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Abstract

In this essay, I talk about the role of examples and counter-examples and of generalisation
in mathematical research. I use geometric fixed point theory and nonsmooth optimisation to
illustrate my opinions and conclude with a few recommendations.

1 Introduction

Richard Brown discussing constructivism and intuitionism [16, p. 239] writes

Philosophical theses may still be churned out about it,
...

but the question of nonconstructive existence proofs or the heinous sins committed
with the axiom of choice arouses little interest in the average mathematician. Like
Ol’ Man River, mathematics just keeps rolling along and produces at an accelerating
rate “200,000 mathematical theorems of the traditional handcrafted variety ... annu-
ally.” Although sometimes proofs can be mistaken—sometimes spectacularly—and it is
a matter of contention as to what exactly a “proof” is—there is absolutely no doubt
that the bulk of this output is correct (though probably uninteresting) mathematics.”
(Richard C. Brown [16])

A forty year professional life as a mathematics teacher, researcher and editor leads me to write
this short essay. After decades of editing and even more of authoring and participation in conferences
or workshops, I can no longer resist making some observations. View these as advice to a young
mathematician (author, referee, or editor) but since life expectancy is still increasing at roughly
three years a decade we are nearly all young longer.
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Two interwoven topics exercise me. What is a good generalisation and what role do examples
play in illustrating ones work?

In Brown’s accurate – if somewhat gloomy – assessment of current mathematics generalisations
of varying qualities are the daily work of most research mathematicians. No one sits down to write
a bad or dull paper. Nonetheless many papers are at least the latter if not the former. Since most
professional mathematicians have to publish, my aim is to mitigate the situation not to expunge
the literature.

2 Generalisations: good, bad and indifferent

“This skyhook-skyscraper construction of science from the roof down to the yet un-
constructed foundations was possible because the behaviour of the system at each level
depended only on a very approximate, simplified, abstracted characterization at the
level beneath.1 This is lucky, else the safety of bridges and airplanes might depend on
the correctness of the ”Eightfold Way” of looking at elementary particles.
1 ... More than fifty years ago Bertrand Russell made the same point about the ar-
chitecture of mathematics. See the “Preface” to Principia Mathematica “... the chief
reason in favour of any theory on the principles of mathematics must always be induc-
tive, i.e., it must lie in the fact that the theory in question allows us to deduce ordinary
mathematics. In mathematics, the greatest degree of self-evidence is usually not to be
found quite at the beginning, but at some latter point; hence the early deductions, until
they reach this point, give reason rather for believing the premises because true conse-
quences follow from them, than for believing the consequences because they follow from
the premises.” Contemporary preferences for deductive formalisms frequently blind us
to this important fact, which is no less true today than it was in 1910.” (Herbert A.
Simon (1916–2001) [32, p.16])

It is very pleasing that Noble economist Simon and the great deductive logician Bertrand Russell
so clearly acknowledge that we first recognise progress in mathematics by the new theory’s ability
to recapture the known. In our papers we must remain aware of this situation.

Let me make some terms explicit. A generalisation is an extension of a known result to cover
more cases (a unification), and/or weaken hypotheses and/or strengthen conclusions. The role of
examples and counter-examples is to validate and substantiate one or more of these three roles.

A result of the form “Assume a,b, or c. Then A,B, or C follows” is not a true unification if – as
often the case – the proof of each case is then as much work or more than that of the original. It
is also not needed if the average researcher would find the extension easily and could observe that
the original proof still works with minor and fairly obvious tweaks. The situation is not improved
by the assertion that it captures the results by Professors α,β, or γ unless those results are worth
recapturing.

I will next illustrate generalisations with various results in two areas I know well: (a) geometric
fixed point theory and (b) nonsmooth optimisation. In the following section I will then revisit
corresponding examples for these results.

2



2.1 Geometric fixed point theory

A lovely and deservedly well known theorem was introduced by Banach in his 1920 dissertation
and published in [4] two years later. Its applications are ubiquitous and important. Almost all
undergraduate mathematicians will have seen contraction mappings or cognate tools applied to
establish implicit function theorems, Newton-type theorems, or the existence of local solutions to
ordinary differential equations with given initial conditions.

A contraction mapping is a Lipschitz mapping with Lipschitz constant strictly less than one.

Theorem 2.1 (Banach contraction [4]). Let (X, d) be a complete metric space. Suppose F : X → X
is a contraction mapping:

d(F (x), F (y))  αd(x, y)

for all x, y ∈ X. Then F has a unique fixed point (x = F (x)).

