
Chapter 1
Entropic Regularization of the `0 function

Jonathan M. Borwein and D. Russell Luke

Abstract Many problems of interest where more than one solution is possible seek,
among these, the one that is sparsest. The objective that most directly accounts for
sparsity, the `0 metric, is usually avoided since this leads to a combinatorial opti-
mization problem. The function ‖x‖0 is often viewed as the limit of the `p. Naturally,
there have been some attempts to use this as an objective for p small, though this is a
nonconvex function for p < 1. We propose instead a scaled and shifted Fermi-Dirac
entropy with two parameters, one controlling the smoothness of the approximation
and the other the steepness of the metric.
Our proposed metric is a convex relaxation for which a strong duality theory holds,
yielding dual methods for metrics approaching the desired ‖ · ‖0 function. Alter-
natively, without smoothing, we propose a dynamically reweighted subdifferential
descent method with “exact” line search that is finitely terminating for constraints
that are well-separated. This algorithm is shown to recapture in a special case cer-
tain well-known “greedy” algorithms. Consequently we are able to provide an ex-
plicit algorithm whose fixed point, under the appropriate assumptions, is the sparsest
possible solution. The variational perspective yields general strategies to make the
algorithm more robust.
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1.1 Introduction

Let E and Y be Euclidean spaces, and let A : E → Y be linear. We consider the
problem

minimize
x∈E

ϕ(x)

subject to A(x) = b
(1.1)

where ϕ(x) : E→ R is a lower semi-continuous (lsc), symmetric subadditive func-
tion that, in one way or another, counts the nonzero elements of x. This model
has received a great deal of attention recently in applications where the number
of constraints is much smaller than the dimension of the domain. Examples in-
clude the well-known compressed sensing [4], where E = Rn, Y = Rm (m � n)
and ϕ(x)≡ ∑ j |sign(x j)|.

Another instance of importance is low-rank matrix reconstruction [13, 5]. Here
E = Rm×n, Y = Rm×n and ϕ(x) ≡ rank(x). The goal in both of these applications
is to find a “sparsest” solution x∗ to A(x) = b. Both of the optimization problems
associated with these examples are combinatorial and, in general, NP-hard [12]. At
the expense of some generality we will narrow our discussion to the case where
E = Rn and Y = Rm.

Before addressing the counting objective directly, we review some elementary
observations about the most common relaxation of this problem, `1 optimization.

1.1.1 Elementary `1 minimization

A natural first step toward solving such problems has been to solve convex relax-
ations instead, ϕ(x) = ‖x‖1 ≡ ϕ1(x). It has been known for some time that `1 opti-
mization promotes sparsity in underdetermined systems [15, 8]. Later works estab-
lished criteria under which the solution to (1.1) is unique and exactly matches the
true signal x∗ [7, 9, 6]. Sparsity of the original signal x∗ and the algebraic structure
of the matrix A are key requirements.

A qualitative geometric interpretation of these facts is obtained by considering
the Fenchel dual [3] to this problem:

maximize
y∈Rm

bT y

subject to
(
AT y

)
j ∈ [−1,1] j = 1,2, . . . ,n.

(1.2)

Elementary facts from linear programming guarantee that the solution includes a
vertex of the polyhedron described by the constraints. The number of active con-
straints in the dual problem provides a crude upper bound on the number of nonzero
elements of the sparsest solution to the primal problem. Unless the number of active
constraints in the dual problem is less than or equal to the number of measurements
m, there is no hope of uniquely recovering x∗. Supposing that the solution to (1.2) is
indeed unique, a more vexing question is whether or not the corresponding primal
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solution is the sparsest solution to Ax = b. Here, it appears, convex analysis is at a
loss to provide an answer.

We gain some insight into this breakdown by considering the dual of the original
sparse optimization problem. For ϕ(x) = ∑ j |sign(x j)| ≡ ϕ0(x) in (1.1) the equiva-
lence of the primal and dual problems is lost due to the nonconvexity of the objec-
tive. The theory of Fenchel duality still yields weak duality, but this is of limited use
in this instance. The Fenchel dual to (1.1) is

maximize
y∈Rm

bT y

subject to
(
AT y

)
j = 0 j = 1,2, . . . ,n.

(1.3)

If we denote the values of the primal (1.1) and dual problems (1.3) by p and d
respectively, then these values satisfy the weak duality inequality p ≥ d. The pri-
mal problem is a combinatorial optimization problem, and hence NP-hard; the dual
problem, however, is a linear program, which is finitely terminating. Relatively el-
ementary variational analysis provides a lower bound on the sparsity of signals x
that satisfy the measurements. In this instance, however, the lower bound only re-
confirms what we already know. Indeed, if A is full rank, then the only solution to
the dual problem is y = 0. In other words, the minimal sparsity of the solution to the
primal problem is greater than zero, which is obvious. The loss of information in
passing from primal to dual formulations of nonconvex problems is a common phe-
nomenon and at the heart of the difficulties in answering some very basic questions
about sparse, and more generally nonconvex, optimization.

Our goal in this paper is two-fold: first to dig deeper into the convex analysis to
see what can indeed be learned about the nonconvex problem from various convex
relaxations, and second, to take what has been learned by other means and incorpo-
rate these advances into convex analysis and algorithms.

1.2 Entropic regularization of the zero metric

The Fenchel conjugates of the `1 norm and the function ϕ0(x) ≡ ∑ j |sign(x j)| are
given respectively by

ϕ
∗
1 (y) ≡

{
0 y ∈ [−1,1]
+∞ else

(ϕ1(x)≡ ‖x‖1) (1.4)

ϕ
∗
0 (y) ≡

{
0 y = 0
+∞ else

(ϕ0(x)≡ ‖x‖0). (1.5)

It is not uncommon to consider the function ‖ · ‖0 as the limit of
(
∑ j |x j|p

)1/p as
p→ 0. The notation is misleading since ‖ · ‖0 is not a norm; the fact that



4 Jonathan M. Borwein and D. Russell Luke

‖x‖0 = lim
p→0+ ∑

j
|x j|p

shows that d0(x,y) := ‖x− y‖0 still produces a metric since ∑ j |x j − y j|p does for
0 < p < 1.

We propose an alternative strategy based on regularization of the conjugates. For
L ∈ R+ and ε > 0 define the rectangle RL ≡ [−L1,L1]× [−L2,L2]×·· ·× [−Ln,Ln]
and

ϕε,L(y) ≡ (1.6){
ε ∑

n
j=1

(
(L j+y j) ln(L j+y j)+(L j−y j) ln(L j−y j)

2L j ln(2) − ln(L j)
ln(2)

)
(y ∈ RL)

+∞ for y /∈ RL.

This is a scaled and shifted Fermi-Dirac entropy [2, 3]. It is also a smooth convex
function on the interior of its domain and so elementary calculus can be used to
calculate the Fenchel conjugate,

ϕ
∗
ε,L(x) =

ε

ln(2)

n

∑
j=1

(
ln
(

4x jL j/ε +1
)
− x jL j− ε

)
. (1.7)

For L > 0 fixed, in the limit as ε → 0 we have

lim
ε→0

ϕε,L(y) =

{
0 y ∈ [−L,L]
+∞ else

and lim
ε→0

ϕ
∗
ε,L(x) = L|x|.

