
EULER-BOOLE SUMMATION REVISITED

1. Introduction.

The Euler-Maclaurin summation formula [9, 2.11.1],

n−1∑

j=a

f(j) =

∫ n

a

f(x) dx +

m∑

k=1

Bk

k!

(
f (k−1)(n)− f (k−1)(a)

)
(1)

+
(−1)m+1

m!

∫ n

a

B̃m(y) f (m)(y) dy,

is a well-known formula from classical analysis giving a relation between the finite sum of values
of a function f , whose first m derivatives are absolutely integrable on [a, n], and its integral, for
a, m, n ∈ N, a < n. This elementary formula appears often in introductory texts [2, 17], usually in
reference to a particular application—Stirling’s asymptotic formula. However, general approaches
to such formulae are not often mentioned in the same context.

In the formula above, the Bl are the Bernoulli numbers and the B̃l(x) are the periodic Bernoulli
polynomials. The Bernoulli polynomials are most succinctly characterized by a generating function
[1, 23.1.1]:

text

et − 1
=

∞∑

n=0

Bn(x)
tn

n!
.(2)

The periodic Bernoulli polynomials are defined by taking only the fractional part of x: B̃n(x) :=
Bn({x}) [9, 24.2.11-12]. Evaluating at the point x = 0 gives the Bernoulli numbers [1, 23.1.2]:
Bl := Bl(0).

A similar formula comes from starting with a different set of polynomials. The Euler polynomials
En(x) are given by the generating function [1, 23.1.1]

2ext

et + 1
=

∞∑

n=0

En(x)
tn

n!
.(3)

Let the periodic Euler polynomials Ẽn(x) be defined by Ẽn(x + 1) = −Ẽn(x) and Ẽn(x) = En(x)
for 0 ≤ x < 1 [9, 24.2.11-12]. Unlike the periodic Bernoulli polynomials, which have period 1, the

Ẽn(x) have period 2. Thirdly, define the Euler numbers by En := 2nEn(1/2) [1, 23.1.2]; i.e. [9,
24.2.6],

2et

e2t + 1
=

∞∑

n=0

En
tn

n!
.(4)

The alternating version of (1), using Euler polynomials, is the Boole summation formula [9,
24.17.1-2], : Let a, m, n ∈ N, a < n. If f(t) is a function on t ∈ [a, n] with m absolutely integrable
derivatives, then for 0 < h < 1,

n−1∑

j=a

(−1)jf(j + h) =
1

2

m−1∑

k=0

Ek(h)

k!

(
(−1)n−1f (k)(n) + (−1)af (k)(a)

)

+
1

2(m− 1)!

∫ n

a

f (m)(x)Ẽm−1(h− x) dx.(5)
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The first appearance of this formula is due to Boole [4]; a similar formula is believed [8] to have
been known to Euler as well. Mention of this beautiful formula in the literature is regrettably scarce
in comparison to that of (1), although in [5] it is used to explain a curious property of truncated
alternating series for π and log 2—for which Boole summation is better suited than Euler-Maclaurin.

In his 1960 note, Strodt [15] indicated a unified operator-theoretic approach to proving both of
these formulae, but with very few of the details given. In the years since, excellent generalizations
of Euler-MacLaurin summation have appeared [3], yet not using this particular approach. The main
goals of this note are to fill in Strodt’s details, and to demonstrate the extent to which his ideas can
be extended to other cases.

We begin with a characterization of the operators suggested by Strodt and their associated poly-
nomials. Section 2 ends with a couple of main theorems about these polynomials, which lead to
corollaries concerning both the Euler and Bernoulli polynomials—this is the content of Section 3.
The following section describes the polynomials arising from well-known probability densities. In
Section 5 we detail Strodt’s unified development of the summation formulae of Euler and Boole. Sec-
tion 6 describes a generalized development of inversion formulae involving the Euler and Bernoulli
numbers. We conclude our discussion with a conjecture and proof of a general asymptotic formula
in Section 7.

2. Strodt’s Operators and polynomials.

We introduce a class of operators on functions of a finite real interval. Let C[a, b] denote the
continuous functions on the finite interval [a, b], in the supremum norm. Define, for n ∈ N, the
uniform interpolation Strodt operators Sn : C[x, x + 1] 7→ C[x, x + 1] by

Sn(f)(x) :=
n−1∑

j=0

1

n
· f(x + j/(n− 1)).(6)

The operators used by Strodt to prove Euler-MacLaurin summation and Boole summation are both
covered under this definition, as we shall demonstrate. Since the operators defined by (6) are positive,
they are necessarily bounded linear operators.

We will show that an operator in this class will send a polynomial in x to another one of the same
degree. Furthermore, we claim they are bijections on the set of degree-k polynomials. This fact will
be used to define both Euler and Bernoulli polynomials as inverses of xk under different operators.
There is evidence that this approach is known, at least informally, in the Bernoulli case [?], but not
for Euler polynomials.

We begin by noting an important property of any interpolation operator on polynomials.

Proposition 2.1. For each k ∈ N, let Pk := {∑k
i=0 aix

i : ai ∈ R} ∼= Rk+1. Then for all n ∈ N,
given A ∈ Pk there is a unique B ∈ Pk such that Sn(B) = A.

This property will be proven for a more general class of operators. Given a finite set of points
{xi}Ni=1 ⊂ [0, 1] and a probability weight function

w : {xi}Ni=1 7→ (0, 1) so that

N∑

i=1

w(xi) = 1,

we define the corresponding finite Strodt operator

Sw(f)(x) :=

N∑

i=1

f(x + xi)w(xi)(7)
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that generalizes Sn. Even more broadly, define the generalized Strodt operators

Sµ(f)(x) :=

∫
f(x + u) dµ,(8)

where the integral is a Lebesgue integral with measure µ, taken over some measurable subset of
u ∈ R. We will often consider the special case dµ = g(u) du where g(u) is any absolutely continuous
probability weight function with finite moments:

∫
g(u) du = 1 and

∫
|u|kg(u) du <∞ for all k ∈ N.(9)

Here and from this point forward we will use the convention
∫

=
∫∞
−∞, where the support of g is

used to effectively limit the interval.
Hence (7) can be seen to be an instance of (8) where we formally write g as a Dirac delta

“function”:

Sµ = Sω = Sg, where g(u) =

N∑

i=1

w(xi)δxi(u).(10)

More precisely, we would be identifying Sµ(f) and Sg(f) with the Lebesgue-Stieltjes integral
∫

f(x+
u) dG where dG = g(u) du, see [16, pp. 282–284]. Thus, the original class {Sn : n ∈ N} is also
covered by this definition. We will prove that a version of Proposition 2.1 holds for even this most
general class of operators, which we continue to denote Sg.

