on an IBM Blue Gene/ P machine as part of a suite of similar
computations [4]. The resulting confirmed base-8 digit string is

34705053774777051122613371620125257327217324522

(each quadruplet of base-8 digits corresponds to one base-4096 digit).

There are various ways to obtain the initial values, and one may also profitably study
fractional moments, see below and [1].
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2 Basic results

We commence in this section with various fundamental representations and evaluations.
Then in section three we provide a generalization of Catalan’s constant arising as the
expectation of Ks. In section four we consider related contour integrals. Finally, in
section five we look at negative and fractional moments.

2.1 Hypergeometric closed forms

A concise closed form for the moments is

Theorem 2 (Hypergeometric forms) For 0 ≤ s < 1
2

we have

Kn,s =
π

2(n+ 1)
3F2

( 1
2
− s, 1

2
+ s, n+1

2

1, n+3
2

∣∣∣∣1) , (20)

En,s =
π

2(n+ 1)
3F2

(
−1

2
− s, 1

2
+ s, n+1

2

1, n+3
2

∣∣∣∣1) . (21)

These hold in the limit for s = 1
2
.

Proof. To establish (20) and (21), we begin with∫ 1

0

xu−1(1− x)v−1 2F1

(
a, 1− a

b

∣∣∣∣x) dx =
∞∑
n=0

(a)n(1− a)n
(b)nn!

∫ 1

0

xn+u−1(1− x)v−1dx

=
∞∑
n=0

(a)n(1− a)n(u)n
(b)n(u+ v)nn!

Γ(u)Γ(v)

Γ(u+ v)

=
Γ(u)Γ(v)

Γ(u+ v)
3F2

(
a, 1− a, u
b, u+ v

∣∣∣∣1) . (22)

Similarly,

Γ(u)Γ(v)

Γ(u+ v)
3F2

(
a,−a, u
b, u+ v

∣∣∣∣1) =

∫ 1

0

xu−1(1− x)v−1 2F1

(
a,−a
b

∣∣∣∣x) dx.

By applying these to (1) and (2) we immediately get (20) and (21). 2

As long as 0 < s < 1/2, the first series (20) is Saalschütztian [14]. That is, the
denominator parameters add to one more than those in the numerator, but is not well
poised, and can be reduced to Gamma functions only for n = ±1 (with n = −1 a pole)
since then it reduces to a 2F1. The second (21) is not even Saalschützian, although it
is nearly well poised (whose definition [14] we do not need) and also can be reduced to
Gamma functions for n = ±1. Thus, for |s| < 1/2 we find

K1,s =
cosπs

1− 4s2
, E1,s =

2

2s+ 3

cosπs

1− 4s2
. (23)

In general we obtain:
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Theorem 3 (Odd moments of Ks) For odd integers 2m+ 1 and m = 0, 1, 2, . . .,

K2m+1,s =
cos πsm!2

4 Γ
(
3
2
− s+m

)
Γ
(
3
2

+ s+m
) m∑
k=0

Γ
(
1
2
− s+ k

)
Γ
(
1
2

+ s+ k
)

k!2
. (24)

Proof. In terms of the Legendre function,

2F1

(
a, 1− a

1

∣∣∣∣z) =: P−a(1− 2z),

where

y = Pν(x) = 2F1

(
−ν, ν + 1

1

∣∣∣∣1− x2

)
is a solution of the differential equation

(1− x2)d2y

dx2
− 2x

dy

dx
+ ν(ν + 1)y = 0.

In consequence we may deduce that

2F1

(
a, 1− a

1

∣∣∣∣z) =
sin πa

π

∞∑
k=0

(a)k(1− a)k
k!2

(1− z)k × (25)

{2Ψ(1 + k)−Ψ(a+ k)−Ψ(1− a+ k)− log(1− z)} ,

where

Ψ(x) :=
Γ′(x)

Γ(x)
=

∫ ∞
0

(
e−t

t
− e−xt

1− e−t

)
dt

is the digamma function, using [12, p. 44, first formula (b = 1− a)].
Now, by integrating the series (25) term-by-term and applying representation (22), we

have

3F2

(
a, 1− a, n
1, n+ 1

∣∣∣∣1) = n

∫ 1

0

zn−12F1

(
a, 1− a

1

∣∣∣∣z) dz

=
n! sinπa

π

∞∑
k=0

(a)k(1− a)k
k!(k + n)!

×

{Ψ(1 + k) + Ψ(n+ 1 + k)−Ψ(a+ k)−Ψ(1− a+ k)} .

We note in passing that this offers an apparently new approach for summing this class of
hypergeometric series; we exploit (22) again in section 5.4.

Thence, for example, by creative telescoping, one finds for any positive integer n that

3F2

(
a, 1− a, n
1, n+ 1

∣∣∣∣1) =
Γ(n) Γ(1 + n)

Γ(a+ n) Γ(1− a+ n)

n−1∑
k=0

(a)k(1− a)k
k!2

. (26)

Now, with n = m+ 1 in (26) we conclude the proof of Theorem 3. 2
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Similarly,

2F1

(
a,−a

1

∣∣∣∣z) =
sin(πa)

πa

{
1− a2

∞∑
k=0

(a+ 1)k(1− a)k
k!(k + 1)!

(1− z)k+1 ×

[Ψ(a+ 1 + k) + Ψ(1− a+ k)−Ψ(k + 1)−Ψ(k + 2) + ln(1− z)]
}
.

For m = 0, Theorem 3 reduces to the evaluation given in (23). In general, it gives
cos(πs) times a rational function. An equivalent, rather pretty, partial fraction decompo-
sition is

K2m+1,s =
cos πs

2

m∑
k=0

m!2

(m− k)!(m+ k + 1)!