For ε > 0 fixed we have

lim
L→0

ϕε,L(x) =

{
0 y = 0
+∞ else

and lim
L→0

ϕ
∗
ε,L(x)≡ 0.

Note that ‖ · ‖0 and ϕ∗
ε0 have the same conjugate, but unlike ‖ · ‖0 the biconjugate

of ϕ∗
ε0 is itself. Also note that ϕε,L and ϕ∗

ε,L are convex and smooth on the inte-
rior of their domains for all ε,L > 0. This is in contrast to metrics of the form(
∑ j |x j− y j|p

)
which are nonconvex for p < 1.

We therefore propose solving

inf{ϕ
∗
ε,L(x) | x ∈ Rn with Ax = b} (1.8)

as a smooth convex relaxation of the conventional `p optimization for 0≤ p≤ 1.
Using Fenchel duality, the dual to this problem is the concave optimization prob-

lem
sup{yT b−ϕε,L(AT y) | y ∈ Rm} (1.9)

where
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ϕε,L(x) ≡ ε

(
n

∑
j=1

(L j + x j) ln(L j + x j)+(L j− x j) ln(L j− x j)
2L j ln(2)

−
ln(L j)
ln(2)

)
,

(L,ε > 0 x ∈ RL).

Moreover, if there exists a point y satisfying b = AAT y, then the optimal value in the
dual problem is attained and the primal solution is given by AT y. The objective in the
dual problem is smooth and convex, so we could in principle apply any number of
efficient unconstrained optimization algorithms. Also, for this relaxation, the same
numerical techniques can be used for all L→ 0.

1.3 Algorithms: subgradient descent

The central algorithm we explore in this note is simple (sub)gradient descent:

Algorithm 1.3.1 (subgradient descent) Given y0 ∈Rm, for ν = 0,1,2 . . . generate
the sequence {yν}ν via

yν+1 = yν +λν dν

where dν ∈−∂

(
ϕ∗

ε,L
(
AT yν

)
−bT yν

)
and λν is an appropriate step length param-

eter.

For ε > 0, ϕ∗
ε,L is continuously differentiable on its domain, and the algorithm

amounts to the method of steepest descent. For ε = 0 the objective ϕ∗
0,L is non-

smooth, and thus the “derivative” is the set-valued subdifferential

f : E→ R, ∂ f (y)≡ {v ∈ E | f (y)≤ f (y)+ 〈v,(y− y)〉 for all y ∈ E}. (1.10)

1.3.1 Nonsmooth Case: ε = 0

In this section we present and analyze a subgradient descent method with exact line
search and variants thereof suitable for solving the dual problem above for the case
ε = 0, that is, we do not smooth the problem. In this case,

ϕ0,L(x) = δRL(x)≡

{
0 for x ∈ RL

+∞ otherwise.

We reformulate the dual problem (1.9) as a minimization problem:

min
y∈Rm

δRL(A
T y)− yT b. (1.11)
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Since the set RL is a rectangle, nonsmooth calculus yields to following simple ex-
pression for the subdifferential of the dual objective:

∂
(
δRL

(
AT yν

)
−bT yν

)
= ANRL

(
AT yν

)
−b. (1.12)

Here we have used the fact that the subdifferential of the indicator function to the
box RL at the point x, denoted ∂δRL(x) is equivalent to the normal cone mapping of
RL at the point x

∂δRL(x) = NRL(x)≡

{
{v ∈ E with (z− x)T v≤ 0 for all z ∈ RT} if x ∈ RL

/0 i f x /∈ RL.

Remark 1. It is important to note that we assume that we can perform exact arith-
metic. This assumption is necessary due to the composition of the normal cone
mapping of RL with AT : while we can determine the exact evaluation of the normal
cone for a given AT yν , we cannot guarantee exact evaluation of the matrix-vector
product and, since the normal cone mapping is not Lipschitz continuous on RL, this
can lead to large computational errors. �

Problem (1.11) is a linear programming problem. To solve (1.1) we propose to
explore a trivial extension to (1.11):

min
(y,L)∈Rm×Rn

δRL(A
T y)− yT b+δRn

+
(L). (1.13)

Here Rn
+ denotes the nonnegative orthant. This represents, modulo sign, a partial

Fenchel conjugate with respect to the primal variable x, and not the weight L, of the
primal problem

minimize
(x,L)∈Rn×Rn

+
∑

n
j=1 L j|x j|

subject to Ax = b
(1.14)

It is clear that L = 0 and any feasible x is an optimal solution, and that the (global)
optimal value is 0. However, this is not the only solution. Indeed, the sparsest solu-
tion x∗ to Ax = b and the weight L∗ satisfying L∗j = 0 only for those elements j on
the support of x∗ is also a solution. The algorithm we study below finds a weight
compatible with the sparsest element x∗. A more satisfying reformulation would
yield a weight that is in some sense optimal for the sparsest element x∗, but this is
beyond the scope of this work.

1.3.2 Dynamically Rescaled Descent with Exact Line Search

There are three unresolved issues in our discussion to this point, namely how to
choose the element of the subdifferential, how to choose the step length and how to
adjust the weight L. Our strategy is given in Algorithm 1.3.2 below. In the descrip-
tion of the algorithm we use some geometric notions that we introduce first. It will
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be convenient to define the set C by

C ≡ {y ∈ Rm | AT y ∈ RL}.

This set is polyhedral as the domain of a linear mapping with box constraints.

Lemma 1 (normal cone projection). Let A be full rank and denote the normal cone
to C ≡ {y ∈ Rm | AT y ∈ RL} at y ∈C by NC(y). Then

PNC(y)b = Av (1.15)

for
v = argmin{‖Av−b‖2

2 | v ∈ NRL(A
T y)}. (1.16)

Proof. If A is full rank, then all points y ∈C satisfy the constraint qualification that
A is injective on NRL(A

T y), that is, the only vector v ∈ NRL(A
T y) for which Av = 0

is v = 0. Then by convex or nonsmooth analysis (see e.g., [14, Theorem 6.14]) the
set C is regular and

NC(y) = ANRL(A
T y) =

{
w = Av | v ∈ NRL(A

T y)
}

.

By the definition of the projection

PNC(y)b≡ argmin
{
‖w−b‖2

2 | w ∈ NC(y)
}

hence

PNC(y)b = argmin
{
‖w−b‖2

2 | w ∈ ANRL(A
T y)
}

= Aargmin
{
‖Av−b‖2

2 | v ∈ NRL(A
T y)
}

= Av.

�

Algorithm 1.3.2 (Dynamically Rescaled Descent with Exact Line Search)

Initialization: Set ν = 0, τ > 0, L0 = (‖a1‖2,‖a2‖2, . . . ,‖an‖2) where a j is the
jth column of A, y0 = 0 and the direction d0 = b.