Now suppose f ∈ Pk; that is, f :=
∑k

n=0 fnxn, for fn ∈ R. By definition,

h(x) := Sg(f) =

∫ k∑

n=0

fn(x + u)ng(u) du,(11)

and we see via the binomial theorem that h(x) is again a polynomial of degree k:

h(x) =

k∑

j=0

hjx
j ,(12)

where hj =
∑k

n=j fn

(
n
j

)
Mn−j and

Ml :=

∫
ul dG(u).(13)

Regarding degree-k polynomials as vectors of length k + 1 via the natural isomorphism, we see
that the restriction of the operator Sg to Pk

∼= Rk+1 can be represented by a (k+1)× (k+1) matrix.
The coefficients of this matrix are read directly from (12):

Sg

∣∣∣
Pk

[i, j] :=

{ (
j−1
i−1

)
Mj−i for 1 ≤ i ≤ j ≤ k + 1,

0 otherwise.
(14)

This allows us to prove that this operator is invertible.

Proposition 2.2. Let g be a probability density function whose absolute moments exist. For all
h ∈ Pk, there is a unique f ∈ Pk so that Sg(f) = h.

Proof. We see from (14) that Sg

∣∣∣
Pk

is an upper-triangular matrix whose determinant is

det

(
Sg

∣∣∣
Pk

)
=

k∏

t=0

(
t

t

)
M0 = 1(15)

and so h(x) is the unique solution of a linear system of equations:

h = S(−1)
g f.(16)
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�

The reader will note that Proposition 2.1 follows from this as a special case.

We can recover both the Euler polynomials and the Bernoulli polynomials using this uniqueness
property with different weight functions. Define the Euler operator as

SE(f)(x) :=
f(x) + f(x + 1)

2
; i.e., g(u) := δ0(u)/2 + δ1(u)/2;(17)

and the Bernoulli operator by

SB(f)(x) :=

∫ 1

0

f(x + u) du; i.e., g(u) := χ[0,1].(18)

We now claim that the set of Euler polynomials En(x) is the unique set of polynomials that satisfy

SE(En(x)) = xn for all n ∈ N0,(19)

while the Bernoulli polynomials are the unique polynomials which satisfy

SB(Bn(x)) = xn for all n ∈ N0.(20)

Remark 1. One now sees the motivation behind the definition of Sn in (6). The Euler operator is
S2. The Bernoulli operator corresponds via a Riemann sum to the limit of Sn as n → ∞. Hence,
the range of n provides an interpolation of sorts between these two developments.

We shall prove that the generating function characterizations of the Bernoulli and Euler polynomi-
als follow from (19) and (20). Thus these formulae comprise sufficent definitions of the polynomials.
Unlike the conventional recursive definitions of Bn(x) and En(x), these definitions require no extra
conditions, such as initial values [15]. Furthermore, they each take the form S−1

g (xn) for different
weight functions. This suggests a natural generalization of Bernoulli and Euler polynomials which
we will call Strodt polynomials. They will be denoted P g

n ≡ Pn, n ∈ N0 (we will typically suppress
the g in the notation).

Theorem 2.3. For each n in N0, let P g
n(x) be the Strodt polynomial associated with a given density

g(x); that is, for all x ∈ R, P g
n (x) is defined implicitly by the relation

Sg(P
g
n (x)) = xn for all n ∈ N0,(21)

where Sg is a Strodt operator. Then

d

dx
P g

n (x) = nP g
n−1(x) for all n ∈ N.(22)

Proof. By the Lebesgue Dominated Convergence Theorem [13], we have that

d

dx

∫
Pn(x + u)g(u)du = lim

ν→∞

∫
ν

(
Pn(x + 1/ν + u)− Pn(x + u)

)
dG(u)

=

∫
lim

ν→∞
ν

(
Pn(x + 1/ν + u)− Pn(x + u)

)
dG(u)

=

∫
d

dx
Pn(x + u) dG(u).

Therefore, in view of (21), we have that

Sg

(
d

dx
Pn − nPn−1

)
=

d

dx
(xn)− nxn−1 = 0.(23)

But Sg is one-to-one on polynomials by Proposition 2.2, hence the desired conclusion follows. �
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We note that the class of Strodt polynomials comprises a subset of Appell sequences [12]. These
are the polynomial sequences given by generating functions of the form

∞∑

n=0

An(x)
tn

n!
=

ext

G(t)
.(24)

Here G(t) is a function defined formally by the coefficient sequence of its series in t, where the only
restriction is that the leading term must not be zero. This is in fact equivalent to (22) [12].

The next theorem clarifies the relation between Strodt polynomials and Appell sequences.

Theorem 2.4. Suppose a class of polynomials {Cn(x)}n≥0 with real coefficients has an exponential
generating function of the form

∞∑

n=0

Cn(x)
tn

n!
= extR(t),(25)

where R(t) is a continuous function on the real line. Then the exponential generating function of
the polynomial sequence which is the image of the Cn under the operator Sg is given by

∞∑

n=0

Sg(Cn(x))
tn

n!
= extR(t)Qg(t),(26)

where

Qg(t) :=

∫
eut dG(u).(27)

Proof. Assume that the parameter t is within the radius of uniform convergence of the formal power
series (25) for an arbitrary fixed value of x. Then we can integrate the series (25) termwise to
produce:

∞∑

n=0

∫
Cn(x + u) g(u) du

tn

n!
=

∫
e(x+u)tR(t) g(u) du.(28)

This is equivalent to (26). �

As in the case of the P g
n(x) = Pn(x), the functions Qg(t) = Q(t) are implicitly dependent on the

weight function g(u), but this will be suppressed in the notation.
Expanding the exponential integrand of (27) in a Taylor series, and then integrating termwise,

we see that

Q(t) =

∞∑

n=0

Mn
tn

n!
,(29)

where Mn is, as in (13), the nth moment of the cumulative distribution function of the density g(u).
Therefore Q(t) is the moment generating function of g. See [6] for more information on moment
generating functions.

Theorem 2.4 has the following consequence on the generating function of Strodt polynomials:
∞∑

n=0

Pn(x)
tn

n!
=

ext

Q(t)
.(30)

To see why this must be true, apply (26) with Cn(x) = Pn(x), and conclude that R(t) must equal
1/Q(t).

Remark 2. Now we see the precise connection to Appell sequences: The Appell sequence, whose
generating function comes in the form ext/Q(t), is a Strodt polynomial sequence exactly when Q(t)
is the moment generating function of some cumulative distribution function.

We can now verify our claim regarding the definition of Bernoulli and Euler polynomials.
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Corollary 2.5. Formulae (19) and (20) are sufficient definitions of the classical Euler polynomials
and Bernoulli polynomials, respectively.