(
1

2k + 1− 2s
+

1

2k + 1 + 2s

)
. (27)

This can easily be confirmed inductively, using say (76).
For s = 0 this result originates with Ramanujan. Adamchik [1] reprises its substantial

history and extensions which include a formula due independently to Bailey and Hodgkin-
son in 1931 and which subsumes (26). A special case of Bailey’s formula is

3F2

(
a, b, c+ 1

a+ b+ n

∣∣∣∣1) =
Γ(n)Γ(a+ b+ n)

Γ(a+ n)Γ(b+ n)

n−1∑
k

(a)k(b)k
(c)k(1)k

. (28)

Example 1 (Digamma consequences) For 0 < a < 1/2, consequences are neatly
given using:

γ(ν) :=
1

2

[
Ψ

(
ν + 1

2

)
−Ψ

(ν
2

)]
,

for which

γ

(
1

2

)
=

π

2
, γ

(
1

4

)
=

π√
2
−
√

2 log(
√

2− 1),

γ

(
1

3

)
=

π√
3

+ log 2, γ

(
1

6

)
= π +

√
3 log(2 +

√
3).

More generally,
∞∑
k=0

(a)k(1− a)k(
3
2

)
k
k!

[
Ψ(k + 1) + Ψ

(
k +

3

2

)
−Ψ(k + a)−Ψ(k + 1− a)

]
=

2γ(a)− π csc(πa)

1− 2a
.

This in turn gives

3F2

(
a, 1− a, 1

2

1, 3
2

∣∣∣∣1) =
2 sin(πa)

π(1− 2a)
γ(a)− 1

1− 2a
. (29)

Taking the limit as a→ 1/2 in (29) gives two useful specializations:

(a) 3F2

( 1
2
, 1
2
, 1
2

1, 3
2

∣∣∣∣1) =
4G

π
(30)

(b) Ψ′
(

1

4

)
= π2 + 8G, (31)

with (30) being known but far from obvious. 3
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Example 2 (Odd moments of Es) The corresponding form for E2m+1,s is:

E2m+1,s =
π

4 (m+ 1)

1

Γ(32 + s)Γ(12 − s)
+
π

4

m!

Γ(12 + s)Γ(−1
2 − s)

×

∞∑
k=0

(32 + s)k(
1
2 − s)k

k!(k +m+ 2)!

{
Ψ

(
3

2
+ s+ k

)
+ Ψ

(
1

2
− s+ k

)
−Ψ (k + 1)−Ψ (3 +m+ k)

}
.

This, however, can be replaced by

E2m−1,s =
cosπs

2(s+m) + 1

{
1

2s+ 1
+ (2s+ 1)

m−1∑
k=0

(m− 1)!2

(m− 1− k)!(m+ k)!

2k + 1

(2k + 1)2 − 4s2

}
,

(32)

on combining (24) with (78) below. 3

Example 3 (Other special values) For each s 6= 0 there are also two special values of
r for which Kr,s also reduce to a 2F1. They are obtained by solving r + 3/2 = 1/2 ± s.
This and similar calculations for En,s yield

K(−2±2s),s = − cos πs

(1∓ 2s)2
, (33)

E(−2−2s),s = − 2

(1 + 2 s)

cos (π s)

(1− 2 s)2
, (34)

E(−4−2s),s = − 2

(1 + 2 s)

cos (π s)

(3 + 2 s)2
. (35)

The r-recursions given above in (12) for Kr,s and below in equation (78) for Er,s extend
this to values of r + 2n, for n integral. 3

Example 4 (Alternative moment expansions) We also obtain

K0,s =
cos (π s)

2

∞∑
n=0

(
1
2 + s

)
n

(
1
2 − s

)
n

n!
(
3
2

)
n

×{
Ψ (n+ 1) + Ψ

(
3

2
+ n

)
−Ψ

(
1

2
+ n+ s

)
−Ψ

(
1

2
+ n− s

)}
,

E0,s =
cosπs

2s+ 1
+ cosπs

2s+ 1

6

∞∑
n=0

(
3
2 + s

)
n

(
1
2 − s

)
n

n!
(
5
2

)
n

×{
Ψ (n+ 1) + Ψ

(
5

2
+ n

)
−Ψ

(
3

2
+ n+ s

)
−Ψ

(
1

2
+ n− s

)}
.

3
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2.1.1 Half-integer values of s

For s = m+ 1/2, and m,n = 0, 1, 2 . . . we can obtain a terminating representation

Kn,m+1/2 =
π

2(n+ 1)
3F2

(
−m,m+ 1, n+1

2

1, n+3
2

∣∣∣∣1)
=

(−1)mπ

4

Γ2
(
n+1
2

)
Γ
(
n+1
2
−m

)
Γ
(
n+3
2

+m
) , (36)

and likewise

En,m+1/2 =
π

2

m+1∑
k=0

(−m− 1)k (m+ 1)k
(n+ 1 + 2k) k!2

. (37)

2.2 The complementary integrals

By contrast, the complementary integral moments are somewhat less recondite.

Theorem 4 (Complementary moments) For n = 0, 1, 2, . . . and 0 ≤ s < 1
2

we have

K ′n,s =
π

4

Γ2
(
n+1
2

)
Γ
(
n+2−2s

2

)
Γ
(
n+2+2s

2

) (38)

E ′n,s =
π

2(n+ 1)

Γ2
(
n+3
2

)
Γ
(
n+2−2s

2

)
Γ
(
n+4+2s

2

) . (39)

These hold in the limit for s = 1
2
.

In particular, recursively we obtain for all real n:

(a) K ′n+2,s =
(n+ 1)2

(n+ 2)2 − 4s2
K ′n,s, (b) E ′n,s =

n+ 1

n+ 2 + 2 s
K ′n,s, (40)

where (c) K ′0,s =
π

4

sin (π s)

s
, (d) K ′1,s =

cos πs

1− 4s2
.