In the late 1960s, Nadler considered an extension to multivalued mappings with closed non-
empty images.

Theorem 2.2 (Multivalued contraction [24]). Let (X, d) be a complete metric space. If F : X →
CB(X) (the closed bounded non-empty sets in X) is a multivalued contraction mapping (in the
Hausdorff metric), then F has a fixed point (x ∈ F (x)).

Among other things this extension may be seen as a precursor for application to iterated function
systems yielding deterministic fractals as fixed point sets – as first discovered by Hutchinson [5, 15,
§3,5]. The proof of Theorem 2.2 follows that of Theorem 2.1. A fine recent survey is provided in
the monograph [15].

A non-expansive mapping is a Lipschitz mapping with Lipschitz constant less than or equal to
one. A special case of a famous theorem independently proven by the three named authors is:

Theorem 2.3 (Browder-Göhde-Kirk [17]). Let (BX ,  · ) be the closed unit ball in a uniformly
convex Banach space. If F : BX → BX is a non-expansive mapping, then F has a fixed point
(x = F (x)).

In Hilbert space this result can be proven by considering the contraction Fλ(x) := λF (x) +
(1 − λ)x0 for some fixed x0 ∈ BX) and for 0 < λ < 1 and then letting λ tend to one. In infinite
dimensions this approach also relies on I − F being maximal monotone and so demi-closed [13].
This approach does not work as easily in a more general setting. It is not known if this result is
true in all reflexive spaces or even in all equivalent renormings of Hilbert space.

Nearing the other end of the spectrum is a result we quote from [21, 27, 28].

Theorem 2.4 (Kannan contraction). Let (X, d) be a complete metric space. Suppose for some
0  α < 1/2 the function F : X → X satisfies

d(F (x), F (y))  α[d(x, F (x)) + d(y, F (y))]

for all x, y in X, then F has a unique fixed point (x = F (x)).

Theorem 2.4 is independent of the contraction principle. We shall consider Kannan’s examples
in Section 3.1. This result and its peers are not without their uses – though they are few and far
between [17]. My old colleague and mentor Michael Edelstein wrote the review MR043343 of [27]:
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From the author’s summary: “A number of authors have defined contractive type map-
pings on a complete metric space X which are generalizations of the well-known Banach
contraction, and which have the property that each such mapping has a unique fixed
point. In this paper we compare this multitude of definitions.”

Some 250 definitions—together with their variants—make up this vast multitude.

Reviewed by M. Edelstein

A quarter of a century later the multitude is vaster and the utility little greater.

2.2 Nonsmooth critical points

A work-horse of classical [2]1 and modern numerical optimization [25] is the method of steepest
descent. Going back to Cauchy, it is based on the following theorem. We recall that if E is
a Euclidean space and f : E → R, the gradient of f at x, ∇f(x) is the vector of first partial
derivatives ∇f(x) = [f1(x), f2(x), . . . , fn(x)]. We also recall that the directional derivative of f at
x in direction h is defined by

Dhf(x) = lim
0<t→0

f(x+ th)− f(x)

t
(1)

when that limit exists.

Theorem 2.5 (Cauchy). Let E be a Euclidean space. Suppose that f : E → R has continuous first
partials around x. Then the directional derivative of f at x in direction h satisfies

Dhf(x) = 〈∇f(x), h〉. (2)

In particular, f is differentiable at x.

Roughly one hundred and fifty years later it was recognised that for a continuous, hence locally
Lipschitz, convex function this directional derivative always exists and is sublinear in h. Hence if
we define the convex subgradient or subdifferential by

∂f(x) = {y ∈ E : f(x+ h)  f(x) + 〈y, h〉, ∀h ∈ E} (3)

we have a wonderful “max formula” generalising and improving Theorem 2.5 (in the convex case).

Theorem 2.6 (Moreau-Rockafellar, [11]). Let f : E → R be a continuous convex function

Dhf(x) = sup
y∈∂f(x)

〈y, h〉 (4)

for all h ∈ E. In particular ∂f(x) is nonempty.