Proof. We show that the conditions (19) and (20) imply the generating function characterization of
the two classes of polynomials. Start with the Euler polynomials, whose generating function is given
by [9, 24.2.8] as

∞∑

n=0

En(x)
tn

n!
=

2ext

et + 1
.(31)

The Euler polynomials satisfy

∞∑

n=0

SE(En(x))
tn

n!
=

2ext

et + 1
·QE(t)(32)

by Theorem 2.4. We verify that

QE(t) =

∫
eut (δ0(u)/2 + δ1(u)/2) du =

et + 1

2
,(33)

and so

∞∑

n=0

SE(En(x))
tn

n!
= ext =

∞∑

n=0

xn tn

n!
.(34)

Therefore, by uniqueness of power series coefficients, we have that for each integer n ≥ 0, En(x) is
a polynomial of degree n that satisfies (19); that is,

SE(En(x)) = xn for all n ∈ N0.(35)

Proposition 2.2 assures us that the En(x) are completely determined by this property, so it can be
used as a definition.

The argument for Bernoulli polynomials is similar. This time,

QB(t) =

∫ 1

0

eut du =
et − 1

t
.(36)

Using the generating function for Bernoulli polynomials,

∞∑

n=0

Bn(x)
tn

n!
=

text

et − 1
,(37)

Theorem 2.4 implies that

∞∑

n=0

SB(Bn(x))
tn

n!
=

text

et − 1
· e

t − 1

t
= ext =

∞∑

n=0

xn tn

n!
.(38)

Thus, by uniqueness of power series coefficients, the Bn(x) are degree-n polynomials satisfying

SB(Bn(x)) = xn for all n ∈ N0.(39)

By Proposition 2.2, the Bernoulli polynomials are the unique polynomials that satisfy this property.
�
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3. First Consequences.

We now show a few interesting special cases of Strodt polynomials and add to the list of properties
that are directly implied by Theorems 2.3 and 2.4. In addition to what is shown here, we believe
that most properties of Bernoulli and Euler polynomials that appear as formulas in a reference such
as [1] or [9] are true in general for Strodt polynomials.

The Bernoulli polynomials of the kth order (or type, but not to be confused with the Bernoulli
polynomials of the kth kind, which are altogether different!) are given by the generating function
[9, 24.16.1]

∞∑

n=0

B(k)
n (x)

tn

n!
=

(
t

et − 1

)k

ext.(40)

We see that, for k = 1, this generating function agrees with (2). Therefore Bernoulli polynomials of

the first order are the same as regular Bernoulli polynomials: B
(1)
n (x) = Bn(x). Since the generating

function of kth-order Bernoulli polynomials is just ext divided by a power of Q(t), we can also define

these polynomials by iterations of SB, the Bernoulli operator. Henceforth we will let S(k)
g denote

the k-fold composition of the Strodt operator.

Corollary 3.1. For each positive integer k, if a degree-n polynomial B
(k)
n (x) satisfies

S(k)
B [B(k)

n (x)] = xn for n ∈ N0,(41)

where SB is the Bernoulli operator given in (18), then B
(k)
n (x) is a Bernoulli polynomial of the kth

order.

Proof. We emulate the proof of Corollary 2.5 for Bernoulli polynomials. Use Theorem 2.4 inductively
on k ≥ 1 to show that the following is true for Bernoulli polynomials of the kth order:

∞∑

n=0

S(k)
B [B(k)

n (x)]
tn

n!
=

(
t

et − 1

)k

ext

(
et − 1

t

)k

=
∞∑

n=0

xn tn

n!
.(42)

Thus, with k fixed, for each n ≥ 1, B
(k)
n (x) is a degree-n polynomial satisfying (41). An easy

inductive argument with Proposition 2.2 can be used to show that the B
(k)
n (x) are uniquely defined

by this property. �

A similar property holds for Euler polynomials of the kth order.

Corollary 3.2. Let 0 ≤ k, n ∈ N. If a degree-n polynomial E
(k)
n (x) satisfies

S(k)
E [E(k)

n (x)] = xn,(43)

where SE is the Bernoulli operator given in (17), then E
(k)
n (x) is an Euler polynomial of the kth

order.

Proof. The proof is similar to that of the Bernoulli polynomials of the kth order. The generating
function for Euler polynomials of the kth order [9, 24.16.2] is

∞∑

n=0

E(k)
n (x)

tn

n!
=

(
2

et + 1

)k

ext.(44)

Fix k ≥ 1, and use Theorem 2.4 inductively to show that

∞∑

n=0

S(k)
E [E(k)

n (x)]
tn

n!
=

(
2

et + 1

)k

ext

(
et + 1

2

)k

=

∞∑

n=0

xn tn

n!
.(45)
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Therefore, by the uniqueness of power series coefficients, for each n ≥ 1, E
(k)
n (x) is a degree-n

polynomial satisfying (43). Finally, one argues inductively on k, using Proposition 2.2, that the

E
(k)
n (x) are uniquely defined by this property. �

We are motivated to create a new definition: For positive integers n and k, the Strodt polynomials

of the kth order, denoted P
(k)
n (x), are the polynomials which satisfy

S(k)
g (P (k)

n (x)) = xn.(46)

By Proposition 2.2 they are well-defined, and arguments similar to those directly above construct
generating functions of the form

∞∑

n=0

P (k)
n (x)

tn

n!
=

ext

[Q(t)]k
.(47)

We now construct a binomial recurrence formula for Strodt polynomials. This is meant to gener-
alize entry 23.1.7 in [1], which states that

Bn(x + h) =

n∑

k=0

(
n

k

)
Bk(x)hn−k(48)

and

En(x + h) =

n∑

k=0

(
n

k

)
Ek(x)hn−k.(49)

This property is an equivalent definition of Appell sequences [12].