Proof. To establish (38) we recall that

Ks′ =
π

2
2F1

(
1
2
− s, 1

2
+ s

1

∣∣∣∣1− k2) , (41)
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and so

K ′n,s =
π

2

∫ 1

0

xn 2F1

(
1
2
− s, 1

2
+ s

1

∣∣∣∣1− x2) dx

=
π

4

∫ 1

0

x
n+1
2
−1

2F1

(
1
2
− s, 1

2
+ s

1

∣∣∣∣1− x) dx

=
π

4

∫ 1

0

(1− x)
n+1
2
−1

2F1

(
1
2
− s, 1

2
+ s

1

∣∣∣∣x) dx

=
π

2(n+ 1)
3F2

( 1
2
− s, 1

2
+ s, 1

1, n+3
2

∣∣∣∣1)
=

π

2(n+ 1)
2F1

( 1
2
− s, 1

2
+ s

n+3
2

∣∣∣∣1) ,
which is summable, by Gauss’ formula (3), to the desired result.

The proof of (39) is similar, and the recursions follow. 2

Example 5 (Complementary closed forms) Thence, with s = 0 and n = 0, 1 we
recover

K
′

0 =
π2

4
, E

′

0 =
π2

8
, K

′

1 = 1, E
′

1 =
2

3
,

as discussed in [7, p. 198]. Correspondingly

K ′0,1/6 =
3π

4
, K ′1,1/6 =

9
√

3

16
, E ′0,1/6 =

9π

28
, K ′1,1/6 =

27
√

3

80
,

K ′0,1/3 =
3
√

3π

8
, K ′1,1/3 =

9

10
, E ′0,1/3 =

9
√

3π

64
, E ′1,1/3 =

27

55
.

We note that π, not π2 appears in these evaluations, since in (40, c), sin(πs)/s → π as
s→ 0. 3

2.2.1 Connecting moments and complementary moments

We first remark that a comparison of Theorems 3 and 4 shows that for all s we have

K ′1,s = K1,s and E ′1,s = E1,s.

The formula∫ 1

0

K (k)
dk

1 + k
=

∫ 1

0

K

(
1− h
1 + h

)
dh

1 + h
=

1

2

∫ 1

0

K ′ (k) dk (42)

is recorded in [7, p. 199]. It is proven by using the quadratic transform [7, Thm 1.2 (b),
p. 12] for the second equality and a substitution for the first. This implies

2
∞∑
n=0

(−1)nKn =
π2

4
= K ′0, (43)
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on appealing to Theorem 4.
The corresponding identity for s = 1/6 is best written∫ 1

0
2F1

(
1
3
, 2
3

1

∣∣∣∣1− t3) dt = 3

∫ 1

0
2F1

(
1
3
, 2
3

1

∣∣∣∣t3) dt

1 + 2 t
, (44)

which follows analogously from the cubic transformation [9, Eqn 2.1] and a change of
variables. This is a beautiful counterpart to (42) especially when the latter is written in
hypergeometric form:∫ 1

0
2F1

(
1
2
, 1
2

1

∣∣∣∣1− k2) dk = 2

∫ 1

0
2F1

(
1
2
, 1
2

1

∣∣∣∣k2) dk

1 + k
. (45)

We further evaluate equation (44) in (99) of section 5.4.
Additionally, [7, p. 188] outlines how to derive∫ 1

0

K(k) dk√
1− k2

= K

(
1√
2

)2

.

Using the same technique, we generalize this to∫ 1

0

Ks(k) dk√
1− k2

= Ks

(
1√
2

)2

=
cos2(πs)

16π
Γ2

(
1 + 2s

4

)
Γ2

(
1− 2s

4

)
. (46)

Here we have used Gauss’ formula (3) for the evaluation

Ks

(
1√
2

)
=

cos πs

4
β

(
1 + 2s

4
,
1− 2s

4

)
.

By the generalized Legendre’s identity (13), which simplifies as the complementary inte-
grals coincide with the original ones at 1/

√
2, we obtain

Es

(
1√
2

)
=
Ks
(

1√
2

)
2

+
π cosπs

4(2s+ 1)Ks( 1√
2
)
.

2.3 Analytic continuation of results

We finish this section by recalling a useful theorem:

Theorem 5 (Carlson (1914)) Let f be analytic in the right half-plane <z ≥ 0 and of
exponential type (meaning that |f(z)| ≤ Mec|z| for some M and c), with the additional
requirement that

|f(z)| ≤Med|z|

for some d < π on the imaginary axis <z = 0. If f(k) = 0 for k = 0, 1, 2, . . . then
f(z) = 0 identically.

Carlson’s dissertation result [15, 5.81] allows us to prove that many of the results in
this paper hold generally as soon as they hold for integer n. For example, the equations
(75) or (76) hold generally as soon as the integral cases hold: once we check growth on
the imaginary axis which is easy for hypergeometric functions. This matter is discussed
at some length in [3, Thm 2.8.1 and sequel] — including an elegant 1941 proof by Selberg
for the case where f is bounded in the right half-plane.

11



3 Closed form initial-values for various s

Many results work for all s (as we have seen) but a few others are more satisfactory when
s ∈ Ω — since these four Ks are the only modular functions ([7, Prop 5.7], [9]) amongst
the generalized elliptic integrals Ks.

Empirically, we discovered an algebraic relation

2(1 + s)E0,s − (1 + 2s)K0,s =
cos πs

1 + 2s
. (47)

Equivalently, we exhibit a parametric series for 1/π:

1

π
=

(1 + 2s)(2 + 2s) 3F2

(
1
2
, 1
2
+s,− 1

2
−s

1, 3
2

∣∣∣∣1)− (1 + 2s)2 3F2

(
1
2
, 1
2
+s, 1

2
−s

1, 3
2

∣∣∣∣1)
2 cos (πs)

.

On using (11) to eliminate E0,s in (47), it becomes

K2,s =
K0,s + cos (π s)

4− 4s2
(48)

which in turn is a special case of (76) with r = 1
2

(as is justified by Carlson’s Theorem 5),
thus proving our empirical observation.