Main iteration: While ‖dν‖2 > τ do

• (Exact line search.) Calculate the step length λν > 0 according to

λν ≡ argmin
{

δRLν

(
AT (yν +λdν)

)
−bT (yν +λdν) | λ > 0

}
. (1.17)

Set ȳ = yν +λν dν .
• (Subgradient selection and preliminary rescaling.) Define

Jν+1 = { j | |aT
j ȳ|= Lν

j }, (1.18)
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S(L,J,γ) = (s1(L,J,γ),s2(L,J,γ), . . . ,sn(L,J,γ))

where s j(L,J,γ) =

{
γL j for all j ∈ J
L j else,

(1.19)

and

C(L,J,γ) = {y ∈ Rn | AT y ∈ RS(L,J,γ)} where

RS(L,J,γ) ≡ [−s1(L,J,γ),s1(L,J,γ)]×·· ·× [−sn(L,J,γ),sn(L,J,γ)] (1.20)

Choose γ̄ ≥ 0 small enough that PNC(Lν ,Jν+1,γ̄)(ȳ)
b ∈ ri(NC(Lν ,Jν+1,γ̄)(ȳ)). Com-

pute the direction
dν+1 ≡ b−PNC(Lν ,Jν+1,γ̄)(ȳ)

b (1.21)

• (Rescaling.) Let

Jν+1
+ ≡

{
j | aT

j dν+1 > 0
}

, Jν+1
− ≡

{
j | aT

j dν+1 < 0
}

,

and define

Iν+1(γ)≡ (1.22)

argmin

{
argmin j∈Jν+1

+

{
Lν

j − γaT
j ȳ

aT
j dν+1

}
,argmin j∈Jν+1

−

{
−Lν

j − γaT
j ȳ

aT
j dν+1

}}
.

Choose γν+1 ∈ [0, γ̄] to satisfy

Iν+1(γν+1)⊂ Iν+1(0). (1.23)

Set

Lν+1
j =

{
γν+1Lν

j for j ∈ Jν+1

Lν
j else

(1.24)

and yν+1 = γν+1ȳ. Increment ν = ν +1.

End do.

We begin with some observations.
The direction calculation in (1.21) of Algorithm 1.3.2 is explicitly given by

Lemma 1. The description as a projection onto the normal cone of a polyhedron
is perhaps less helpful than the explicit formulation of Lemma 1 for suggesting how
this can be computed, but it provides greater geometrical insight. In particular, it is
relatively straightforward to show with this characterization that the direction dν is
always feasible. Moreover, the projection provides an elegant criterion for maintain-
ing orthogonality of the search directions with the active constraints.

Proposition 1.3.3 (feasible directions) For any y∈C there exists a λ > 0 such that
for all λ ∈ [0,λ ]



1 Entropic Regularization of the `0 function 9

y+λ
(
b−PNC(ȳ)b

)
∈C.

Moreover, if PNC(ȳ)b ∈ ri(NC(ȳ)), then the direction b−PNC(ȳ)b is orthogonal to
the jth column of A for all j such that aT

j y = L j.

Proof. The first statement follows from Lemma 1 and the polyhedrality of C since
the polar to the normal cone to C at a point y∈C is therefore equivalent to the tangent
cone, which consists only of feasible directions to C at y, defined as a direction d
for which y+λd ∈C for all λ > 0 sufficiently small.

Let a j denote the jth column of the matrix A and recall the definition of the
contingent cone to C at y ∈C:

KC(y)≡ {w ∈ Y | for all ν y+λ
ν wν ∈C for some wν → w, λ

ν ↘ 0} .

Since C is convex the contingent cone and the tangent cone are equivalent [1, Corol-
lary 6.3.7] and since C is polyhedral the tangent cone can be written as

TC(y)≡ {w ∈ Y | for all ν y+λ
ν w ∈C for some λ

ν ↘ 0} ,

that is, the tangent cone consists entirely of feasible directions. Now the tangent and
normal cones to C are convex and polar to each other [14, Corollary 6.30], so, by
Lemma 1, what remains to be shown is that b−PNC(y)b lies in the polar to the normal
cone to C. This follows since NC(y) is nonempty closed and convex. Hence for all
v ∈ NC(y) and for any b

vT (b−PNC(y)b)≤ 0,

that is, b−PNC(y)b is in the polar to the normal cone.
To see the final statement of the proposition, from Lemma 1 Av̄ is the projection

of b onto the normal cone NC(y) where v̄ ≡ argmin{‖Av− b‖2
2 | w ∈ NRL(A

T y)}.
Denote by J the set { j = 1,2, . . . ,n | aT

j y = L j} If v̄ j 6= 0 for all j ∈ J, then the
projection lies on the relative interior to NC(y), and thus the projection onto NC(ȳ)
is equivalent to the projection onto the subspace containing NC(ȳ):

PNC(ȳ)b = PD(ȳ)b

where
D(ȳ)≡ A

{
w ∈ Rn | w j = 0 for j /∈ J

}
.

Thus aT
j (b−Av̄) = 0 as claimed. �

Remark 2 (detection of orthogonality of feasible directions). A computable way to
detect orthogonality of the directions is given by Lemma 1. Let v̄ ≡ argmin{‖Av−
b‖2

2 | w ∈ NRL(A
T y)}. If v̄ j 6= 0 for all j such that aT

j y = L j, then aT
j (b−Av̄) = 0,

that is, the direction b−Av̄ is orthogonal to a j. �

The exact line search step has an explicit formulation given in the next proposi-
tion.
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Proposition 1.3.4 (exact line search) Let ȳ ∈ C and d̄ = b− PNC(ȳ)b. Define the
index sets

J̄+ ≡
{

j | aT
j d̄ > 0

}
, J̄− ≡

{
j | aT

j d̄ < 0
}

.

The exact line search step length λ̄ given by (1.17) has the explicit representation

λ̄ ≡min

{
min
j∈J̄+

{
L j−aT

j ȳ

aT
j d̄

}
, min

j∈J̄−

{
−L j−aT

j ȳ

aT
j d̄

}}
> 0. (1.25)

Proof. Application of nonsmooth calculus provides a generalization to the fact from
optimization of smooth objectives that the exact line search step extends to the tan-
gent of a level set of the objective, from which we can extract (1.25). However, it
is perhaps easiest to see the explicit formulation by direct inspection: the indicator
function δRL is zero at all points in RL, so the step length is the largest λ such that
AT
(
ȳ+λ d̄

)
∈ RL, i.e. the largest λ such that

aT
j
(
ȳ+λ d̄

)
≤ L j for all j ∈ J̄+.

and
aT

j
(
ȳ+λ d̄

)
≥−L j for all j ∈ J̄−.

Note that by Proposition 1.3.3 it is not possible to have aT
j d̄ > 0 and aT

j ȳ = L j or,
similarly aT

j d̄ < 0 and aT
j ȳ =−L j, hence the step length is guaranteed to be positive,

and we are done. �

1.4 Convergence to Sparse Solutions

We show in this section that for sufficiently sparse solutions x∗ to Ax = b, the steep-
est subgradient descent algorithm with exact line search (Algorithm 1.3.2) recovers
x∗ exactly. Before we continue, however, we must specify precisely what is meant
by “sufficiently sparse”.

Definition 1.4.1 (mutual coherence) Let a j denote the jth column of A. The mu-
tual coherence of A is defined as

µ(A)≡ max
1≤k, j≤n, k 6= j

aT
k a j

‖ak‖2‖a j‖2

where 0/0≡ 1.