Corollary 3.3. For n ∈ N0, let Pn(x) be a Strodt polynomial for a given weight function g(u); i.e.,
for each n ≥ 0, Pn(x) is the unique polynomial satisfying Sg(Pn(x)) = xn. Then

Pn(x + h) =

n∑

k=0

(
n

k

)
Pk(x)hn−k.(50)

Proof. Since Sg(Pn(x)) = xn, it is not hard to show using the definition of Sg that

Sg(Pn(x + h)) = (x + h)n.(51)

Now use the binomial theorem to expand the right hand side in powers of x and h. But each power
xk is equal to Sg(Pk(x)), again by definition. Therefore, we have

Sg(Pn(x + h)) = Sg

(
n∑

k=0

(
n

k

)
Pk(x)hn−k

)
(52)

by linearity of Sg. Now apply S(−1)
g to both sides, invoking Proposition 2.2, to arrive at (50). �

The known recurrence formulae for Bernoulli and Euler polynomials can be derived directly from
here. For example, when h = 1, we have

Pn(x + 1)− Pn(x) =

n−1∑

k=0

(
n

k

)
Pk(x).(53)

Rewriting the left-hand side as an integral yields

Pn(x + 1)− Pn(x) =

∫ 1

0

P ′
n(x + u) du = n

∫ 1

0

Pn−1(x + u) du.(54)

Now suppose that g(u) := χ[0,1], so that the Pn(x) are Bernoulli polynomials. Then we have that

n

∫ 1

0

Bn−1(x + u) du = n SB(Bn−1(x)) = nxn−1.(55)
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We have thus derived a standard binomial relation for Bernoulli polynomials [9, 24.5.1]:

nxn−1 =

n−1∑

k=0

(
n

k

)
Bk(x).(56)

On the other hand, we can rewrite (53) as

Pn(x + 1) + Pn(x) =

n∑

k=0

(
n

k

)
Pk(x) + Pn(x).(57)

The left-hand side of this equation is equal to 2 SE (Pn(x)), and so in the case that Pn(x) = En(x),
this leads to the formula [9, 24.5.2]

n∑

k=0

(
n

k

)
Ek(x) + En(x) = 2xn.(58)

We can also let h = −1; this yields alternating versions of the formulae above. The result in (50)
becomes

Pn(x − 1)− Pn(x) =
n−1∑

k=0

(−1)n−k

(
n

k

)
Pk(x) .(59)

We repeat the derivation above to obtain an alternating version of the Bernoulli recurrence. We
write

Pn(x− 1)− Pn(x) = −
∫ 1

0

P ′
n(x− 1 + u) du = −n

∫ 1

0

Pn−1(x− 1 + u) du.(60)

Now let g(u) := χ[0,1], so that the Pn(x) are Bernoulli polynomials. Since

−n

∫ 1

0

Bn−1(x− 1 + u) du = −n SB(Bn−1(x− 1)) = −n(x− 1)n−1,(61)

we can conclude that

n(x− 1)n−1 =
n−1∑

k=0

(−1)n−k+1

(
n

k

)
Bk(x).(62)

Alternatively, rewrite (53) as

Pn(x− 1) + Pn(x) =
n∑

k=0

(−1)n−k

(
n

k

)
Pk(x) + Pn(x).(63)

The left-hand side of this equation is equal to 2 SE (Pn(x− 1)). Now suppose that we are in the
Euler polynomial case, so that Pn(x) = En(x). We thus obtain an alternating recurrence formula
for the Euler polynomials:

n∑

k=0

(−1)n−k

(
n

k

)
Ek(x) + En(x) = 2(x− 1)n.(64)

Finally, we will prove a formula which simplifies proofs that will appear later in this paper. Set
x = 0 in (50) to get

Pn(h) =

n∑

k=0

(
n

k

)
Pk(0)hn−k.(65)
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We now introduce the definition of a Strodt number as Pk := Pk(0), k ≥ 0. Substituting x for h in
(65) and then reindexing the sum, we get

Pn(x) =

n∑

k=0

(
n

k

)
Pn−kxk.(66)

This formula will be recalled in the next section to calculate a Strodt polynomial, and in Section 6
it will help us to prove an inversion formula for Strodt numbers.

4. Strodt polynomials of Probability Densities.

We have already seen how the generating functions and additive properties of Euler and Bernoulli
polynomials can be recovered if one begins by defining them as Strodt polynomials. In fact, one
could choose any density function and, proceeding in the same manner, obtain a class of polynomials
with similar properties. In this section we will discover the Strodt polynomials associated with
each of a selection of well-known probability distributions; the reader is encouraged to discover the
consequences arising from other densities.

Example 4.1. Gaussian Density Function.

Here we take g(u) = 1√
π
e−u2/2, −∞ < u <∞. We calculate the moment generating function of

this distribution:

Q(t) =
1√
π

∫ ∞

−∞
eut e−u2/2 du = et2/4.(67)

The generating function for the Strodt polynomials in this case is thus
∞∑

n=0

Pn(x)
tn

n!
= ext/Q(t) = ext−t2/4.(68)

At this point a similarity to the Hermite polynomials is evident; their generating function is known

to be e2xt−t2 [1, 22.9.17]. Thus it follows that the Strodt polynomials in this case are scalings of the
Hermite polynomials, as

2nPn(x) = Hn(x) for all n ∈ N.(69)

We now have the following immediate corollary to Theorems 2.4 and 2.3.

Corollary 4.2. The Hermite polynomials Hn(x) are scaled Strodt polynomials for the Gaussian
density function. They satisfy

1√
2π

∫ ∞

−∞
Hn(x + u) e−u2/2 du = (2x)n, for all n ∈ N0,(70)

and
d

dx
Hn(x) = 2nHn−1(x), for all n ∈ N.(71)

Proof. The Pn(x) in (68) were contrived to satisfy the generating function that makes them the
Strodt polynomials of the Gaussian distribution. Therefore they satisfy

Sg(Pn(x)) = xn,(72)

which leads to (70), after one divides by a power of 2. Similarly, (71) follows from Theorem 2.3. �

The symmetry of the function e−u2/2 about the origin leads to an additional property of the
Strodt operator for this distribution.

Proposition 4.3. For g(u) = 1√
2π

e−u2/2 , the operator Sg sends even polynomials to even polyno-

mials and odd polynomials to odd polynomials.
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Proof. Examine the image of the monomial xn under the Strodt operator. We expand (x + u)n in
the integrand via the binomial theorem, yielding

Sg(x
n) =

1√
2π

n∑

j=0

(
n

j

)
xj

∫ ∞

−∞
un−j e−u2/2 du.(73)

We see that the integrals in this finite sum vanish if n − j is an odd integer, for that causes the
integrand to be an odd function. Therefore, the resulting polynomial must have the same parity
as the original function, which is the parity of n itself. Since any even (odd) polynomial is a linear
combination of even (odd) monomials, the proposition follows by linearity of the operator. �

Remark 3. The Hermite polynomials are the only Appell sequence polynomials which are orthog-
onal; see [14] for a nice discussion of this topic. Since Strodt polynomials are a subset of Appell
sequences, we know that Hermite polynomials are the only orthogonal Strodt polynomials as well.

Example 4.4. Poisson Distribution.