In his thesis Francis Clarke extended this result to all locally Lipschitz functions. Clarke replaced
Dhf(x) by

Dc
hf(x) = lim sup

0<t→0,y→x

f(y + th)− f(y)

t
. (5)

1This is Armijo’s only publication listed in Math. Reviews!
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Somewhat miraculously the mapping p sending h → Dc
hf(x) is always continuous and sublinear in

h, and so if we define ∂cf(x) = ∂p(0) = {y ∈ X∗ : 〈y, h〉  Dc
hf(x), ∀h ∈ X}, Theorem 2.6 leads

directly to:

Theorem 2.7 (Clarke [18, 11, 26]). Let f : E → R be a locally Lipschitz function

Dc
hf(x) = sup

y∈∂cf(x)

〈y, h〉 (6)

for all h ∈ E. In particular ∂cf(x) is nonempty. Moreover, ∂cf(x) is a singleton if and only if f is
strictly differentiable at x.

In truth Clarke, appealing to Rademacher’s theorem, originally defined ∂cf(x) as the closed
convex hull of limits of nearby points of differentiability. This makes (6) seem even more remarkable.
There is, however, a dark side to the situation [12, Cor. 9]. Recall that a set in a Banach space is
generic if it contains intersection of countably many dense open sets. The complement is thus very
small topologically [13].

Theorem 2.8 (Generic triviality [12]). Let A be an open subset of a Banach space X. Then the
set of non-expansive functions on A with ∂cf(x) ≡ BX∗ for all x in A is generic in the uniform
norm on A.

In other words, in the sense of Baire category the Clarke subdifferential (likewise the limiting
subdifferential in the separable case) of almost all functions contains no information at any point
of A. Of course none of these functions are convex since then the function is generically strictly
Fréchet differentiable [13]. This is the cost of abstraction — if a construction always works for a
very broad class it usually works only passingly well.

So, for most Lipschitz functions the Clarke calculus is vacuous. That is why serious researchers
work with well structured subclasses such semi-algebraic, partially smooth or essentially smooth
functions. The situation becomes even worse when the generalisation is poorly thought through or
unnatural.

Let us turn to a less edifying generalisation of convexity: the notion of invexity. The original
definition entails a relaxation of the gradient inequality for a differentiable convex function replacing
y−x by an arbitrary vector η(x, y). The notion leads to the following very easy theorem originally
due to Hansen.

Theorem 2.9 (Invexity [7]). Let Let f : E → R be a (Gateaux) differentiable function. Then f is
invex if and only if every critical point is a global minimum.

While pretty, this result should have ended the matter. The notion is so broad that only
relatively trivial results can be deduced and there is certainly no useful calculus.

Instead it has spawned a host of trivial results, generalisations and extensions. It is immediate
that the family of functions invex with respect to the same η is a convex cone. See also [23]. I
challenge the reader to find a single result that does not follow from Theorem 2.9 and the preceding
information. I am not the first person to rail against invexity [33]. Nor is it by a long shot the only
such topic where notational generalisations are studied in vacuo. The sad thing is that in a closed
sub-community, potentially good researchers can work hard to produce relative trivialities.
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3 Examples: good, bad and indifferent

The mathematician’s patterns, like the painter’s or the poet’s must be beautiful; the
ideas like the colours or the words, must fit together in a harmonious way. Beauty is
the first test: there is no permanent place in the world for ugly mathematics. – G.H.
Hardy (1887-1977) [19]

Beauty and good taste in mathematics are frequently discussed but rarely captured precisely.
Terms like ‘economy’, ‘elegance’, ‘naturalness’, and ‘unexpectedness’ abound but for the most part
a research mathematician will say “I know it when I see it” as with US Supreme Court Justice
Potter Stewart’s famous 1964 observation on pornography [9, p. 1]. But we can do a bit better
than that.

When I was young, I disparaged the role of mathematical taste as too subjective and too
idiosyncratic to be used to determine what should be published. Now I believe that even if we
can not agree, the notions should be more openly discussed. Almost all mathematicians agree with
Hardy until asked to put flesh on the bones of his endorsement of beauty. Beauty may be the first
test, but it is in the eye of the beholder.

Hardy, in the twelfth of his twelve lectures given as a eulogy for the singular Indian genius
Srinivasa Ramanujan (1887–1921), described a result of Ramanujan – now viewed as one his finest
– somewhat dismissively as “a remarkable formula with many parameters.”2 mist Realising the
value of a generalisation may thus take years or even decades. This is not an invitation to publish
any and all generalisations. If any competent researcher could with little effort prove the result if
needed, it should be left as a remark in a more substantial piece of work. I quite often do things
like this in a probably vain attempt to limit such future publications. Of course you need to have
checked carefully that it is an easy extension.