The mutual coherence characterizes the dependence between columns of A. The mu-
tual coherence of unitary matrices, for instance, is zero; for matrices with columns
of zeros, the mutual coherence is 1.
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Lemma 2 (uniqueness of sparse representations [7]). Let A ∈ Rm×n (m < n) be
full rank. If there exists an element x∗ such that Ax∗ = b and

‖x∗‖0 <
1
2

(
1+

1
µ(A)

)
, (1.26)

then it is unique and sparsest possible (has minimal support).

In the case of matrices that are not full rank – and thus unitarily equivalent to matri-
ces with columns of zeros – only the trivial equation Ax = 0 has a unique sparsest
possible solution.

The sparsity condition of Lemma 2 has an alternative representation that will be
useful later.

Lemma 3 (equivalent sparsity conditions). Let A∈Rm×n (m < n) be full rank. For
b ∈ Rm \{0} given and x∗ a solution to Ax = b, define J = { j | x∗j 6= 0} and denote
by J ∈ J an element of x∗ satisfying

|x∗J |‖aJ‖2 ≥ |x∗j |‖a j‖2 for all j = 1,2, . . . ,n.

The solution x∗ satisfies condition (1.26) if and only if there exists a γ̄ > 0 such that,
for all y ∈ B≡ {y ∈ Rm | ‖y‖= 1} and all γ ∈ [0, γ̄]

max
k/∈J

|aT
k b|

‖ak‖2− γ|aT
k y|

<
|aT

J b|
‖aJ‖2 + γ|aT

J y|
. (1.27)

Proof. We use continuity of the terms in (1.27) with respect to γ and y to simplify
the operative inequality and prove the equivalence of (1.26) and (1.27) for the case
γ = 0.

Reduction to the case γ = 0.
For all γ̄ small enough the function

g(y,γ)≡max
k/∈J

|aT
k b|

‖ak‖2− γ|aT
k y|

is a continuous function on the compact domain B× [0, γ̄]. Likewise, for any γ̄ > 0
the function

h(y,γ)≡ |aT
J b|

‖aJ‖2 + γ|aT
J y|

is continuous. The existence of γ̄ > 0 such that (1.27) holds for all γ ∈ [0, γ̄] and
y ∈ B then follows immediately from continuity and the strict inequality

g(y,0) = max
k/∈J

|aT
k b|

‖ak‖2
<
|aT

J b|
‖aJ‖2

= h(y,0). (1.28)
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We therefore limit our attention to (1.28).

Reformulation of (1.26).
Starting with (1.26) we have

‖x∗‖0 = |J| <
1
2

(
1

µ(A)
+1
)

⇐⇒

2µ(A)|J| <
1
2

(1+ µ(A))
⇐⇒

|x∗J |‖aJ‖2|J|µ(A) <
1
2
|x∗J |‖aJ‖2 (1+ µ(A))

⇐⇒
|x∗J |‖aJ‖2|J|µ(A) < |x∗J |‖aJ‖2 (1+ µ(A)(1−|J|)) . (1.29)

Here we have denoted the cardinality of J by |J|.

Upper and lower bounds.
It remains to show that the left hand side of (1.29) is and upper bound for the left

hand side of (1.28) and, similarly, that the right hand side of (1.29) is a lower bound
for the right hand side of (1.28).

Substituting Ax∗ for b in (1.28) yields the equivalent statement

|∑i∈J x∗i aT
k ai|

‖ak‖2
<
|∑i∈J x∗i aT

J ai|
‖aJ‖2

for all k /∈ J. (1.30)

For the lower bound, we have

|∑i∈J x∗i aT
J ai|

‖aJ‖2
≥ |x∗J |‖aJ‖2− ∑

i∈J\{J}

|x∗i ||aT
J ai|

‖aJ‖2

≥ |x∗J |‖aJ‖2− ∑
i∈J\{J}

|x∗i |‖ai‖2µ(A)

≥ |x∗J |‖aJ‖2 (1− (|J|−1)µ(A)) .

In summary

|x∗J |‖aJ‖2 (1+(1−|J|)µ(A))≤
|∑i∈J x∗i aT

J ai|
‖aJ‖2

. (1.31)

For the upper bound we have

|∑i∈J x∗i aT
k ai|

‖ak‖2
≤ ∑

i∈J

|x∗i | |aT
k ai|

‖ak‖2

≤ ∑
i∈J
|x∗i | ‖ai‖2µ(A)

≤ |x∗J | ‖aJ‖2|J|µ(A)
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or
|∑i∈J x∗i aT

k ai|
‖ak‖2

≤ |x∗J | ‖aJ‖2|J|µ(A) (1.32)

Inequality (1.29) together with (1.30), (1.31) and (1.32) yield (1.28). By the conti-
nuity argument at the beginning of the proof, we have thus shown the equivalence
of (1.26) and (1.27) as claimed. �

The next lemma provides a sufficient condition for monotonicity of the cardi-
nality of the set of active indices from one iteration of Algorithm 1.3.2. This is an
important feature for the finite termination of Algorithm 1.3.2 proved in Theorem 1.

Lemma 4 (step length). For a given L = (L1,L2, . . . ,Ln) and the corresponding sets
RL and C ≡ {y ∈ Rm | AT y ∈ RL}, let the point ȳ ∈ C satisfy PNC(ȳ)b ∈ ri(NC(ȳ)).
For this point define d̄ ≡ b−PNC(ȳ)b and the index sets J = { j | aT

j ȳ = L j}

J+ ≡
{

j | aT
j d̄ > 0

}
, J− ≡

{
j | aT

j d̄ < 0
}

.

Then (J+∪J−)∩ J = /0 and for the step length given by (1.25) the set of active
indices set is increasing, that is, J⊂ J′ = { j | aT

j (ȳ+ λ̄ d̄) = L j}.
In the special case that ȳ = 0, then the step length λ̄ is given by

λ̄ ≡min
j/∈J

{
L j

|aT
j d̄|

}
. (1.33)

Proof. By Proposition 1.3.3 and Remark 2, if PNC(ȳ)b ∈ ri(NC(ȳ)) then d̄ is or-
thogonal to the columns of A corresponding to the set of active indices J. Thus
(J+∪J−)∩ J = /0 as claimed. It follows immediately from (1.25) that J ⊂ J′ =
{ j | aT

j (ȳ+ λ̄ d̄) = L j} since λ̄ is computed from the elements belonging to J+∪J−,
and, again by Proposition 1.3.3, the active constraints corresponding to J remain
unchanged in the direction d̄.

When ȳ = 0 the step length given by (1.25) simplifies to

λ̄ = min
j∈J̄+∪J̄−

{
L j

|aT
j d̄|

}
> 0. (1.34)

Hence (1.34) is equivalent to (1.33). This completes the proof. �

We are now ready to state and prove the main result of this section, the conver-
gence of Algorithm 1.3.2 for a particular choice of initial weights L0

j = ‖a j‖2 for
j = 1,2, . . . ,n.