The Poisson distribution X for a real parameter λ is given by the probability function

P (X = j) = e−λ λj

j!
for j ∈ N0 .(74)

This corresponds to the weight function

g(u) :=

∞∑

j=0

δj(u)e−λ λu

Γ(u + 1)
.(75)

We will develop the main properties using a general value of λ as far as this is possible.
Since the moment generating function is

Q(t) = e−λ
∞∑

j=0

ejt λj

j!
= eλ(et−1),(76)

this generating function is given by

∞∑

n=0

Pn,λ(x)
tn

n!
= exte−λ(et−1),(77)

where the polynomials also depend on the value of the real parameter λ. Letting x = 0, we get

∞∑

n=0

Pn,λ
tn

n!
= e−λ(et−1),(78)

where the coefficients on the left are Strodt numbers, which we define in a similar way as in the
previous section: Pn,λ := Pn,λ(0). We expand the right-hand side of this equation in a Taylor series
with respect to t to obtain

e−λ(et−1) =

∞∑

j=0

∞∑

n=0

jntn

n!
eλ (−λ)j

j!
=

∞∑

n=0

tn

n!
eλ

∞∑

j=0

jn(−λ)j

j!
.(79)

In the inner sum, replace jn using the following well-known formula [1, 24.1.4 B]:

jn =
∑n

k=0 S(n, k)(j)k =

n∑

k=0

S(n, k)j(j − 1) · · · (j − k + 1),(80)
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where the S(n, k) are the Stirling numbers of the second kind. These are defined as the number of
ways to partition a set of n elements into k nonempty subsets; [11] describes their use in combina-
torics. The above identity allows us to reach a closed form for the inner sum, and hence the Strodt
numbers:

Pn,λ = eλ
∞∑

j=0

jn(−λ)j

j!
= eλ

n∑

k=0

S(n, k)(−λ)k
∞∑

j=k

(−λ)j−k

(j − k)!
=

n∑

k=0

S(n, k)(−λ)k.(81)

The polynomial on the right is identified in [11] as the mth Bell polynomial Bm(−λ), and a similar
derivation is given there. We will, however, eschew this notation in order to avoid confusion with
the Bernoulli polynomials. Finally, we achieve a closed form for the Strodt polynomials. Recall (66),
which says

Pn(x) =

n∑

m=0

(
n

m

)
Pn−mxm =

n∑

m=0

(
n

m

)
Pmxn−m.(82)

Matching this with our derived closed-form of the Strodt number, we obtain

Pn,λ(x) =

n∑

m=0

(
n

m

) m∑

k=0

S(m, k)(−λ)k xn−m.(83)

In the special cases λ = −1 and 1, the Strodt numbers will reduce to the mth Bell number and
complementary Bell number [11], respectively.

Again, we have a corollary of Theorems 2.4 and 2.3.

Corollary 4.5. Let Pn,λ(x) be defined by (83) for n ∈ N0 and fixed λ ∈ R. Then

e−λ
∞∑

j=0

Pn,λ(x + j)
λj

j!
= xn(84)

and
d

dx
Pn,λ(x) = nPn−1,λ(x).(85)

Proof. We derived (83) from the power series
∞∑

n=0

Pn,λ(x)
tn

n!
= ext−λ(et−1) = ext/Q(t),(86)

and thus by Theorem 2.4 the Pn,λ(x) are the Strodt polynomials for the Poisson distribution with
fixed parameter λ. Hence (84), which reads Sg(Pn,λ(x)) = xn, follows by definition of Strodt
polynomials and (85) is a consequence of Theorem 2.3. �

Example 4.6. Exponential Distribution.

For λ > 0 we take the density function associated with the exponential distribution to be

g(u) :=

{
λe−λu for u > 0,
0 u ≤ 0,

(87)

and we calculate the moment generating function

Q(t) = λ

∫ ∞

0

eut−λu du =
λ

λ− t
=

1

1− t/λ
(88)

for real t < λ . Therefore, by Theorem 2.4,
∞∑

n=0

Sg(x
n)

λntn

n!
=

ext

1− t/λ
.(89)



EULER-BOOLE SUMMATION REVISITED 13

We thus have the following property of the images of xn under the Strodt operator for the exponential
distribution.

Proposition 4.7. When g(u) is the exponential density (87), the Strodt operator Sg applied to the
monomial xn gives a scaled Taylor series truncation of the exponential function:

Sg(x
n) = n!λ−n

n∑

m=0

(λx)m

m!
, for all n ∈ N0, λ > 0.(90)

Proof. On the right-hand side of (89), expand ext in a Taylor series and (1− t/λ)−1 in a geometric
series. Then match tn coefficients. �

We claim that the Strodt polynomials for the exponential distribution are given by

P0,λ(x) = 1, Pn,λ(x) = xn − nxn−1/λ for n ∈ N.(91)

Indeed,

Sg

(
xn − xn−1/λ

)
= Sg(x

n)− Sg(x
n−1)/λ(92)

= n!λ−n
n∑

m=0

(λx)m

m!
− n!λ−n

n−1∑

m=0

(λx)m

m!
(93)

= xn(94)

for n ≥ 1, and Sg(1) = 1. The justification for (92) is the linearity of the Strodt operator, and (93)
follows from (90). Our editor has correctly noted that one can calculate the Strodt polynomials
much more directly by using (66). However, we retain Proposition 4.7 for its inherent interest.

5. Summation Formulae.

The focus of Strodt’s brief note [15] was to compare the summation formulae of Euler-MacLaurin
and Boole. We now fill in the details for a general formula and show how it can be specified to
obtain either formula.

We begin the argument for a general density function. Let z = a + h for 0 < h < 1. For a fixed
integer m ≥ 0, define the remainder as

Rm(z) := f(z)−
m∑

k=0

Sg(f
(k))(a)

k!
Pk(h),(95)

for a sufficiently smooth function f . The process of deriving a summation formula in general es-
sentially reduces to finding an expression for Rm(z) as an integral involving the Strodt polynomials
corresponding to the operator Sg.

Start with m = 0. Since P0(z) = 1 and
∫

g(u) du = 1, we have

R0(z) = f(a + h)−
∫

f(a + u) g(u) du =

∫
[f(a + h)− f(a + u)] g(u) du .(96)

We rewrite the integrand in the right-hand side as

f(a + h)− f(a + u) =

∫ h

u

f ′(a + s) ds,(97)

assuming that f has a continuous derivative. Using Fubini’s theorem, we switch the order of inte-
gration. This yields

R0(z) =

∫ ∫ h

u

f ′(a + s) ds g(u) du =

∫
V (s, h) f ′(a + s) ds,(98)
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where we define the piecewise function

V (s, h) :=

{ ∫ s

−∞ g(u) du for s < h,∫ s

−∞ g(u) du − 1 for s ≥ h.
(99)

At this point we separate the development into Euler-MacLaurin and Boole cases.