Correspondingly a deep result may not have any examples but its logic and relation to its
precursors must be honestly discussed. For example, an early version of the celebrated Bishop–
Phelps theorem first appeared under the title “A proof that every Banach space is subreflexive.”
(During the 1950’s Phelps had studied subreflexive normed spaces.) As another example there is
now a large literature lifting results in non-smooth optimisation from spaces with equivalent Fréchet
smooth renorms to Asplund spaces [13]. These results typically proceed by separable reduction
because each separable subspace of an Asplund space does possess a Fréchet renorm. The details
are often technically impressive and so many of these results are well worth publish as pure functional
analysis. There are examples of Asplund spaces without even a Gateaux renorm, but no optimiser
will ever need to work in such a setting. So no such paper can be justified on the basis of its utility.

Let me distinguish two forms of example – contrived and natural. A contrived example is a single
function or object designed to show that the promised generalisation is indeed logically properly
more inclusive. A natural example introduces some qualitative property that plays not only a logical
role but also a motivational role shedding light on the situation. Again à la Judge Potter Stewart
we usually know the difference when we see it. Especially if we ask the right question.

A contrived example is better than none but not much. It does not provide adequate justification
or motivation. I remember struggling with the elliptic PDE literature of half a century ago trying
to understand why the specified equation needed to be studied. This may largely be because of my
ignorance but many eminent authors offered little enlightenment. Another common and frustrating

2See Ole Warnaar’s 2013 contribution in “Srinivasa Ramanujan Going Strong at 125, Part II,” available at
http://www.ams.org/notices/201301/rnoti-p10.pdf.
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situation occurs when the authors of a generalisation blithely asserts that a very serious looking
application is covered by their work – but give no details or so few as to leave the reader helpless.

3.1 Fixed Point Examples

Having already commented on the ubiquity of Banach’s contraction method let me turn to the
three generalisations of Section 2.1. One attraction of all fixed point methods is that a fixed point
of (1− λ)I + λF produces a zero of F .

Example 3.1 (Multivalued contractions). Nadler [24] gives many structure theorems showing
that union and composition of multivalued contractions will remain in the class. While these are
interesting, the example of the multivalued contraction on the unit circle S given by

F : eiθ ∈ S → {−eiθ/2, eiθ/2}

clinches the deal. It has a fixed point 1 ∈ F (1). In this case there is no continuous, and hence no
contractive, selection of F . But F has a multivalued contraction constant of 1/

√
2. Since Nadler

gives no details — he makes a one sentence comment on the whole example — let me note that
this reduces to showing that

H2

{1,−1}, {eiθ/2,−eiθ/2}



d2(1, eiθ)
=

min(1± cos(θ/2))

sin2(θ/2)

which has a maximum of 1/2; so F is a set-valued α-contraction for any α  1/
√
2.

Note that by Michael’s selection theorem [11, 13], multivalued contractions with compact convex
non-empty images always have continuous selections. ⋄

Example 3.2 (Nonexpansive mappings). Translations, rotations, metric projections and reflections
are all nonexpansive but are not typically contractions. The class is closed under projections. This
surely provides a cornucopia of natural examples. Moreover, important applications abound [6]
both theoretical and practical. ⋄

Example 3.3 (Kannan mappings). Kannan in [21] gives three examples delimiting his result from
Banach’s. To be fair Kannan provides a more general result and he advertises it in his third example
as applying in incomplete spaces.

Since the two of his three examples given below in sum show that the two results are logically
incomparable Theorem 2.4 is more truly a variation than a generalisation. His two examples are

(a) Let X = [0, 1] in the usual metric and let F (x) = x/4 for 0  x < 1/2 and F (x) = x/5 for
1/2  x  1. Then F is discontinuous at 1/2 and so not a Banach contraction. However,
Theorem 2.4 applies with α = 4/9. This I would categorise as a contrived example. Indeed F
need not be continuous at except at the fixed point. Consider, F (x) = x/3 when x ∈ Q and
F (x) = 0 when x ∕∈ Q.

(b) Again letX = [0, 1] in the usual metric and let F (x) = x/3 for 0  x  1.3 Then F is a Banach
contraction. However, Theorem 2.4 never applies as is seen by considering x = 1/3, y = 0. If
not contrived this is a depressing example.