Theorem 1 (exact recovery of sufficiently sparse solutions). Let A ∈ Rm×n (m <
n) be full rank and denote the jth column of A by a j. Initialize Algorithm 1.3.2 with
initial guess (y0,L0) such that y0

j = 0 and L0
j = ‖a j‖2 for j = 1,2, . . . ,n.

If an element x∗ ∈ Rn with Ax∗ = b satisfies (1.26), then, with tolerance τ = 0,
Algorithm 1.3.2 converges in finitely many steps to a point (y∗,L∗) where,
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argmin{‖Av−b‖2
2 | v ∈ NRL∗ (y

∗)}= x∗,

the unique sparsest solution to Ax = b.

Proof. The proof is by induction and follows a pattern similar to the convergence
proof of the orthogonal matching pursuit algorithm [4, Theorem 6], though the de-
tails are more technical. (Indeed, we show in Section 1.4.1 below that this is no
coincidence.) In order to facilitate the proof, we will in fact prove convergence of a
slightly more general procedure than Algorithm 1.3.2. The difference is in the ini-
tialization. Rather than initializing y0 = 0, as any practical method would do, we
will choose an arbitrary y0 = γ0y for any fixed vector y with γ0 ≥ 0 small enough.
This allows us to establish the pattern for later iterations at the very beginning.

Let C0 ≡ {y ∈ Rm | AT y ∈ RL0}. The open unit ball lies in the (relative) interior
of C0 since, for any y with ‖y‖2 < 1, we have |(AT y) j| ≤ ‖a j‖2‖y‖2 ≤ ‖a j‖2 = L0

j
with the last inequality strict if a j 6= 0. (Without loss of generality, we can assume
that A has no zero columns.) Then NC0(y0) = {0}, so that PNC0 (y0)b = 0 and d0 = b

is in fact a direction of descent according to Lemma 1 for any y0 small enough.

Identifying the active constraints.
Computing the step length, by (1.25) we have

λ0 ≡min

{
min
j∈J0

+

{
‖a j‖2− γ0aT

j y

aT
j b

}
, min

j∈J0
−

{
−‖a j‖2− γ0aT

j y

aT
j b

}}
> 0. (1.35)

where, recall, γ0y = y0, and

J0
+ = { j | aT

j b > 0} and J0
− = { j | aT

j b < 0}.

Let j0 be the index of a minimum element of the set above. We need to guarantee
for any choice of minimum element (in the case that there is more than one) that
j0 ∈ J∗ ≡ { j | x∗j 6= 0}. In other words, we must show that

|aT
k y0 +λ0aT

k b|< ‖ak‖2 for all k /∈ J∗. (1.36)

By the triangle inequality, (1.36) holds if

|aT
k y0|+ |λ0aT

k b|< ‖ak‖2 for all k /∈ J∗. (1.37)

Expanding λ0 and rearranging terms in (1.37) yields, for γ0 small enough,

|aT
k b|

‖ak‖2− γ0|aT
k y|

<
1
λ0

=


|aT

j0
b|∣∣∣‖a j0‖2−γ0aT

j0
y
∣∣∣ , if j0 ∈ J0

+

|aT
j0

b|∣∣∣−‖a j0‖2−γ0aT
j0

y
∣∣∣ , if j0 ∈ J0

−

for all k /∈ J∗. (1.38)

Let J ∈ J∗ be the index of an element of x∗ satisfying
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|x∗J |‖aJ‖2 ≥ |x∗j |‖a j‖2 for all j = 1,2, . . . ,n.

By definition of λ0,

|aT
J b|

‖aJ‖2 + γ0|aT
J y|

≤


|aT

J b|
|‖aJ‖2−γ0aT

J y| , if J ∈ J0
+

|aT
J b|

|−‖aJ‖2−γ0aT
J y| , if J ∈ J0

−

≤ 1
λ0

,

thus inequality (1.38), and hence (1.36), holds for γ0 small enough if (1.27) holds.
By Lemma 3, this inequality is equivalent to condition (1.26), so (1.36) is guaranteed
to hold for all γ0 small enough by the assumptions.

Letting ȳ = γ0y+λ0b, we conclude that, as (1.26) holds, then for γ0 small enough
(as it certainly would be for the initial guess of zero)

J1 ≡ { j | |aT
j ȳ|= ‖a j‖2 = L0

j}∩J∗ 6= /0

where Jν is defined by (1.18).
The question remains as to how small γ0 need be. For this we refer to the index

set I0(γ) defined by (1.22) with L−1 ≡ L0. Note that this is just the set of indices of
active faces in J0

+ ∪ J0
+ corresponding to the exact line search step length λ0 com-

puted by (1.35). Viewed as a function, λ 0 is the minimum of a finite collection of
affine functions of γ0 and is thus a continuous function of γ0. Moreover, the set
of indices corresponding to the affine functions at which the minimum is attained,
I(γ0), satisfies I(γ0)⊂ I(0) on a neighborhood of 0. In other words, the index j0 of
the minimum element at which the exact step length λ0 is attained belongs to I0(0)
for all γ0 small enough. This yields an implementable strategy for determining the
proper scaling in subsequent iterations by checking the coincidence of the set of
active indices Iν(γ) with the set of faces reached from the origin, Iν(0).

Subgradient selection. There always exists γ̄ ≥ 0 such that PNC(L0,J1,γ̄)(ȳ)
b ∈

ri(NC(L0,J1,γ̄)(ȳ)) since for γ̄ = 0 the normal cone to C(L0,J1,0) at ȳ defined by
(1.20) is the subspace

NC(L0,J1,0)(ȳ) =

{
Av

∣∣∣∣∣
{

v j ∈ R for j ∈ J1

v j = 0 for j /∈ J1

}
.

Thus, at least for γ̄ = 0, the projection of b onto the subspace spanned by the columns
of A corresponding to J1 is PNC(L0,J1,0)(ȳ)

b. By Proposition 1.3.3, then, for γ̄ small

enough (possibly zero) the direction of descent d1 ≡ b−PNC(L0,J1,0)(ȳ)
b is orthogonal

to the columns of A corresponding to the index set J1.
Rescaling. For the choice of γ̄ above, we have

(
J1

+∪J1
−
)
∩J1 = /0 where

J1
+ ≡

{
j | aT

j d1 > 0
}

, J1
− ≡

{
j | aT

j d1 < 0
}

.
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There are two cases to consider: γ̄ = 0 and γ̄ > 0. If γ̄ = 0, then γ1 = 0 and by
Lemma 4

I1(0) = argmin j/∈J1
0

{
L0

j

|aT
j d1|

}
,

so that

L1
j =

{
0 for all j ∈ I1(0)
L0

j else

and y1 = 0.
If, on the other hand, γ̄ > 0, the previous argument shows that there exists at least

some γ1 ∈ [0, γ̄] such that I1(γ1)⊂ I1(0), which is sufficient for our purposes.
With γ1 in hand, we set the weights

L1
j =

{
γ1L0

j for all j ∈ I1(γ1)
L0

j else.

and update the iterate y1 = γ1ȳ as prescribed.
Note that y1 is feasible and the set of active faces J1 is unchanged since

aT
j y1 = aT

j γ
1ȳ =

{
γ1L0

j = L1
j for all j ∈ J1

< aT
j ȳ < L1

j otherwise.