(a) For Boole summation, Pn(x) = En(x) and g(u) = (δ0(u) + δ1(u))/2. We calculate that

2 · V (s, h) =





1 for 0 ≤ s < h
−1 for h ≤ s ≤ 1
0 otherwise

(100)

= Ẽ0(h− s)χ[0,1](s),

where Ẽ0(x) is the periodic Euler polynomial on [0, 1]. Thus we have

f(a + h) = SE(f)(a) +
1

2

∫ 1

0

f ′(a + s)Ẽ0(h− s) ds,(101)

which corresponds to (5) in the special case m = 1 and n = a + 1. We view this as the core formula
in Boole summation, and the rest of (5) can be fleshed out by summing and integrating by parts.

We begin by rewriting (101) using the change of variables x := a + s in the integrand. Since

a ∈ N, Ẽ0(a + h− s) = (−1)aẼ0(h− s) and

f(a + h) =
1

2
(f(a) + f(a + 1)) +

(−1)a

2

∫ a+1

a

f ′(x)Ẽ0(h− x) dx.(102)

Now replace a in (102) with j and take the alternating sum of both sides as j ranges from a to n−1.
The sum telescopes and we combine the intervals of integration to obtain a single integral on [a, n].
This gives us

n−1∑

j=a

(−1)jf(j + h) =
1

2
((−1)af(a) + (−1)n−1f(n)) +

1

2

∫ n

a

f ′(x)Ẽ0(h− x) dx.(103)

This is exactly (5) with m = 1.
To complete (5) for a general positive integer m ≥ 1 requires a proof by induction. An integration

by parts confirms that
∫ n

a

f (k)(x)Ẽk−1(h− x) ds =
Ẽk(h)

k
((−1)n−1f (k)(n) + (−1)af (k)(a))(104)

+
1

k

∫ n

a

Ẽk(h− x)f (k+1)(x) dx

for k ≥ 0, which supplies the induction step.

(b) Euler-MacLaurin summation (as in [15]): If we instead take g(u) = χ[0,1](u), then we write

V (s, h) =





s for 0 ≤ s < h,
s− 1 for h ≤ s ≤ 1,
0 otherwise.

(105)

Therefore,

R1(z) =

∫ 1

0

V (s, h)f ′(a + s) ds−
∫ 1

0

f ′(a + s) ds (h− 1/2)(106)

=

∫ 1

0

B̃1(s− h) f ′(a + s) ds.(107)
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This is owing to the observation V (s, h)− (h− 1/2) = B̃1(s− h) g(s). Hence we have

f(a + h) =

∫ 1

0

f(s + a) ds + B1(h)(f(a + 1)− f(a))(108)

+

∫ 1

0

f ′(a + s)B̃1(s− h) ds.

As in the Boole case, we are now essentially done. To completely recover (1), we simply integrate
by parts and sum over consecutive integers.

Summing over the integers within the interval [a, n− 1] yields

n−1∑

j=a

f(j + h) =

∫ n

a

f(x) dx + B1(h)(f(n)− f(a)) +

∫ n

a

f ′(x)B̃1(x− h) dx.(109)

Here we have also shifted both intervals of integration via x := a+ s. This formula is the initial case
for an induction proof. Also,

∞∑

n=0

Bn(1 − x)
tn

n!
=

te(1−x)t

et − 1
=

te−xt

1− e−t
=

∞∑

n=0

Bn(x)
(−t)n

n!
,(110)

whence we derive by matching coefficients the well-known fact B̃n(−h) = Bn(1− h) = (−1)nBn(h)
for all n ≥ 0 [1, 23.1.8]. Now an integration by parts yields

∫ n

a

f (k)(x)B̃k(x− h) dx =
(−1)k+1Bk+1(h)

k + 1
(f (k)(n)− f (k)(a))(111)

− 1

k + 1

∫ n

a

f (k+1)(x)B̃k+1(x) dx

for all k ≥ 1, which provides the induction step. The result is

n−1∑

j=a

f(j + h) =

∫ n

a

f(x) dx +
m∑

k=1

Bk(h)

k!
(f (k−1)(n)− f (k−1)(a))(112)

+
(−1)m+1

m!

∫ n

a

f (m)(x)B̃m(x − h) dx.

This is a generalized version of (1), as one can see by taking the limit as h→ 0.

(c) The Taylor series approximation can be seen as another case in this general approach. Let
g(u) = δ0(u), so that Sg(x

n) = xn. This means that Pn(x) = xn. We will call this operator S1, to
be consistent with (6) as well as to indicate that this is the identity operator. In this case,

V (s, h) :=

{
1 for 0 < s < h,
0 otherwise.

(113)

Thus we have

f(a + h) = f(a) +

∫ a+h

a

f ′(x) dx.(114)

Here we have substituted x := a + s in the integral. We then use integration by parts to verify that
∫ a+h

a

(x − a− h)k−1f (k)(x) dx = − (−h)k

k
f (k)(a)− 1

k

∫ a+h

a

(x − a− h)kf (k+1)(x) dx(115)

for all k ≥ 1. Therefore, by induction, for all m ≥ 0,

f(a + h) =

m∑

k=0

f (k)(a)
hk

k!
+

(−1)m

m!

∫ a+h

a

(x− a− h)mf (m+1)(x) dx.(116)
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The derivations of the Euler-MacLaurin and Boole summation formulae, seen in this way, appear
essentially similar to that of the Taylor series approximation. This comparison has been made in [7]
in the Euler-MacLaurin and Taylor cases.

Remark 4. In each of the above cases, the proof relies on the fact that the function V (s, h) can be
related back to a polynomial from the original sequence. At present, we do not know how to extend
this idea to a general Strodt polynomial.

6. Inversion Formulae.

In this section we define the concept of a Strodt number and use it to generalize known inversion
formulae for Bernoulli and Euler numbers. This generalization also allows us to recover such number
sequences as the Bell numbers.

We begin by recalling a definition. For n ∈ N0, define the nth Strodt number as the constant
coefficient of the nth Strodt polynomial; that is,

P g
n := P g

n(0).(117)

As before, we will routinely omit the superscript g in the notation. As a result of (47), the generating
function for this sequence is

∞∑

n=0

Pn
tn

n!
=

1

Q(t)
,(118)

where Q(t) is as defined in (26).
We offer, as a motivation for these definitions, the apparent structure in the inversion formulas

below [9, 24.5.9-10]. In each of the pairs of equations

an =

n∑

k=0

(
n

k

)
bn−k

k + 1
, bn =

n∑

k=0

(
n

k

)
Bkan−k;(119)

an =

⌊n
2
⌋∑

k=0

(
n

2k

)
bn−2k, bn =

⌊n
2
⌋∑

k=0

(
n

2k

)
E2kan−2k;(120)

the set of equations on the left taken for all n ∈ N0 will imply those on the right for all n, and vice
versa. The Bn and En denote the nth Bernoulli and Euler numbers, respectively. We can derive
both these formulae from a general property of Strodt numbers.