Hence, to resolve all integral values for a given s, we are left with looking for satisfac-
tory representations only for K0,s. We will write

Gs :=
1

2
K0,s =

π

4
3F2

( 1
2
, 1
2
− s, 1

2
+ s

1, 3
2

∣∣∣∣1) .
and call this the associated or generalized Catalan constant. For various reasons, the
results for s = 1/6 are especially interesting. This is the case corresponding to the cubic
AGM [9].

3.1 Evaluation of Gs

From (20) we obtain

K0,s =
π

2
3F2

( 1
2
, 1
2
− s, 1

2
+ s

1, 3
2

∣∣∣∣1) =
cos πs

2

∞∑
n=0

Γ
(
1
2

+ n+ s
)

Γ
(
1
2

+ n− s
)

(2n+ 1) (n!)2

=
cos π s

2

∞∑
n=0

β

(
n+

1

2
− s, n+

1

2
+ s

) (
2n
n

)
2n+ 1

=
cos πs

4

∫ 1

0

arcsin
(
2
√
t− t2

)
t1+s (1− t)1−s

dt

=
cos πs

2

∫ π/2

0

{
tan2s

(
θ

2

)
+ cot2s

(
θ

2

)}
θ

sin θ
dθ.

(49)
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This uses the definition directly, see also [7, Prop 5.6], to attain the first identity after
writing the rising factorials in terms of the β function, whose integral representation we
use here:

β(α, β) =
Γ(α)Γ(β)

Γ(α + β)
=

∫ 1

0

tα−1(1− t)β−1dt.

We exchange integral and sum to arrive at the penultimate integral. Moving the integral
to [−1/2, 1/2] and then making various trig substitutions, we arrive at the final result in
(49). For example, we have

K0,0 =

∫ π/2

0

θ

sin θ
dθ = 2G.

The final equality has various derivations [7, 1]. These include contour integration as
explored in section 4.

If we now make the trigonometric substitution t = tan(θ/2) in (49), and integrate the
two resulting terms separately, we arrive at a central result.

Theorem 6 (Generalized Catalan constants for 0 ≤ s ≤ 1
2
)

K0,s = cos πs

∫ 1

0

(
t2s−1 + t−2s−1

)
arctan t dt

=
cos πs

8s

{
Ψ

(
3− 2s

4

)
+ Ψ

(
1 + 2s

4

)
−Ψ

(
1− 2s

4

)
−Ψ

(
3 + 2s

4

)}
(50)

=
cos πs

4 s

{
Ψ

(
s

2
+

1

4

)
−Ψ

(
s

2
+

3

4

)}
+

π

4 s
= 2Gs. (51)

Note that for s = 0, applying L’Hôpital’s rule to (50) yields

K0,0 =
1

8
Ψ′
(

1

4

)
− 1

8
Ψ′
(

3

4

)
which is precisely 2G.

The digamma expression in (51) simplifies entirely when s ∈ Ω to the forms originally
discovered in the next section. We now obtain complete evaluations for s ∈ Ω, as was our
goal.

Corollary 1 (Generalized Catalan values for s in Ω)

G0 = G, G1/6 =
3

4

√
3 log 2, G1/4 = log

(
1 +
√

2
)
, G1/3 =

3

8

√
3 log

(
2 +
√

3
)
.

(52)

Mathematica, which currently knows more about the Ψ function than Maple, can
evaluate the integral in Theorem 6 symbolically for some s. For example, if s = 1/12,
after simplification we have the very nice expression:

G1/12 = 3
(√

3 + 1
){

log
(√

2− 1
)

+

√
3

2
log
(√

3 +
√

2
)}

.
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More generally, the evaluation requires only knowledge of sin(πs/2), and hence we can
determine which s give a reduction to radicals. As a last example,

G1/5 =
5

8

√
5 + 2

√
5

{√
5− 1

2
arcsinh

(√
5 + 2

√
5

)
− arcsinh

(√
5− 2

√
5

)}
.

3.2 Other generalizations of G

Two other famous representations of G are:

G = −
∫ π/2

0

log

(
2 sin

t

2

)
dt (53)

=

∫ π/2

0

log

(
2 cos

t

2

)
dt (54)

and

G = −
∫ π/2

0

log (tan t) dt, (55)

which easily follows from (53) and (54) . To prove (53) we integrate by parts and obtain

−
∫ π/2

0

log

(
2 sin

t

2

)
dt = 2

∫ π/4

0

t cot t dt− π

4
log 2

= 2

∫ π/4

0
2F1

( 1
2
, 1
2

3
2

∣∣∣∣sin2 t

)
cos t dt− π

4
log 2

= 2

∫ 1/
√
2

0

arcsinx

x
dx− π

4
log 2

=
(
G+

π

4
log 2

)
− π

4
log 2 = G.

The second and third equalities hold since x 2F1

(
1
2
, 1
2

3
2

∣∣∣∣x2) = arcsinx. The final equality

follows on integrating arcsin(x)/x term by term. Inter alia, we have shown that

G =

∫ π/2

0

t

sin t
dt =

∫ π/2

0
2F1

( 1
2
, 1
2

3
2

∣∣∣∣sin2 t

)
dt. (56)

We may generalize (53) or equivalently (56) to:

Proposition 1

Gs =
cos πs

2

∫ π/2

0

tan2s t 2F1

( 1
2
, 1
2
− s
3
2

∣∣∣∣sin2 t

)
dt. (57)
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Proof. We write

Gs =
1

2

∫ 1

0

Ks(k) dk =
π

4

∫ 1

0
2F1

(
1
2
− s, 1

2
+ s

1

∣∣∣∣k2) dk

=
cosπs

4

∫ 1

0

ts−1/2(1− t)−s−1/2 dt

∫ 1

0

(1− k2t)s−1/2 dk

=
cosπs

4

∫ 1

0

ts−1/2(1− t)−s−1/2 2F1

( 1
2
, 1
2
− s
3
2

∣∣∣∣t) dt

=
cosπs

2

∫ π/2

0

tan2s u 2F1

( 1
2
, 1
2
− s
3
2

∣∣∣∣sin2 u

)
du.

