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“[N]ntuition comes to us much earlier and with much less outside influence than formal
arguments which we cannot really understand unless we have reached a relatively
high level of logical experience and sophistication.”

“In the first place, the beginner must be convinced that proofs deserve to be studied,
that they have a purpose, that they are interesting.” George Polya (1887-1985)
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ABSTRACT

Jonathan M. Borwein

Abstract: The mathematical research community is facing a great challenge
to re-evaluate the role of proof in light of the growing power of current
computer systems, of modern mathematical computing packages, and of the
growing capacity to data-mine on the Internet. Add to that the enormous
complexity of many modern capstone results such as the Poincaré
conjecture, Fermat's last theorem, and the Classification of finite simple
groups. As the need and prospects for inductive mathematics blossom, the
requirement to ensure the role of proof is properly founded remains
undiminished. | shall look at the philosophical context with examples and
then offer some of five bench-marking examples of the opportunities and
challenges we face. (Related paper )

“The object of mathematical rigor is to sanction and legitimize the conquests of intuition,
and there was never any other object for it.” — Jacques Hadamard (1865-1963)



http://www.carma.newcastle.edu.au/~jb616/expexp.pdf

OUTLINE

|. Working Definitions and Five Examples of:
= Discovery
= Proof (and of Mathematics)
= Digital-Assistance
= Experimentation (in Maths and in Science)

Il. (Some of) FEive Numbers:

= p(n) “Keynes distrusted intellectual rigour of the Ricardian
-7 type as likely to get in the way of original thinking and
() saw that it was not uncommon to hit on a valid
= 3) conclusion before finding a logical path to it.”
= Unm - Sir Alec Cairncross, 1996

l1l. A Cautionary Finale

IVV. Making Some Tacit Conclusions Explicit

“Mathematical proofs like diamonds should be hard
and clear, and will be touched with nothing but strict
reasoning.” - John Locke
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PART I. PHILOSOPHY, PSYCHOLOGY, ETC

This is the essence of science. Even though | do not
understand quantum mechanics or the nerve cell membrane,
| trust those who do. Most scientists are quite ignorant about
most sciences but all use a shared grammar that allows them
to recognize their craft when they see it. The motto of the
Royal Society of London is 'Nullius in verba' : trust not in words.
Observation and experiment are what count, not opinion and
Introspection. Few working scientists have much respect for those
who try to interpret nature in metaphysical terms. For most
wearers of white coats, philosophy is to science as
pornography is to sex: it is cheaper, easier, and some people
seem, bafflingly, to prefer it. Outside of psychology it plays
almost no part in the functions of the research machine.” - Steve
Jones

From his 1997 NYT BR review of Steve Pinker’s How the Mind Works.




WHAT is a DISCOVERY?

“discovering a truth has three components. First, there
IS the independence requirement, which is just that one
comes to believe the proposition concerned by one’s
own lights, without reading it or being told. Secondly,
there is the requirement that one comes to believe it in
a reliable way. Finally, there is the requirement that
one’s coming to believe it involves no violation of one’s
epistemic state. ...

In short , discovering a truth is coming to believe it
In an independent, reliable, and rational way.”

Marcus Giaquinto, Visual Thinking in Mathematics.
An Epistemological Study, p. 50, OUP 2007

“All truths are easy to understand once they are discovered; the point is
to discover them.”— Galileo Galilei




Galileo was not alone in this view

“I will send you the proofs of the theorems in this book. Since,
as | said, | know that you are diligent, an excellent teacher of
philosophy, and greatly interested in any mathematical
Investigations that may come your way, | thought it might be
appropriate to write down and set forth for you in this same
book a certain special method, by means of which you will
be enabled to recognize certain mathematical questions with
the aid of mechanics. | am convinced that this is no less
useful for finding proofs of these same theorems.