Induction. Proceeding now by induction, we suppose for ν ≥ 0 that aT
j yν = Lν

j for
all j /∈ Jν ⊂ J∗ and that |aT

j yν | < Lν
j = ‖a j‖2 for all j /∈ Jν where ν ≤ |Jν | ≤ |J∗|.

We show that there are only two possibilities for the next iteration: either dν+1 = 0,
in which case Jν+1 = J∗ and vν+1 = x∗; or dν+1 6= 0, in which case Jν+1 ⊂ J∗ with
|Jν+1| < |Jν+2| ≤ |J∗| and |aT

j yν+1| = Lν+1
j for j ∈ Jν+2 and |aT

j yν | < Lν+1
j for

j /∈ Jν+2.
In either case, in a somewhat awkward consequence of our indexing, note that

for γν satisfying (1.23) and the induction hypothesis we have that Jν+1 ⊂ J∗. Our
task is to show that Jν+2 ⊂ J∗

Case 1: dν+1 = 0. In this case, we have b = PNC(Lν ,Jν+1,γ̄)(ȳ)
b∈ ri(NC(Lν ,Jν+1,γ̄)(ȳ))

for ȳ = yν +λ ν dν and, by assumption (1.26),

Jν+1 = { j | |aT
j (y

ν +λ
ν dν)|= Lν

j } ⊂ J∗.

Also note that Jν+1
+ = /0, Jν+1

− = /0 and hence Iν+1(γ) = /0 for all γ ≥ 0, so
without any calculation one can choose γν+1 = γ̄ and determine Lν+1 accord-
ing to (1.24) and yν+1 = γν+1ȳ. Define C∗ ≡ {y | AT y ∈ RLν+1}. Then dν+1 =
0 ∈ ∂

(
δC∗(AT yν+1)−bT yν+1 +δRn

+
(Lν+1)

)
and (yν+1,Lν+1) for Lν+1 defined by

(1.24) is a fixed point of the iteration. By the definition of the subdifferential (1.10),
(yν+1,Lν+1) is an optimal solution to (1.13). The corresponding subgradient
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vν+1 ≡ argmin{‖Av−b‖2
2 | v ∈ NRLν+1 (y

ν+1)}

satisfies Avν+1 = b and is supported on Jν+1 ⊂ J∗. Lemma 2 shows that x∗ is the
unique sparsest solution to Ax = b. Thus, Jν+1 = J∗ and vν+1 = x∗ as claimed.

Case 2: dν+1 6= 0. In this case b /∈ NC(Lν ,Jν+1,γ̄)(ȳ), and it must be that |Jν+1|< |J∗|.
By the induction hypothesis Jν+1 ⊂ J∗. By the choice of γ̄ we have PNC(Lν ,Jν+1,γ̄)(ȳ)

b∈
ri(NC(Lν ,Jν+1,γ̄)(ȳ)) and thus by Lemma 4

(
Jν+1

+ ∪Jν+1
−
)
∩ Jν+1 = /0 and the active

set is monotonically increasing, so we must show that Jν+2 ⊂ J∗.
We continue to the rescaling step to find γν+1 satisfying 1.23. Since by construc-

tion dν+1 is orthogonal to the columns a j with j ∈ Jν+1, we can deflate the matrix
A to contain only those columns with indices not in Jν+1. The weights correspond-
ing to the remaining indices, denoted L̄ν+1, are unchanged from the initialization,
that is, Lν

j = ‖a j‖2 for j /∈ Jν+1 and so the elements of L̄ν+1 are just the norms of
the remaining columns of the deflated matrix Aν+1. Repeating the argument for the
first iteration with b replaced by dν+1, condition (1.26) with γν+1 satisfying (1.23)
guarantees that |yν+1 +λν+1dν+1|= ‖a j‖2 = L̄ν+1

j for some j corresponding to and
element of J∗ \ Jν+1, while |yν+1 + λν+1dν+1| < ‖a j‖2 = Lν

j for j corresponding
to the complement of J∗. (Note that because of the deflation technique, the cor-
respondence between these indices is not direct.) Defining ȳ = yν+1 + λν+1dν+1

Jν+2 ≡ { j | |aT
j ȳ| = Lν+1}, by orthogonality and rescaling of the previous weights

we have that Jν+2 ⊂ J∗ and |Jν+1|< |Jν+2| ≤ |J|, as claimed.
Since the cardinality of the active set increases strictly monotonically with each

iteration, the algorithm is finitely terminating as asserted. �

The next corollary is an immediate consequence of Theorem 1. We will show in
the next section that the corollary is actually a statement of finite termination of the
orthogonal matching pursuit algorithm [4, Theorem 6].

Corollary 1.4.2 (greedy rescaling) Let A ∈ Rm×n (m < n) be full rank and denote
the jth column of A by a j. Initialize Algorithm 1.3.2 with initial guess (y0,L0) such
that y0

j = 0 and L0
j = ‖a j‖2 for j = 1,2, . . . ,n, and at the rescaling step choose

Lν+1
j = γν+1 = 0 for all j ∈ Jν+1.

If a point x∗ solves Ax = b and satisfies (1.26) then, with tolerance τ = 0, Algo-
rithm 1.3.2 converges in finitely many steps to the point (0,L∗) where,

argmin{‖Av−b‖2
2 | v ∈ NRL∗ (0)}= x∗,

the unique sparsest solution to Ax = b.

Remark 3. We have called the rescaling strategy of Corollary 1.4.2 greedy to con-
form with precedent, however in light of the variational derivation that we have
developed here, we would prefer to use the descriptor without recourse. To see why
we prefer this, note that when the scaling of the active indices is set to zero, these
elements are forever “committed” to the active set, even if in later iterations it might
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be determined that this was an error for some elements. In our algorithm the detec-
tion of a possible error would occur in the determination of the preliminary scaling
stage. If PNC(Lν ,Jν+1,γ̄)(ȳ)

b ∈ ri(NC(Lν ,Jν+1,γ̄)(ȳ)) only for γ̄ = 0 this is an indication
that the direction of descent will cause a sign change in one of the active elements.

If the scaling is bounded away from 0, then the orthogonality of the descent di-
rections with the active columns of A, see Proposition 1.3.3, is no longer guaranteed
and the strict monotonicity of the cardinality of the active set Lemma 4 is also lost.
This reflects the fact that, in this case, the algorithm can “change its mind” about the
active set, that is, it has recourse. The more general Algorithm 1.3.2 has, in fact, no
more recourse than the greedy variant since we enforce orthogonality of the descent
direction with the active columns of A. It can be modified, however, to include re-
course by simply bounding γν away from zero. The analysis of this implementation,
however, is beyond the scope of this work. �

1.4.1 Greedy Algorithms

As promised above, we now show that the greedy rescaling of Algorithm 1.3.2 spec-
ified in Corollary 1.4.2, is equivalent to a well-known greedy algorithm (see [4] and
references therein). The prototype greedy algorithm is formulated in [4] as follows:

Algorithm 1.4.3 (Orthogonal Matching Pursuit) Input the matrix A, the vector
b and a solution tolerance τ > 0.