3It would have been more instructive if he had considered F (x) = ax for 1 > a > 0 and determined when his
theorem applied.

7



So the situation is clean and crisp but does nothing to suggest a meaningful class for which
Theorem 2.4 provides new and useful information. What it did do was spawn a large and largely
polluted literature. ⋄

3.2 Nonsmooth Examples

Example 3.4 (Critical points). A real-valued differentiable function on the line with a unique
critical point which is a local minimum has a global minimum at that point. This is no longer true
if the domain is the plane [11, p. 19]. Consider

f(x, y) = x2 + y2(1− x)3.

It has a unique critical point in R2, which is a local minimiser, but has no global minimiser (or
maximiser).

Before generalising concepts one is well advised to understand the concept being generalised. ⋄

Example 3.5 (The convex subdifferential). The value of convex analysis is still not fully appre-
ciated. It is the rare undergraduate analysis text that includes Theorem 2.6. From this result the
entire convex calculus flows and much more [29, 11, 13]. In [1] we try to survey examples less
well-known to optimisers.r

Central to the max-formula is the fact that the subdifferential is a global object while the
directional derivative is locally defined. A fortiori, every critical point is a global minimum (see
Example 3.7.) ⋄

Example 3.6 (The Clarke subdifferential). By the time Clarke produced his work, the value of the
convex result (Theorem 2.6) was well appreciated. So when he observed that Dc

hf(x) = Dhf(x) for
continuous convex functions his justification was already well started. When Clarke observed that
a function with continuous first-partials is continuously and so strictly differentiable it meant that
Theorem 2.7 also recaptured Cauchy’s Theorem 2.5.

The function

x → x sin


1

x


(7)

defined to be zero at 0 provides an example of a differentiable Lipschitz function with ∂f(0) = [−1, 1]
[30, 18, 11, 14]. Variations on this theme

x → xα sinβ


1

xγ



for various α,β, γ > 0 are a rich source of limiting examples.
Example (7) nicely illustrates that strict differentiability is central, ex post facto, to Clarke’s

theory. At this point Simon and Russell would be persuaded that Clarke’s new subdifferential
concept has legs. ⋄

Example 3.7 (Invexity I). Clearly all convex functions are invex, as are all functions with no
critical points– grace of Theorem 2.9. But I challenge any reader to supply (a) a useful class of
non-convex invex functions or (b) a worthwhile sufficient condition for invexity. I reserve the right
to define ‘useful’ or ‘worthwhile’ if I am sent any such an example. I promise to be fair. Yet there
are published papers on even more elusive topics as semi prequasi-invexity.
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The study of critical points even for smooth functions is subtle and involves fixed point and
variational or mountain pass techniques [14, §4.6 & §6.4]. As the next theorem shows there is no
invexity-based free lunch. ⋄

Theorem 3.8 (Critical points [14, 10]). Let S and B be respectively the closed unit sphere and ball
of RN . Then for any continuously differentiable function g : B → R, there exists w, z ∈ B such
that

max
a∈B

g(a)− g(−a)

2
 g′(z), (8)

and

max
a∈S

|g(a)|  g′(w). (9)

There is, however, a smooth function on B with f(a) = −f(−a) for all a in S but with no
critical point in B [10]. Theorem 3.8, and much more, remains true for locally Lipschitz functions
on replacing g′ by ∂cg [14, §4.6]. However, as noted in Theorem 2.8 the Clarke subdifferential – or
even the limiting or approximate subdifferential – generically contains no information at any point
other than the local Lipschitz constant [14, Theorem 5.2.23]. So every point of such a function is a
critical point for the given subdifferential.

Example 3.9 (Invexity II). Finally let us observe that invex problems have no useful permanence
properties. Unlike locally Lipschitz or convex functions, the uniform limit of invex functions need
not be invex. Consider f(x) = x3 + x defined on [0, 1]. Then for  > 0, the function is invex as it
has no critical points, but the uniform limit f0 is not. ⋄

3.3 Computational examples

In this final subsection I wish to make some very brief comments about numerical examples. Much
of what concerns me and others is summarised in [3]. Of course generalisations of algorithms should
be treated to the same scrutiny as any other generalisations. Are they needed, what are their new
features, and so on? But there are other issues specific to illustration of new algorithms.