For some things, which first became clear to me by the
mechanical method, were afterwards proved geometrically,
because their investigation by the said method does not
furnish an actual demonstration. For it is easier to supply
the proof when we have previously acquired, by the
method, some knowledge of the questions than it is to
find it without any previous knowledge.” - Archimedes
287-212 BCE)

Archimedes to Eratosthenes in the introduction to The Method in

Mario Livio’s, Is God a Mathematician? Simon and Schuster, 2009



la. A Very Recent Discovery (July 2009)

(“independent, reliable and rational”)

The n-dimensional integral

Wi (s) ;2/01/01.../01

occurs in the study of uniform random walks

in the plane.

n |°
Z 627Txk1,
k=1

drqdxo---drn

Wn(1) is the expected distance moved after n

steps.

We proved the formula below for 2k (it counts abelian .
squares) and numerically observed it was half-true at
k=1/2. We confirmed (1) to175 digits well before proof (my
seminar) ;
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http://www.carma.newcastle.edu.au/~jb616/walkstalk.pdf

WHAT is MATHEMATICS?

MATHEMATICS, n. a group of related subjects, including algebra,
geometry, trigonometry and calculus, concerned with the study
of number, quantity, shape, and space, and their inter-
relationships, applications, generalizations and abstractions.

¢ This definition, from my Collins Dictionary has no mention of proof, nor the
means of reasoning to be allowed (vidé Giaquinto). Webster's contrasts:

INDUCTION, n. any form of reasoning in which the conclusion,
though supported by the premises, does not follow from them
necessarily.

and

DEDUCTION, Nn. a. a process of reasoning in which a conclusion
follows necessarily from the premises presented, so that the
conclusion cannot be false if the premises are true.

b. a conclusion reached by this process.

“If mathematics describes an objective world just like physics, there is no
reason why inductive methods should not be applied in mathematics just the
same as in physics.” - Kurt Gddel (in his 1951 Gibbs Lecture)




WHAT is a PROOF?

“PROOF, n. a sequence of statements, each of which is either
validly derived from those preceding it or is an axiom or
assumption, and the final member of which, the conclusion , is
the statement of which the truth is thereby established. A direct
proof proceeds linearly from premises to conclusion; an indirect
proof (also called reductio ad absurdum) assumes the falsehood
of the desired conclusion and shows that to be impossible. See
also induction, deduction, valid.”

Borowski & JB, Collins Dictionary of Mathematics

INDUCTION, n. 3. ( Logic) a process of reasoning in which a general conclusion is drawn from a
set of particular premises, often drawn from experience or from experimental evidence. The
conclusion goes beyond the information contained in the premises and does not follow
necessarily from them. Thus an inductive argument may be highly probable yet lead to a
false conclusion; for example, large numbers of sightings at widely varying times and
places provide very strong grounds for the falsehood that all swans are white.

“No. | have been teaching it all my life, and | do not want to have my ideas
upset.” - lIsaac Todhunter (1820-1884) recording Maxwell’s response when asked
whether he would like to see an experimental demonstration of conical refraction.







WHAT is DIGITAL ASSISTANCE?

¢ Use of Modern Mathematical Computer Packages

=  Symbolic, Numeric, Geometric, Graphical, ...

¢ Use of More Specialist Packages or General Purpose Languages
=  Fortran, C++, , GAP, PARI, MAGMA, ...

¢ Use of Web Applications

= Sloane’s Encyclopedia, Inverse Symbolic Calculator, Fractal Explorer,
Euclid in Java, Weeks’ Topological Games, Polymath (Sci. Amer.), ...

¢ Use of Web Databases

= Google, MathSciNet, ArXiv, JISTOR, Wikipedia, MathWorld, Planet Math,
DLMF, MacTutor, Amazon, ..., Kindle Reader, Wolfram Alpha (??)