Theorem 6.1. Let Pn be the Strodt numbers associated with a probability measure g(u) and Mk its
kth moment as defined in (13). Then each formula of the pair

an =

n∑

k=0

(
n

k

)
bn−kMk, bn =

n∑

k=0

(
n

k

)
an−kPk,(121)

taken for all 0 ≤ n ≤ m, implies the other for all 0 ≤ n ≤ m.

Proof. We show that each of the equations in (121) results from applying the Strodt operator to a
polynomial.

For fixed n ≥ 0, let B(x) :=
∑m

n=0

(
m
n

)
bm−nxn, and A(x) be defined by A := Sg(B). By Propo-

sition 2.2, A(x) is a degree-m polynomial which can be represented by A(x) =
∑m

n=0

(
m
n

)
am−nxn,

where the am−n are implicitly defined. We now solve for them. Recalling (12), if f(x) =
∑m

n=0 fnxn

and h = Sg(f), then

h(x) =

m∑

n=0

hnxn,(122)
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where hn =
∑m

k=n fk

(
k
n

)
Mk−n and

Ml :=

∫
ul dG.(123)

With B and A in the place of f and g, the result is

m∑

n=0

(
m

n

)
am−nxn =

m∑

n=0

(
m∑

k=n

(
m

k

)
bm−k

(
k

n

)
Mk−n

)
xn.(124)

We then match xn coefficients, and use the combinatorial identity
(
m
k

)(
k
n

)
=
(
m
n

)(
m−n
k−n

)
to reexpress

the right-hand coefficient, so that
(

m

n

)
am−n =

(
m

n

) m∑

k=n

(
m− n

k − n

)
bm−kMk−n =

(
m

n

)m−n∑

k=0

(
m− n

k

)
bm−n−kMk.(125)

Therefore,

an =

n∑

k=0

(
n

k

)
bn−kMk, 0 ≤ n ≤ m,(126)

is equivalent to A = Sg(B), where A(x) =
∑n

k=0

(
n
k

)
an−kxk and B(x) :=

∑n
k=0

(
n
k

)
bn−kxk. This is

the left-hand equation of (121).

For the second half, we write out B = S−1
g (A) in detail:

S−1
g (A(x)) =

m∑

k=0

(
m

k

)
am−kPk(x).(127)

Filling in the binomial formula for Pn(x) from (66), we get:

S−1
g (A(x)) =

m∑

k=0

(
m

k

)
am−k

k∑

n=0

(
k

n

)
Pk−nxn,(128)

Hence
m∑

n=0

(
m

n

)
bm−nxn =

m∑

n=0

(
m∑

k=n

(
m

k

)
am−k

(
k

n

)
Pk−n

)
xn,(129)

which is almost the same as (124), except that the an and bn are switched, and we have Pk in the
place of Mk. Therefore, B = S−1

g (A) must be equivalent to

bn =

n∑

k=0

(
n

k

)
an−kPk, 0 ≤ n ≤ m,(130)

which is the right-hand equation of (121).

We conclude that the set of these equations for 0 ≤ n ≤ m is equivalent to (126) via A =
Sg(B). �

The Bernoulli numbers are given in [1, 23.1.2] by the evaluation Bl := Bl(0). Thus they are the
Strodt numbers for the Bernoulli operator. The moment Mk is thus calculated as

Mk =

∫ 1

0

uk du =
1

k + 1
,(131)

and (119) is recovered immediately from this and (121).

To recover the corresponding equation for Euler numbers, we consider the polynomials En(x) that
are generated by the distribution g(u) = 1

2 (δ−1(u) + δ1(u)). This distribution is a scaling of the
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distribution in the Euler polynomial case, as it averages the points −1 and 1 as opposed to 0 and 1.
The generating function of the En(x) is

∞∑

n=0

En(x)
tn

n!
=

2ext

e−t + et
,(132)

as one can check by using Theorem 2.4 and calculating

Q(t) =
e(−1)·t + e1·t

2
.(133)

The Strodt numbers corresponding to this distribution, En := En(0), are generated by

∞∑

n=0

En
tn

n!
=

2

e−t + et
= sech(t).(134)

This, however, is exactly the generating function for Euler numbers [9, 24.2.6], and so En = En for
all n ≥ 0. At this point we also see (by the evenness of the hyperbolic secant function) that the odd
Euler numbers are equal to zero. The kth moment of this function is calculated as

∫
ukg(u) du =

1k + (−1)k

2
,(135)

and the pair in (121) become

an =
n∑

k=0

(
n

k

)
bn−k

(
1k + (−1)k

2

)
and bn =

n∑

k=0

(
n

k

)
an−kEk.(136)

Now we verify that the odd terms in both of the above sums are equal to zero, the left because of
vanishing odd moments, and the right because of vanishing odd Euler numbers. The result is (120).

Now that we have seen a uniform derivation of the inversion formulae for both Euler and Bernoulli
numbers, we will develop a less obviously connected formula that is nonetheless a consequence of
Proposition 6.1. We return to Example 4.4 in Section 4, where we calculated

Pn,λ(x) =

n∑

m=0

(
n

m

) m∑

j=0

S(m, j)(−λ)j xn−m,(137)

the Strodt polynomials generated by the Poisson measure, g(u) =
∑∞

j=0 δj(u)e−λλu/Γ(u+1). Eval-
uating at x = 0, we find that the Strodt number sequence is given by

Pn(λ) = Pn,λ(0) =

n∑

j=0

S(n, j)(−λ)j ,(138)

which are Bell polynomials [11]. Computing the kth moment of the Poisson distribution we obtain
Bell polynomials again:

Mk(λ) = eλ
∞∑

j=0

jkλj

j!
=

k∑

j=0

S(n, j)λj .(139)

The derivation of this identity is contained in Example 4.4. Now, empolying (121), we derive

an =

n∑

k=0

(
n

k

)
bn−k




k∑

j=0

S(n, j)λj



 and bn =

n∑

k=0

(
n

k

)
an−k




k∑

j=0

S(n, j)(−λ)j



 ,(140)

as a new pair of inversion formulae. When λ = 1, the moments becomes sums across rows in the
triangle of Stirling numbers, and the Strodt numbers become alternating sums of the same. These
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Figure 1. Graph of cos 4π
3 x versus (−1)⌊n/2⌋−1 22nπn+1

n!3n+3/2 Pn(x− 1/4) for n = 20 and
n = 40

are known [11] as Bell numbers, Bn, and complementary Bell numbers, B̃n, respectively. Therefore,
each of the pair

an =

n∑

k=0

(
n

k

)
bn−kBk and bn =

n∑

k=0

(
n

k

)
an−kB̃k,(141)

implies the other.