Many papers with proposed and presumably improved algorithms do not contain detailed tests.
Rather they settle for a few often small examples say in matlab. Unless the comparison is with
well implemented versions of the competition such examples are pretty much worthless. Things to
avoid include:

• Iteration counting unless that is a truly robust measure. There are so many ways to count
steps. Operation/flop/bit count along with the speed and number of processors is a little
more instructive but is still fraught.

• Presenting only the most favourable results not the typical performance or the proportion of
failures.

• Giving too little information for an interested researcher, should one exist, to replicate or
reproduce your results. At the end of a paper written in the mid-fifties of the last century
Newell and Simon remind the reader to switch on the computer.

I used to think the phrase “toy example” insulting, but in a world where we can all run thousands
of tests of most implementations, if what you have is a “toy” proof of concept, please say so.
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4 Recommendations and Conclusions

When the facts change, I change my mind. What do you do, sir? – John Maynard
Keynes (1883-1946)4

Remember that times and circumstances change. So while it is important to have critical
views like Keynes we should be able to admit when we were wrong. There are topics that I
once found deathly dull that now thrill me. There are new ideas and changing environments, say
computationally, that make old methods once again relevant.

So to finish here are a few recommendations or opinions.

(a) Not all questions deserve to be answered.

• Early in my career I submitted a short paper comprising a cute construction in Banach
space geometry. It answered a published question posed by Dr A. Somebody. The paper
was quickly rejected with the report “Not all questions deserve to be answered.” This
was mortifying and perhaps a tad unfair but in the long term that rejection did me a
powerful lot of good.

(b) Aim to have two qualitatively different examples. Ask if they are natural or contrived.

• Thirty years ago I was the external examiner for a PhD thesis on Pareto optimization
by a student in a well-known Business school. It studied infinite dimensional Banach
space partial orders with five properties that allowed most finite-dimensional results to
be extended. This surprised me and two days later I had proven that those five properties
forced the space to have a norm compact unit ball – and so to be finite-dimensional. This
discovery gave me an even bigger headache as one chapter was devoted to an infinite
dimensional model in portfolio management.

The seeming impass took me longer to disentangle. The error was in the first sentence
which started “Clearly the infimum is ...”. So many errors are buried in “clearly, obvi-
ously” or “it is easy to see”. Many years ago my then colleague Juan Schäffer told me
“if it really is easy to see, it is easy to give the reason.” If a routine but not immediate
calculation is needed then provide an outline. Authors tend to labour the points they
personally had difficulty with; these are often neither the same nor the only places where
the reader needs detail!

My written report started “There are no objects such as are studied in this thesis.”
Failure to find a second, even contrived example, might have avoided what was a truly
embarrassing thesis defence.

• Do all objects with P have property Q questions perhaps only need one negative example
but as described in Imre Lakatos’s classic 1976 book Proofs and Refutations [22] in
mathematics there is a healthy and necessary interplay between theory building and
example production (‘monster barring’).

(c) Better an interesting new proof [20] of a substantial known result than a modest and routine
generalisation of an uninteresting result.

4Quoted in “Keynes, the Man”, The Economist, December 18 1996, page 47.
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• A.E. Young commented that a second proof of a known result is always welcome; in part
because the first is so often wrong.

• If the generalisation is not compelling does the proof introduce novelty or needed com-
plexity?

(d) Don’t imagine many people are reading your paper linearly. Most readers – if one is lucky
enough to have any – are leafing through looking for the punchlines. So avoid too many
running hypotheses or at least make a full statement of each major result.

• And check for such running hypotheses. For instance, Rudin [31] assumes all topolog-
ical vector spaces are separated while most authors do not. This can lead to careless
misapplication of his theorems.

(e) Remember that your readers or audience may well be using English as a second language.
This does not mean you should dumb down your language but – as with the advice to restate
your main hypotheses – the key points should be made in simple declarative English.

• Even for native English speakers, this is prudent. For example, in referees’ reports
one frequently reads that the work is “quite interesting” or “quite reasonable”. This is
problematic, since in American English “quite” means “very” but in British English it
is more likely to mean “not very”. If used by a British mathematician who has worked
for a long time in North America, who knows? So if you mean “very” write “very”.

(f) Most research mathematicians are not scholars let alone trained mathematical historians.
Avoid the temptation to say that an idea was invented or introduced by someone – whether it
is Hilbert or your supervisor. Say rather that you first learned about the topic from a paper
you cite.