2

Note that Theorem 2 gives a series for Gs for 0 ≤ s ≤ 1/2:

4

π
Gs =

∞∑
n=0

(
1
2
− s
)
n

(
1
2

+ s
)
n

(n!)2 (2n+ 1)

= 3F2

( 1
2
, 1
2

+ s, 1
2
− s

1, 3
2

∣∣∣∣1) . (58)

Recalling (29) we recover Theorem 6 in the equivalent form

Gs =
π

4
3F2

( 1
2
− s, 1

2
+ s, 1

2

1, 3
2

∣∣∣∣1) =
cosπs

4s
γ

(
1

2
+ s

)
− π

8s
. (59)

From (58) it is clear that Gs is monotonically decreasing from G to π/4 as s runs from
0 to 1/2. In fact, Gs is concave on [0, 1/2], as illustrated in Figure 1.

Figure 1: (58) plotted on [0, 2].
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4 Contour integrals for K0,s

By contour integration on the infinite rectangle above [0, π/2] we obtain

G0 =
1

2

∫ ∞
0

t

cosh t
dt

=

∫ ∞
0

te−t

1 + e−2t
dt =

∑
n≥0

(−1)n

(2n+ 1)2
= G. (60)

Here we have used the geometric series and integrated term by term the Γ function terms
that we obtain. The final evaluation is definitional.

Done carefully, contour integration over the same rectangle, converting to exponentials,
and then integrating term by term, provides a fine general integral evaluation:

Theorem 7 (Contour integral for Gs) For 0 ≤ s < 1/2 we have

2Gs = K0,s = 22s sin (2πs)

∫ ∞
0

(cosh t)4s − (sinh t)4s

(sinh 2t)2s+1 t dt+

cos (πs)

∫ ∞
0

cos (2 s arctan (sinh t))

cosh t
t dt. (61)

Example 6 (Experimentally obtained evaluations) For s = 1/4, equation (61) be-
comes

K0,1/4 =
√

2

∫ ∞
0

cosh t− sinh t

(sinh 2 t)3/2
t dt+ 2

√
2

∫ ∞
0

cosh t

(cosh 2 t)3/2
t dt, (62)

with numerical value ≈ 1.7627471740392. Here for the first time the specific form of the
root of unity has played a role. Quite remarkably, if we — much as before — convert
the integrand to exponential form and apply the binomial theorem, we obtain Γ function
values which become:

G1/4 =
∞∑
n=0

(
−3

2

n

)
12n+ 8n2 + 5 + (−1)n (2n+ 1)2

8 (n+ 1)2 (2n+ 1)2

= log
(

1 +
√

2
)
. (63)

Having first proven this, we then discovered using the integer relation algorithm PSLQ and
the Maple identify function that:

K0,1/6 =
3

2

√
3 log 2, (64)

with numerical value ≈ 1.8008492007794, and a similar evaluation:

K0,1/3 =
3

2

√
3 log

(
1 +
√

3
)
− 3

4

√
3 log(2), (65)

with numerical value ≈ 1.7107784916770. 3

16



Example 7 (Further integrals) We have discovered additionally, using inverse sym-
bolic computational methods (http://carma.newcastle.edu.au/isc2), that∫ ∞

0

(cosh t)4/3 − (sinh t)4/3

(sinh t cosh t)5/3
t dt =

9

4
log(3),

and ∫ ∞
0

(cosh t)2/3 − (sinh t)2/3

(sinh t cosh t)4/3
t dt =

3

2
log

(
27

16

)
.

In light of Corollary 1 these are now proven. 3

4.1 Contour integral based series for K0,s

Let us write

K0,s = sin (2πs)S(s) + cos (πs)C(s) (66)

where

S(s) := 22s

∫ ∞
0

(cosh t)4s − (sinh t)4s

(sinh 2t)2s+1 t dt (67)

C(s) :=

∫ ∞
0

cos (2 s arctan (sinh t))

cosh t
t dt. (68)

To evaluate S(s) we make a substitution u = tanh(t). We obtain

S(s) =
1

2

∫ 1

0
(u−2s−1 − u2s−1) arctanh(u) du

=
−1

8s

(
2γ + 4 log(2) + Ψ

(
1

2
− s
)

+ Ψ

(
1

2
+ s

))
. (69)

Here γ denotes the Euler-Mascheroni constant.
To evaluate C(s) we note that

cos (2 s arctan (sinh t)) = cos (2 s arcsin (tanh t)) = 2F1

(
s,−s

1
2

∣∣∣∣tanh2 t

)
(70)

and so we obtain a converging (finite if s = 0) series

C(s) =

∫ ∞
0

cos (2 s arctan (sinh t))

cosh t
t dt =

∞∑
n=0

(s)n (−s)n(
1
2

)
n

τn
n!

where

τn :=

∫ ∞
0

x2n

(1 + x2)n+1 arcsinh(x) dx, (71)
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and where we have expanded termwise. Moreover,

τm+2 =
(13 + 8m2 + 20m) τm+1 − 2 (m+ 1) (2m+ 1) τm

2 (m+ 2) (2m+ 3)
(72)

where τ0 = K0 = 2G and τ1 = E0 = G+ 1
2
. In particular C(0) = 2G.

A closed form for τn is easily obtained. It is

τn = β

(
n+

1

2
,
1

2

){
2G

π
+

1

4

n∑
k=1

Γ (k)2

Γ
(
k + 1

2

)2
}
. (73)

Collecting up evaluations, we deduce that

K0,s = sin (2π s)

{
−1

8s

(
2γ + 4 log(2) + Ψ

(
1

2
− s
)

+ Ψ

(
1

2
+ s

))}
+

sin(2π s)

πs

{
G− π

∞∑
k=0

Γ (k + s+ 1) Γ (k − s+ 1)− k!2

8 Γ
(
k + 3

2

)2
}
,

since on interchanging order of summation

π

4
cos (πs)

∞∑
n=1

(s)n (−s)n
n!2

n∑
k=1

Γ (k)2

Γ
(
k + 1

2

)2 = −sin 2π s

8s

∞∑
k=1

Γ (k + s) Γ (k − s)− Γ(k)2

Γ
(
k + 1

2

)2 .