7. Asymptotic Properties.

In [9] we find asymptotic formulae for Bernoulli and Euler polynomials as n→∞. Specifically,

(−1)⌊n/2⌋−1 (2π)n

2(n!)
Bn(x)→

{
cos(2πx), n even,
sin(2πx), n odd,

(142)

and

(−1)⌊(n+1)/2⌋ πn+1

4(n!)
En(x)→

{
sin(πx), n even,
cos(πx), n odd,

(143)

appear as 24.11.5 and 24.11.6. The convergence is uniform in x on compact subsets of C.

Experimenting with plots for real x as n becomes increasingly large suggests that a similar
asymptotic property is true for any Strodt uniform interpolation polynomial Pn(x). As an ex-
ample of our experimental results, Figure 1 displays the Strodt polynomials Pn(x) for g(u) =
1
3

(
δ0(u) + δ1/2(u) + δ1(u)

)
, which is the 3-point mean. We have displayed n = 20 and n = 40 for

the Strodt polynomials, multiplied by a conjectured scaling factor (−1)⌊n/2⌋−122nπn+1/(n!3n+3/2)
and horizontally offset by 1/4. They clearly appear to be converging to cos 4π

3 x.

The general situation is this: The uniform Strodt polynomials Pm
n (x) on m points have generating

function
∑

n≥0

Pm
n (x)

tn

n!
=

mext

∑m−1
j=0 exp jt

m−1

.(144)

For m = 2 this generates the Euler polynomials. We use experimental evidence to formulate the
conjecture for m-point asymptotics. Note that the the piecewise formulation above is unnecessary;
for example, (142) could instead be written as

(2π)n

2(n!)
Bn(x)→ cos

(
2πx +

nπ

2
+ π

)
.(145)

This is the notation that we will use below.
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Theorem 7.1. For all m ≥ 2, there are algebraic constants Cm such that, as n→∞ we have

Cm
π(n+1)

n!

(
2m− 2

m

)n

Pm
n (x) ∼ cos

(
2m− 2

m
πx +

nπ

2

)
.(146)

For m = 2 and in the limit as m → ∞ we recover known asymptotics for Euler and Bernoulli
polynomials, respectively.

In order to most easily compute the Cm, we set x = 0 in the cosine equation and hunted for
the minimal polynomial satisfied by Cm. We found values for 2 ≤ m ≤ 16 and they appeared
to be simpler for m even. From the first few polynomials—and associated radicals—plus some
further numerical values, it is suggestive that the constants are trigonometric in origin. Indeed, we
conjectured that Cm → 1/(2π) and that

Cm =
csc( π

m )

2m
.(147)

The former follows from the latter, which we now prove.

The geometric sum in the denominator of (144) can be rewritten so that the generating function

for the m-point Strodt polynomials is seen as mext(e
t

m−1 −1)

e
mt

m−1 −1
. Now make the changes of variables

x← x− 1
2m−2 and t← πit in the generating function, leading to

∑

n≥0

Pm
n

(
x− 1

2m− 2

)
(πit)n

n!
=

meiπxte−i πt
2m−2 (ei πt

m−1 − 1)

ei mπt
m−1 − 1

.(148)

Then substitute z = mt
2m−2 to obtain

∑

n≥0

Pm
n

(
x− 1

2m− 2

)
(πi)n

n!

(
2m− 2

m

)n

zn = meiπ( 2m−2

m x−1)z sin πz
m

sin πz
.(149)

Finally, shift back x → x − 1
2m−2 and separate the formula into real and imaginary parts to get

generating functions for even and odd Strodt polynomials,

∑

n≥0

(−1)nπ2n

(2n)!

(
2m− 2

m

)2n

Pm
2n (x) z2n =

m cos(π 2m−2
m xz) sin πz

m

sinπz
(150)

and

∑

n≥0

(−1)n+1π2n+1

(2n + 1)!

(
2m− 2

m

)2n+1

Pm
2n+1 (x) z2n+1 =

m sin(π 2m−2
m xz) sin πz

m

sin πz
.

We wish to extract the asymptotic formulae directly from these two generating functions. We
will show the details for the even case; the odd will be similar. We use Darboux’s Method to obtain
the asymptotics. In order to do this, we must find a comparison function G(z) :=

∑
gnxn to

F (z) :=
m cos(π 2m−2

m xz) sin πz
m

sin πz
(151)

such that the difference F − G is continuous on |z| ≤ r, where r is the smallest radius containing
singularities of F (z). We also wish for the asymptotics of gn to be known. A result due to Darboux
(and discussed in detail in [10]) then proves that

fn ∼ gn + o(r−nn−k)(152)

if F −G is k times continuously differentiable.
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In this case, r = 1, as the generating function F has singularities at z = ±1. An appropriate

choice of comparison function is G(z) = 2m
π

cos( 2m−2

m πx) sin π
m

1−z2 , as

lim
z→1−

(1− z2)F (z) = lim
z→−1+

(1 − z2)F (z) =
2m

π
cos

(
2m− 2

m
πx

)
sin

π

m
(153)

and

g2n =
2m

π
cos

(
2m− 2

m
πx

)
sin

π

m
.(154)

Now F −G has removable singularities at z = ±1 and can thus be analytically continued to the
unit disk. Therefore, for fixed m and x,

(−1)nπ2n

(2n)!

(
2m− 2

m

)2n

Pm
2n (x) ∼ 2m

π
cos

(
2m− 2

m
πx

)
sin

π

m
+ o(n−k)(155)

for any k ∈ N. This can be directly matched to the conjectures (146) and (147). The proof for the

odd asymptotics is similar, but with G(z) = 2mz
π

sin( 2m−2

m πx) sin π
m

1−z2 .

The error in (155) is uniform; that is, its order does not depend on m or x. This justifies our
letting m→∞ to recover the asymptotic formulae for Bernoulli polynomials. The reader will note
that Cm → 1

2π follows from limx→0
sin x

x = 1.

Remark 5. We do not yet have a conjecture for the precise asymptotic formula for general Strodt
polynomials. Our preliminary experiments suggest there will be similarly interesting results for
continuous probability densities.

8. Conclusions.

Our project started with the goal of elucidating Strodt’s idea of using integral operators to derive
the Euler-MacLaurin and Boole summation formulae. Using Strodt operators to define the Bernoulli
and Euler polynomials, we have ultimately suggested, largely by example, the variety of properties
that can be recovered. This lends some important perspective. We see their properties not just as
two isolated cases, but as part of a general context. They are Strodt polynomials, which we have
defined as a special class of Appell sequences that satisfy a property involving Strodt operators. We
see the worth of this additional property in the proofs of the summation and inversion formulae,
and it may well assist in describing the asymptotics. Overall, the description of these polynomials
by their images under integral operators enhances the connectivity of seemingly unrelated table
identities.
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