Initialization: Let ν = 1, y0 = 0, r0 = b, and the support set J0 = /0.
Main iteration: For a given tolerance τ > 0 do

• (Sweep.) For j = 1,2, . . . ,n compute the errors δ ( j) = minz j ‖a jz j − rν−1‖2
2

where a j denotes the jth column of A.
• (Update support.) Compute Jν ≡ argmin{δ ( j) | j /∈ Jν−1} and update Jν ≡

Jν−1∪{Jν}.
• (Compute provisional solution and residual.) Compute

xν ≡ argmin{‖Ax−b‖2
2 | support(x) = Jν} and rν ≡ b−Axν . (1.39)

• (Increment or stop.) If ‖rν‖2 < τ , stop; otherwise set ν = ν +1 and repeat.

Note that the calculation of the provisional solution (1.39) is almost the same as
the calculation of the normal cone projection in Lemma 1, the only difference being
that xν in (1.39) is the projection onto the subspace corresponding to the index set
Jν while the subgradient vν in Lemma 1 is the projection onto the associated normal
cone mapping.

Lemma 5 (provisional solution/subgradient equivalence). Let J̄ ⊂ J ≡ { j | x∗j 6=
0} where x∗ is a solution to (1.1) for the counting objective ϕ(x) = ‖x‖0. Let L =
(L1,L2, . . . ,Ln) and choose any ȳ ∈ Rm such that |aT

j ȳ| ≤ L j with equality holding
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only for j ∈ J̄, and such that v̄ j 6= 0 for any j ∈ J̄ where v̄ = argmin{‖Av−b‖2
2 | v ∈

NRL(A
T ȳ)}. Then v̄ = x̄≡ argmin{‖Ax−b‖2

2 | x j = 0 ∀ j /∈ J̄}.

Proof. If v̄ j 6= 0 for all j ∈ J̄ then the minimizer of ‖Av− b‖2
2 is in the relative

interior to NRL(A
T ȳ), an orthant of the subspace containing the support of x̄. Hence

minimizers of ‖Av−b‖2
2 over the orthant and the entire subspace are equivalent, that

is v̄ = x̄. �

Less obvious is the fact that the active index selection in Algorithm 1.4.3 is equiv-
alent to an exact line search with a dynamically reweighted `1 norm.

Lemma 6 (step length/active index selection). Define J̄ ⊂ {1,2, . . . ,n} and L̄ =
(L̄1, L̄2, . . . , L̄n) with

L̄ j ≡

{
‖a j‖ for j /∈ J̄
0 for j ∈ J̄.

and the sets RL̄ and C̄≡{y∈Rm | AT y∈ RL̄} accordingly. Let d̄ = b−PNC̄(0)b. Then

J̄ ≡ argmin{δ ( j)≡min
z j
‖a jz j− d̄‖2

2 | j /∈ J̄} (1.40)

is the index set corresponding to the step length λ̄ given by (1.33), that is,

min
j/∈J̄

{
‖a j‖2

|aT
j d̄|

}
=
‖a j‖2

|aT
j d̄|

∀ j ∈ J̄.

Proof. We work forward from the definition of J̄. Substituting

aT
j d̄

‖a j‖2
2

= argmin z j
‖a jz j− d̄‖2

2

into (1.40) yields

J̄ = argmin


∥∥∥∥∥ aT

j d̄

‖a j‖2
2

a j− d̄

∥∥∥∥∥
2

2

∣∣∣∣∣∣ j /∈ J̄


= argmin

{
|aT

j d̄|2

‖a j‖2
2

(
‖a j‖2

2‖d̄‖2
2

|aT
j d̄|2

−1

) ∣∣∣∣∣ j /∈ J̄

}

= argmin

{
‖d̄‖2

2−
|aT

j d̄|2

‖a j‖2
2

∣∣∣∣∣ j /∈ J̄

}

= argmax

{
|aT

j d̄|2

‖a j‖2
2

∣∣∣∣∣ j /∈ J̄

}

= argmin

{
‖a j‖2

|aT
j d̄|

∣∣∣∣∣ j /∈ J̄

}
.
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This completes the proof. �

We conclude that orthogonal matching pursuit is equivalent to the dynamically
reweighted steepest subgradient descent method with exact line search.

Proposition 1.4.4 Algorithm 1.4.3 is equivalent to Algorithm 1.3.2 initialized with
y0 = 0 and L0 = (‖a1‖2,‖a2‖2, . . . ,‖an‖2), and with the rescaling γν = 0 for all ν .

Proof. This follows immediately from Lemmas 5 and 6. �

1.5 Numerical Examples

The equivalence of Algorithm 1.3.2 with γν = 0 for all ν to the orthogonal matching
pursuit algorithm 1.4.3 makes the wealth of numerical experience with orthogonal
matching pursuit immediately available to our more general algorithm. We only
demonstrate in this section that the greedy version of the algorithm and the more
general version behave similarly on sufficiently sparse problems.

Remark 4. Before presenting our numerical examples, a few comments about prac-
tical implementations are in order. As pointed out earlier, in the absence of exact
arithmetic, practical implementations cannot directly apply the most general form
of Algorithm 1.3.2. However, even without exact arithmetic, we can determine pre-
cisely the operative quantities as long as the numerical error is below the threshold
needed to discriminate between certain discrete cases.

For example, suppose we have 14 digits of accuracy and |aT
j yν | is to within 10−15

of Lν
j : would it be equal to Lν

j if we had exact arithmetic? If Lν
j = 0, then it must

be that aT
j yν = 0 with exact arithmetic since it was proved in Propositions 1.3.3 and

1.3.4 that the iterates are generated from feasible directions with step length chosen
so that the iterates are always feasible. If the dynamic reweighting were chosen so
that Lν

j > 0, then it is impossible to determine whether aT
j yν should equal, say,−Lν

j ,
unless it is known that aT

j dν = 0, in which case it should hold that aT
j yν−1 = aT

j yν ,
where it has been determined from previous iterations that aT

j yν−1 =−Lν−1
j . Again,

by Proposition 1.3.3, if vν
j 6= 0 for j in the active set Jν and

vν = argmin{‖Av−b‖2
2 | v ∈ NRLν (AT yν)}

then aT
j dν = 0. Let δ be the numerical accuracy of the computation. If |vν

j |> δ then
we are certain that vν

j 6= 0, and thus aT
j dν = 0 so that aT

j yν = aT
j yν−1 = Lν−1

j . If
instead |vν

j | ≤ δ , then we cannot be sure that |vν
j | 6= 0 and consequently we cannot

be certain that dν is orthogonal to the active columns of A.
This numerical uncertainty is related to the ill-posedness of the problem Ax = b:

if the sparsest signal x∗ has elements whose magnitude is below the numerical noise
level, then the algorithm must be regularized. We will have more to say about this
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in the conclusion. For our numerical study we only take examples for which the
signal is above the numerical noise level, and so our exact arithmetic algorithm is
still implementable. ut

We turn to our numerical illustration:

Our “Toy” problem. For our numerical example, we construct a real signal of
length 1282 (n = 2× 16,384 to account for real and imaginary parts) with 70
nonzero components (|J∗| = 70), chosen at random, and randomly sample the dis-
crete Fourier transform of this signal at a rate of about 1/8. Since the original sig-
nal is real-valued, our effective sampling rate is about 1/4 due to symmetry in the
Fourier coefficients (m = 2× 3588 for the real and imaginary parts). Since we are
dealing with the Fourier transform, the scaling of columns of

A ∈ R(2∗16384)×(2∗3588)

is just ‖a j‖2 = 1/
√

2∗3588.
Algorithm illustrations. We illustrate the theory with two different implementa-
tions of Algorithm 1.3.2, the first with scaling parameter γν > 0 for each iteration
ν (in fact, we need only take γν = 1 to satisfy the requirements of the algorithm)
and the second with γν = 0 for all iterations corresponding to the “greedy” imple-
mentation. The complexity of the two implementations is identical. Both instances
converge in 70 iterations and require the same work to compute the subgradient.