This ultimately yields:

Theorem 8 (Contour series for Gs)

Gs =
sin 2πs

16s

( ∞∑
k=1

Γ(k)2 − Γ(k + s)Γ(k − s)
Γ
(
k + 1

2

)2 + 2Ψ

(
1

2

)
− 2Ψ

(
s+

1

2

)
+ π tan(πs) +

8G

π

)
.

(74)

Example 8 (A related series) Note for s = 0 we obtain precisely G0 = G as all other
terms in (74) are zero. Comparing, (74) to (50) leads to a closed form for the infinite
series Q(s) given by

Q(s) :=
∞∑
k=1

Γ (k + s) Γ (k − s)− Γ(k)2

Γ
(
k + 1

2

)2
=

8

π

∫ π/4

0

(tan t)2 s + (cot t)2 s − 2

cos 2t
t dt

=
8

π

∫ 1

0

(xs − x−s)2

1− x2
arctanx dx.

The integrals above are obtained much as in the derivation of (74). For example,

Q

(
1

4

)
=

8G

π
− 4 log

(
1 +

1√
2

)
,

and there other nice evaluations. 3
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5 Closed forms at negative integers

We observe that (20) and (21) give analytic continuations which allow us to study negative
moments. In [1] Adamchik studies such moments of K.

5.1 Negative moments

Adamchik’s starting point is the study of Kn = Kn,0 for which Ramanujan appears to
have known that

(2r + 1)2K2r+1 − (2r)2K2r−1 = 1, (75)

for < r > −1/2. For integer r this is a direct consequence of (24).
Experimentally, we found the following extension for general s by using integer relation

methods with s := 1/n to determine the coefficients:(
(2r + 1)2 − 4s2

)
K2r+1,s − (2r)2K2r−1,s = cosπs. (76)

For integer r this is established as follows — the general case then follows by Carlson’s
Theorem 5. Using (24) and the functional relation for the Γ function, we have:(

(2r + 1)2 − 4s2
)
K2r+1,s − 4r2K2r−1,s

=
π (r!)2

Γ(1
2

+ r − s)Γ(1
2

+ r + s)

{
r∑

k=0

(1
2
− s)k(12 + s)k

(k!)2
−

r−1∑
k=0

(1
2
− s)k(12 + s)k

(k!)2

}

=
π (r!)2

Γ(1
2

+ r − s)Γ(1
2

+ r + s)

(1
2
− s)r(12 + s)r

(r!)2

=
π

Γ(1
2
− s)Γ(1

2
+ s)

= cos(πs).

From (76) by creative telescoping one again deduces

K2n+1,s =
cos πs

4

n!2

Γ
(
n+ 3

2
+ s
)

Γ
(
n+ 3

2
− s
) n∑

k=0

Γ
(
k + 1

2
+ s
)

Γ
(
k + 1

2
− s
)

k!2
. (77)

This provides another proof of Theorem 3.
Equation (12), when combined with (76), implies

En,s =
(2s+ 1)2Kn,s + cos πs

(2s+ 1)(2s+ n+ 2)
, (78)

which extends (16) and completes the proof in Example 2.
Adamchik also develops a reflection formula which in our terms is

K∗−1−2r +K2r = − π

42r

(
2r

r

)2

{log 2 +Hr −H2r} (79)
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for r = 0, 1, 2, . . .. Here

K∗−1−2r := lim
t→r

{
K−1−2t −

(
2n
n

)2
42n+1

π

t− r

}
. (80)

Note that, as examined in Theorem 9 of the next subsection, K∗−2r−1 removes the singu-
larity at −2r − 1. Hence, it can be written as an infinite sum [1].

Example 9 (Terminating sums) While studying [1] we found the following results.

1. For 0 < a ≤ 1

3F2

(
1
2
, 1
2
, a

1, 1 + a

∣∣∣∣1) =
4a

π
3F2

(
1, 1, 1− a

3
2
, 3
2

∣∣∣∣1) . (81)

In particular when a = 1/2 then

3F2

( 1
2
, 1
2
, 1
2

1, 3
2

∣∣∣∣1) =
2

π
3F2

(
1, 1, 1

2
3
2
, 3
2

∣∣∣∣1) =
4

π
G, (82)

3F2

( 3
4
, 1, 1
3
2
, 3
2

∣∣∣∣1) =
Γ4(1/4)

16π
. (83)

2. Moreover, for n = 1, 2, 3, . . .

3F2

(
1
2
, 1
2
, n

1, 1 + n

∣∣∣∣1) (84)

always terminates. For example,

3F2

(
1
2
, 1
2
, 1

1, 2

∣∣∣∣1) =
4

π
, 3F2

(
1
2
, 1
2
, 2

1, 3

∣∣∣∣1) =
40

9π
. (85)

3. Also for n = 1, 2, . . .

(2n+ 1)2 3F2

(
1, 1,−n

3
2
, 3
2

∣∣∣∣1) − 4n2
3F2

(
1, 1, 1− n

3
2
, 3
2

∣∣∣∣1) = 1, (86)

3F2

(
1, 1, 1− n

3
2
, 3
2

∣∣∣∣1) =
42n−1

n2
(
2n
n

)2 n−1∑
k=0

(
2k
k

)2
42k

, (87)

and

3F2

(
1, 1, 1

2
− n

3
2
, 3
2

∣∣∣∣1) =

(
2n
n

)2
42n

{
2G+

n−1∑
k=0

42k(
2k
k

)2
(2k + 1)2

}
. (88)
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4. For 0 < a ≤ 1 and n = 1, 2, . . .