¢ All entail data-mining [‘exploratory experimentation” and “widening
technology” as in pharmacology, astrophysics, biotech, ... (Franklin)]
= Clearly the boundaries are blurred and getting blurrier
= Judgments of a given source’s quality vary and are context dependent

“Knowing things is very 20th century. You just need to be able to find

things.”- Danny Hillis on how Google has already changed how we think in
Achenblog, July 1 2008

- changing cognitive styles



http://blog.washingtonpost.com/achenblog/?hpid=opinionsbox1

Exploratory Experimentation

Franklin argues that Steinle's “exploratory experimentation” facilitated
by “widening technology”, as in pharmacology, astrophysics, medicine,
and biotechnology, is leading to a reassessment of what legitimates
experiment; in that a “local model" is not now prerequisite. Hendrik
Sgrenson cogently makes the case that experimental mathematics (as
‘defined’ below) is following similar tracks:

“These aspects of exploratory experimentation and wide
Instrumentation originate from the philosophy of (natural)
science and have not been much developed in the context
of experimental mathematics. However, | claim that e.g.
the importance of wide instrumentation for an exploratory
approach to experiments that includes concept formation
IS also pertinent to mathematics.”

In consequence, boundaries between mathematics and the natural
sciences and between inductive and deductive reasoning are blurred
and getting more so.
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“This is an exceptionally important book.. .. It could be the starting point
for many cognitive, social, and educational benefits.”
—From the Foreword by William Higginson,
Queen’s University, Canada

“In a time of much sterile math teaching and grimly utilitarian school re-
form, this elegant and beautiful book brings to life a whole new vision. ...
Nathalie Sinclair makes a brilliant case for rethinking math instruction
so that an aesthetically rich learning environment becomes the path to
meaning, intellectual journeys, and—dare we say the word?—pleasure.”

—Joseph Featherstone,
Michigan State University

In this innovative book, Nathalie Sinclair makes a compelling case for the
inclusion of the aesthetic in the teaching and learning of mathematics.
Using a provocative set of philosophical, psychological, mathematical,
technological, and educational insights, she illuminates how the materials
and approaches we use in the mathematics classroom can be enriched
for the benefit of all learners. While ranging in scope from the young
learner to the professional mathematician, there is a particular focus on
middle school, where negative feelings toward mathematics frequently
begin. Offering specific recommendations to help teachers evoke and
nurture their students’ aesthetic abilities, this book:

Aesthetic Approaches
to Teaching Children

I

o Features powerful episodes from the classroom that show stu-
dents in the act of developing a sense of mathematical aesthetics.

* Analyzes how aesthetic sensibilities to qualities such as con-
nectedness, fruitfulness, apparent simplicity, visual appeal, and
surprise are fundamental to mathematical inquiry.

¢ Includes examples of mathematical inquiry in computer-based
learning environments, revealing some of the roles they play in
supporting students’ aesthetic inclinations.

Nathalie Sinclair is an assistant professor in the Department of
Mathematics at Michigan State University.

ALSO OF INTEREST—
Improving Access to Mathematics: Diversity and Equity in the Classroom
Na'ilah Suad Nasir and Paul Cobb, Editors
2007/Paper and cloth
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ISBN-10 0-8077-4722-X

Teachers College | 90000>

Columbia University
W tEpiEss COTn 9 1780807747223

Nathalie Sinclair

Foreword by William Higginson




1c. Exploring Combinatorial Matrices (1993-2008)

In the course of studying multiple zeta values we needed to obtain the closed
form partial fraction decomposition for

st st :
1 . ] ag,t: 3+t_.]_]-|

This was known to Euler but is eaS|Iy discovered in Maple.
We needed also to show that M=A+B-C is invertible where the n by n matrices
A, B, C respectively had entries

2n — 9 2n — 1 —1
lr_1\k+1 J _1y\EH1 J k+1 (J
UM oM () o ()
Thus, A and C are triangular and B is full.