• In 1981 I had to try to trace the history of various ideas and errors in the early history
of semi-infinite programming. It was only then twenty to twenty five years old. I spoke
directly to most of the protagonists and nobody was really sure. So it is most unlikely
that a researcher today can really disentangle a piece of 50 year old mathematics history.
Better to be safe and ambiguous than to be certain and wrong. Euler does not need
more concepts named after him and Borwein probably does not deserve it!

(g) Make sure your citation list is up to date. In the current digital environment there is no
excuse for failing to do a significant literature search.

• If it comprises largely papers by your clique explain why. Similarly if all the citations
are decades old, explain why – if you can. Otherwise, the editors will not be impressed.

• A list of papers saying earlier related work is to be found in [13, 11, 26, 30] does not
make an adequate literature review. And using the word ‘applied’ does not by itself
make it an applied paper.

(h) When you submit your well-motivated and carefully written paper (including a reasonable
literature discussion and great examples) to a journal remember that you alone, and not the
referee, are responsible for correctness of your arguments.
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• The editor typically asks for guidance about the article’s suitability for publication in
the given journal. The more interesting the referee finds your paper, the more likely he
or she is is to check many of the details.

• If you estimate how long it takes you to read a substantial paper from end to end, you
can see that as a referee you simply do not have the time to perform a ‘forensic’ refereeing
job more than once or twice a year at most — unless you are willing to make refereeing
your primary intellectual task.

• Indeed, while our literature is perhaps the most robust of scientific literatures it is not
entirely reliable and one should read each paper with ‘attitude’. If you admire the
authors, you read to see what the new ideas are. If you do not trust the authors, you
may look for the holes that explain why they can do something fairly easily that you
had failed to do, and so on.

(i) Above all be honest.

• If you do not know something say so and try to explain the obstruction.

• If you have a plausibility argument do not dress it up as a rigorous proof.

• If you have dabbled with computation do not oversell that part of your work.

• I leave undiscussed the many statistical sins being daily committed [34].
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ulating discussions during preparation of this essay.
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intégrales.” Fund. Math. 3 (1922), 133–181.

[5] M. Barnsley, Fractals Everywhere, Academic Press (1988).

[6] H.H. Bauschke, and P.L. Combettes,Convex analysis and monotone operator theory in Hilbert
spaces. CMS/Springer-Verlag, New York, 2011.

[7] A. Ben Tal and B. Mond, “What is invexity? Bulletin of the Austral. Math. Soc. Series B. 28
(1986), 1–9.

[8] E. Bishop and R.R. Phelps, “A proof that every Banach space is subreflexive.” Bull. Amer.
Math. Soc. 67 (1961), 97–98.

[9] J.M. Borwein and K. Devlin, The Computer as Crucible: an Introduction to Experimental
Mathematics, AK Peters (2008).

[10] J.M. Borwein, I. Kortezov and H. Wiersma, “A C1 function even on the sphere with no critical
point in the ball,” International J. Nonlinear and Convex Analysis, 3 (2002), 1–16.

[11] J.M. Borwein and A.S. Lewis, Convex Analysis and Nonlinear Optimization : Theory and
Examples. Springer, (2000) (2nd Edition, 2006).

[12] J. M. Borwein, W. B. Moors and Xianfu Wang, “Generalized subdifferentials: a Baire cate-
gorical approach.” Transactions AMS, 353 (2001), 3875–3893.

[13] J.M. Borwein and J. D. Vanderwerff, Convex Functions : Constructions, Characterizations
and Counterexamples. Cambridge University Press, (2010).

[14] J.M. Borwein and Qiji Zhu, Techniques of Variational Analysis, CMS/Springer-Verlag, 2005.
Paperback, 2010.

[15] R.M. Brooks and K. Schmitt, “The contraction mapping principle and some applications.”
Electronic Journal of Differential Equations, Monograph 09, 2009, (90 pages). Available at
http://ejde.math.txstate.edu.

[16] R.C. Brown, Are Science and Mathematics Socially Constructed? World Scientific, 2009, p
239.

13



[17] W.A. Kirk and B. Sims. Handbook of metric fixed point theory. Kluwer Academic Publishers,
Dordrecht (2001).

[18] F.H. Clarke, Optimization and Nonsmooth Analysis, CMS/Wiley-Interscience (1983).

[19] G.H. Hardy, A Mathematician’s Apology, Cambridge (1941).

[20] J. Jachymski, “Another proof of the Browder-Göhde-Kirk theorem via ordering argument.”
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