3F2

(
1, 1, 1− n− a

3
2
, 3
2

∣∣∣∣1) =
(a)2n

(a+ 1
2
)2n

{
3F2

(
1, 1, 1− a

3
2
, 3
2

∣∣∣∣1)+
1

4 a2

n−1∑
k=0

(a+ 1
2
)2k

(a+ 1)2k

}
,

(89)

and

3F2

(
1, 1,−a

3
2
, 3
2

∣∣∣∣1) =

(
2a

2a+ 1

)2

3F2

(
1, 1, 1− a

3
2
, 3
2

∣∣∣∣1)+
1

(2a+ 1)2
. (90)

5. Finally

n∑
k=0

(−1)k
k!

Γ2(k + 3
2
)(n− k)!

=
n!

πΓ2(n+ 3
2
)

n∑
k=0

Γ2(k + 1
2
)

(k!)2
. (91)

3

5.2 Analyticity of K·,s for 0 ≤ s < 1/2

The analytic structure of r 7→ Kr,s is similar qualitatively for all values of s. This is
illustrated in Figure 2 for s = 1/3 and s = 1/π both superimposed on s = 0 (red). In all
cases there are simple poles at odd negative integers with computable residues.

Theorem 9 (Poles of K·,s) Let Rn,s denote the residue of K·,s at r = −2n+ 1. Then

(a) Rn+1,s =

(
n− 1

2

)2 − s2
n2

Rn,s, (b) R1,s =
π

2
. (92)

Explicitly

(c) Rn,s =
cos πsΓ

(
n− 1

2
+ s
)

Γ
(
n− 1

2
− s
)

2 Γ2(n)
. (93)

Proof. Recursion (92, a) follows from multiplying (76) by 2(r+n) = (2r+1)−(1−2n) =
(2r − 1)− (−2n− 1) and computing the limits as r → −n.

Directly from Theorem 2, we have the

R1,s =
π

2
lim
r→−1

r + 1

r + 1
3F2

( 1
2
− s, 1

2
+ s, r+1

2

1, r+3
2

∣∣∣∣1) =
π

2
,

which is (b); part (c) follows easily as a telescoping product. 2
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(a) s = 0, 1/π (b) s = 0, 1/3

Figure 2: r 7→ Kr,s analytically continued to the real line.

5.3 Other rational values of s

Generally, directly integrating (1) or appealing to Theorem 2 yields the Saalschützian
evaluation:

K(−1/2),s = π 3F2

( 1
2

+ s, 1
2
− s, 1

4

1, 5
4

∣∣∣∣1) . (94)

For s = 0 only, K−1/2,s reduces to a case of Dixon’s theorem [14, Eqn. (2.3.3.5)] and yields

K(−1/2),0 =
Γ
(
1
4

)4
16π

, (95)

a result known to Ramanujan. Indeed, the two relevant specializations of Dixon’s theorem
are

3F2

( 1
2

+ s, 1
2
− s, 1

4

1− 2s, 5
4
s− 1

∣∣∣∣1) =
Γ
(
5
4
− 1

2
s
)

Γ
(
1
2
− 3

2
s
)

Γ (1− 2 s) Γ
(
5
4
− s
)

Γ
(
3
2
− s
)

Γ
(
3
4
− 2 s

)
Γ
(
3
4
− 3

2
s
)

Γ
(
1− 1

2
s
)

and more pleasingly,

3F2

( 1
4
, 1
2
− s, 1

2
+ s

3
4

+ s, 3
4
− s

∣∣∣∣1) =

√
2π

Γ2
(
5
8

) Γ
(
3
4

+ s
)

Γ
(
3
4
− s
)

Γ
(
5
8

+ s
)

Γ
(
5
8
− s
) .

In the same way, we should like to be able to evaluate K−1/3,1/6 and K ′−1/3,1/6 or
equivalently

H0 =
π

2

∫ 1

0
2F1

(
1
3
, 2
3

1

∣∣∣∣t3) dt and H∗0 =
π

2

∫ 1

0
2F1

(
1
3
, 2
3

1

∣∣∣∣1− t3) dt, (96)

respectively. So far we have met with partial success, see (97) and (99) below.
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5.4 Moments with respect to t3 instead

To evaluate H∗0 we first write

H∗0 =
π

6

∫ 1

0

x−
2
3 2F1

(
π
6
, 2
3

1

∣∣∣∣1− x) dx =
π

6

∫ 1

0

(1− x)−
2
3 2F1

(
1
3
, 2
3

1

∣∣∣∣x) dx.

Now the integral (22) shows this is π
2 3F2

(
1
3
, 2
3
,1

2
3
, 4
3

∣∣∣∣1) = π
2 2F1

(
1
3
,1
4
3

∣∣∣∣1) . By Gauss’ formula

(3) we arrive at

H∗0 =
π

2

Γ(4
3
)Γ(1

3
)

Γ(2
3
)

=

√
3

12
Γ3

(
1

3

)
. (97)

This also follows directly from the analytic continuation of the formula in (38) of Theorem
4. Similarly,

H0 =
π

6

∫ 1

0

x−
2
3 2F1

(
1
3
, 2
3

1

∣∣∣∣x) dx =
π

3
3F2

( 1
3
, 1
3
, 2
3

1, 4
3

∣∣∣∣1) .
If we use Bailey’s identity:

3F2

(
a, b, c

d, e

∣∣∣∣1) =
Γ(d)Γ(e)

Γ(a)

Γ(s)

Γ(b+ s)Γ(c+ s)
3F2

(
d− a, e− a, s
s+ b, s+ c

∣∣∣∣1)
for s = d + e − a − b − c, when Re(s > 0), Re(a) > 0 [14, Eqn. (2.3.3.7)], this can be
transformed to

H0 =
π

6

Γ2(1
3
)

Γ(2
3
)
− 3
√

3

16
3F2

(
1, 1, 1
5
3
, 5
3

∣∣∣∣1)
which seems more promising. Next, applying (16.4.11) in the Digital Library of Math
Functions

3F2

(
a, b, c

d, e

∣∣∣∣1) =
Γ(e)Γ(d+ e− a− b− c)
Γ(e− a)Γ(d+ e− b− c)3

F2

(
a, d− b, d− c
d, d+ e− b− c

∣∣∣∣1) ,
we arrive at

H0 =
π

6

Γ2(1
3
)

Γ(2
3
)
− 3
√

3

4

∞∑
n=1

∏n
k=1

3 k−1
3 k+1

3n+ 2
, (98)

while

G =
∞∑
n=0

∏n
k=1

1−2 k
1+2 k

2n+ 1
.