Although the normal equations provide an explicit closed-form expression for
the calculation of the subgradient v in (1.16), this still involves the inversion of a
matrix, albeit small relative to the overall problem size. As we are interested in ap-
plications for which the sparsity is on the order of 103 to 104 nonzero elements, in-
stead, we solve (1.16) iteratively using the Relaxed Average Alternating Reflection
(RAAR) algorithm [10, 11] for finding best approximation pairs between the sets
NRL(A

T ȳ) and B ≡ {x | Ax = b}. (It is important to note that we can only find best
approximation pairs since for all but the last iteration NRL(A

T ȳ)∩B = /0.) Ordinary
alternating projections would have also sufficed to solve this subproblem, however
we found that the RAAR algorithm required, on average, 33% fewer iterations with
the proper choice of relaxation parameter.

Both of our implementations of Algorithm 1.3.2 require exactly the same number
of iterations of the RAAR algorithm to compute (1.16) since they both solve the
exact same subproblem at each iteration. The subproblems require, on average, 82.6
iterations to get to within the numerical tolerance (10−12).
Complexity. Rather than explicitly forming the partial Fourier matrix A we take
advantage of the fast Fourier transform. The FFT is the most complex computation
in the algorithm. The RAAR algorithm requires 2 FFT computations per iteration
on a complex-valued vector of length 1282 and the main loop of Algorithm 1.3.2
requires 3 FFT computations of the same complexity. For the example reported here,
over all the iterations, the algorithm required in total 821,871 FFT computations
on complex-valued vectors of length 1282, or on the order of 1011 floating point
operations. On a 2.2 GHz Intel Core 2 Duo processor with 2GB 667 MHz memory
this takes 32 seconds of CPU time.
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If instead of using the FFT we had used the normal equations to explicitly com-
pute the subgradients we would have needed only 211 FFT computations, and the
matrix inversions required in the normal equations would have required, at the worst,
inversion of a 70×70 real-valued matrix. The computational complexity of this ap-
proach is estimated to be on the order of 107 floating point operations. For problems
with sparsity < 700 elements the normal equation approach will probably be faster;
thereafter iterative methods, such as RAAR, using the FFT become competitive.

Figure 1.1(a) shows the error between the reconstructed signal and the true signal.
The reconstruction for both implementations are identical. Figure 1.1(b) shows the
weights corresponding to the implementation with scaling γν = 0 for all ν . The
weights for the implementation with γν = 1 for all ν are not shown since these are
all identical and unchanged from the initialization. Note that γν = 1 for all ν is
then the behavior of the algorithm for solving the fixed, reweighted `1 optimization
problem for this problem. These will not, in general be the scalings chosen by the
algorithm on different problems. Finally, in Figure 1.1(c) we give a comparison of
the step lengths at each iteration of the two implementations.

1.6 Comments and Conclusion

Our goals herein were to apply convex analysis to the nonconvex problem of sparse
signal recovery and to take notions that have evolved from different approaches and
incorporate these advances into convex analysis and algorithms. With this work we
have made a first step in this direction.

We proposed convex dual-space relaxations of the original nonconvex problem
and have analyzed one extreme of possible relaxations. We have proved conver-
gence in finitely many steps of a nonsmooth steepest descent method with exact line
search and dynamically reweighted `1 norms when applied to problems satisfying
the mutual coherence condition.

An instance of our algorithm is shown to be equivalent to orthogonal matching
pursuit, which has been well-studied in the literature, though we are unaware of any
identification of this method to dual-space linesearch methods as presented here.
This explicit connection of orthogonal matching pursuit to reweighted `1 minimiza-
tion in the dual opens the door to a greater synthesis of algorithms and a better
understanding of the behavior of these algorithms.

Indeed, the proof of the coincidence of the solution to the `1 minimization prob-
lem to the solution of the corresponding minimization of the counting metric ‖ · ‖0
is usually given indirectly. Here, under the assumption of mutual coherence and
certain interiority qualifications on the projection of the data onto the normal cone
associated with the active constraints, we have an explicit proof of the equivalence
of the solutions to the `1 and ‖ · ‖0 problems. An instance of this equivalence was
demonstrated in the numerical example.

The duality approach taken here also brings to light another curious, though upon
some reflection not entirely surprising, observation: it is natural to consider the “op-
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(a)

(b)

(c)

Fig. 1.1 (a) Pointwise reconstruction error. (b) Weights at the optimal solution for the implemen-
tation with γν = 0 for all ν . (c) Comparison of magnitude of steps between γν = 0 and γν = 1
implementations at each iteration
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timal” weights corresponding to the sparsest signal x∗ to be the densest weights
for which the minimum of the expanded problem (1.14) – 0 – is achieved. In other
words, the weights in the reweighted `1 minimization problem are dual to the sig-
nal: under the right conditions, the sparsest signal x∗ determines the corresponding
family of densest weights L∗ and vice verse. However, finding a densest weight is
sufficient for recovering x∗ – it might not be necessary. There may be other, denser
weights L̄ for which x∗ can be recovered uniquely. The orthogonal matching pur-
suit algorithm – Algorithm 1.3.2 with γν = 0, or equivalently Algorithm 1.4.3 –
finds a weight (perhaps not the densest) from which the unique sparsest signal can
be recovered. An investigation of the duality relationship between the weights and
sparse signals might shed further light on the unique solvability and computational
complexity of the sparse recovery problem. In particular, it is possible that for cer-
tain problems it is “easier” to determine a sufficiently dense weight than to find the
sparsest solution.

The next step in this research will be to investigate the other relaxations, ε > 0
of (1.6). For this instance the objective is smooth (infinitely differentiable) in its do-
main RL, and the gradient can be written in closed-form. We conjecture that the cor-
responding steepest descent, exact linesearch algorithm with dynamic reweighting
will behave much like an interior point algorithm since the effect of the parameter ε

is to keep the iterates on the interior of the feasible region.
Another direction that needs to be addressed is sparse approximate solutions to

the model Ax = b. This is more appropriate for applications where the image b is
corrupted by noise, or, as we have seen, numerical error. There has been a lot of
very good work in this direction by other researchers. Our approach is appropriate
for fast (finitely terminating), highly accurate exact solutions. It remains to be seen
whether this basic program extends to fast (polynomial time), reasonably accurate
approximate solutions.
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