Finally, we also arrive at a reworking of equation (44):

3
∞∑
k=0

(−2)nHn = 3H∗0 =

√
3

4
Γ3

(
1

3

)
, (99)

as a companion to (43).

23



6 Conclusion and open questions

Another impetus for this study was a query from Roberto Tauraso regarding whether, for
integer m = 0, 1, 2, . . ., one can find closed forms for

T (m, s) :=
∞∑
k=1

(1
2

+ s)k (1
2
− s)k

(1)2k

1

km
. (100)

We are able to write, more generally, that

T (m, s, α) :=
∞∑
k=1

(1
2

+ s)k (1
2
− s)k

(1)2k

1

(k + α)m
(101)

=
1
4
− s2

(α + 1)m
m+2Fm+1

(
3
2

+ s, 3
2
− s, α + 1, · · · , α + 1

2, α + 2, · · · , α + 2

∣∣∣∣1) . (102)

• Sad to say, we have nothing better to provide than the hypergeometric form of (102).

• We should also very much like to know if one can evaluate the cubic moment
H0 = 2

3
K−1/3,1/6 other than in (96), (98) as we were able to do for K−1/2,0. Both

reduce to evaluation of cases of π
1+2s 3F2

(
1
2
−s, 1

2
+s s

2
+ 1

4

1, s
2
+ 5

4

∣∣∣∣1) (s = 0, 1/6).

• Are there other non-trivial explicit fractional evaluations?

• What is the correct s-generalization of the reflection formula (80)?

• Finally, how do the connection results of (43), (99) generalize?

Acknowledgments. We want to thank Roberto Tauraso for posing a question about
Gs which lead to this research.

References

[1] V. Adamchik, “A certain series associate with Catalan’s constant.” Z. Anal. Anwen-
dungen 21 (2002), no. 3, 817–826.

[2] G. D. Anderson, S.-L Qui, M. K. Vamanamurthy, M. Vuorinen, “Generalized elliptic
integrals and modular equations.” Pacific J. Math., 192 (2000), no. 1, 1–37.

[3] G. E. Andrews , R. Askey and R. Roy, Special Functions. Cambridge Univ. Press,
1999.

[4] D.H. Bailey, J.M. Borwein, A. Mattingly, and G. Wightwick, “The Computation of
Previously Inaccessible Digits of π2 and Catalan’s Constant.” Prepared for Notices
of the AMS, April 2011.

24



[5] B.C. Berndt, S. Bhargava, F.G. Garvan, “Ramanujan’s theories of elliptic functions
to alternative bases.” Trans. Amer. Math. Soc., 347 (1995), 4163–4244.

[6] N. Baruah, B. C. Berndt and H. H. Chan, “Ramanujan’s series for 1/π: a survey.”
Amer. Math. Monthly 116 (2009), no. 7, 567–587.

[7] J.M. Borwein and P. B. Borwein, Pi and the AGM: A Study in Analytic Number
Theory and Computational Complexity. (John Wiley, New York, 1987, reprinted 1988,
1996, Chinese edition 1995, paperback 1998).

[8] J.M. Borwein, P.B. Borwein, and D.H. Bailey, “Ramanujan, modular equations and
pi or how to compute a billion digits of pi.” Amer. Math Monthly, 96 (1989), 201–219.

[9] J.M. Borwein and P.B. Borwein, “A cubic counterpart of Jacobi’s identity and the
AGM.” Trans. Amer. Math. Soc., 323 (1991), 691–701.

[10] D. Bradley, “A class of series acceleration formulae for Catalan’s constant.” Ramanu-
jan J. 3 (1999), 159–173.

[11] V. Heikkala, M. K. Vamanamurthy, and M. Vuorinen, “Generalized elliptic integrals.”
Comput. Methods Funct. Theory, 9 (2009), no. 1, 75–109.

[12] W. Magnus, F. Oberhettinger and R.P. Soni, Formulas and Theorems for the Special
Functions of Mathematical Physics. Springer-Verlag, 1966.

[13] S. Ramanujan, “Modular Equations and Approximations to π.” Quart. J. Math. 45
(1914), 350–372.

[14] L. J. Slater, Generalized Hypergeometric Functions. Cambridge Univ. Press, 1966.

[15] E. Titchmarsh, The Theory of Functions. Oxford Univ. Press, 2nd edition, 1939.

[16] W. Zudilin. “Ramanujan-type formulae for 1/π: a second wind? Modular forms
and string duality.” Pages 179188, in Fields Inst. Commun., 54, Amer. Math. Soc.,
Providence, RI, 2008.

25


	Introduction and background
	Reciprocal series for 
	Classical results

	Basic results
	Hypergeometric closed forms
	Half-integer values of s

	The complementary integrals
	Connecting moments and complementary moments

	Analytic continuation of results

	Closed form initial-values for various s
	Evaluation of Gs
	Other generalizations of G

	Contour integrals for K0,s
	Contour integral based series for K0,s

	Closed forms at negative integers
	Negative moments
	Analyticity of K,s for 0 s<1/2
	Other rational values of s
	Moments with respect to t3 instead

	Conclusion and open questions