After messing with many cases | thought to ask for M’s minimal polynomial

> linalg[minpoly](M(12),t); —2 + t + t* "1 25 110 -330 660 924 1
1443 0 —10 55 —165 330 —462
0O -7 36 —-93 162 -210
-5 26 —-b6 78 -84
-3 15 —-31 35 -—-28
-1 5 -10 10 -6 |

> linalg[minpoly](B(20),1);
M(6) =

> linalg[minpoly](A(20),t); —1 4 ¢2

r
o O O

> linalg[minpoly](C(20),t); —1 4 ¢2




The Matrices Conquered

Once this was discovered proving that for all n >2

A2=1, BC=A, C?=1, CA= B?
IS a nice combinatorial exercise (by hand or computer). Clearly then

B3=B-B?=B(CA) = (BO)A=A’=1

and the formula
o M+ 1

2

IS again a fun exercise in formal algebra; as is confirming that we have
discovered an amusing presentation of the symmetric group  53.

« characteristic and minimal polynomials --- which were rather abstract for me
as a student --- now become members of a rapidly growing box of symbolic
tools, as do many matrix decompositions, etc ...

M—l

« a typical matrix has a full degree minimal polynomial

“Why should | refuse a good dinner simply because | don't understand the
digestive processes involved?” - Oliver Heaviside (1850-1925)




Changing User Experience and Expectations

What Is attention? (Stroop test, 1935)

1. Say the color represented
by the word.

2. Say the color represented
by the font color.

High (young) multitaskers perform
#2 very easily. They are great at
suppressing information.

http://www.snre.umich.edu/eplab/demos/st0/stroop program/stroopgraphicnonshockwave.qif
Acknowledgements: Cliff Nass, CHIME lab, Stanford (interference and twitter?)
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Gaining insight and intuition
Discovering new relationships
Visualizing math principles

Testing and especially falsifying
conjectures

Exploring a possible result to see
If It merits formal proof

Suggesting approaches for
formal proof

Computing replacing lengthy
hand derivations

Confirming analytically derived
results

MATH LAB

Computer experiments are transforming mathematics

BY ERICA KLARREICH
T S —

any people regard mathematics asthe crown
jewel of the sciences. Yet math has histori-
cally lacked one of the defining trappings
of science: laboratory equipment. Physicists
have their particle aceelerators; biologists,
their electron microscopes; and astronomers, their tel-
escopes. Mathematics, by contrast, concerns not the

physical landscape but an idealized, abstract world. For explor-
ing that world, mathematicians have traditionally had only their
intuition,

Now, computers are starting to give mathematicians the lab
instrument that they have been
missing, Sophisticated software is
enabling researchers to travel fur-
ther and deeper into the mathe-
matical universe, They're calcu-
lating the number pi with
mind-boggling precision, for
instance, or discovering patterns
in the contours of beautiful, infi-
nite chains of spheres that arise
out of the geometry of knots.

Experiments in the computer lab
are leading mathematicians to dis-
coveries and insights that they might
never have reached by traditional
means, “Pretty much every [math-
ematical ] field has been transformed

it"says Richard Crandall, a math-
crmatician at Reed College in Port-
land, Ore, “Instead of just being &
number-crunching tool, the com-
puter is becoming more like a gar-
den shovel that tums over rocks, and
vou find things underneath.”

At the same time, the new work
is raising unscttling questions about
how to regard experimental results

producod this piot of all the solions to 3 cosiection of
simple 9quatiorss In 2001, Mathematicians are sUll Lrying
account for its many features. :

“I have some of the excitement that Leonardo of Pisa must have
feltwhen he encountered Arabic arithmetic. It suddenly made cer-
tain calculations flabbergastingly easy.” Borwein says. "Thats what
I think is happening with computer experimentation today”

EXPERIMENTERS OF OLD In one sense, math experiments
are nothing new. Despite their field's reputation as a purely deduc-
tive science, the great mathematicians over the centuries have
never limited themselves to formal reasoning and proof.

Forinstance, in 1666, sheer curiosity and Jove of numbers Jed Isaac
Newton to calculate divectly the first 16 digits of the number pi,
later writing, “T am ashamed to tell you to how many figures I car-
ried these computations, having no other business st the time”

Carl Friedrich Gauss, one of the towering figures of 19th-cen-
tury mathematics, habitually dis-
covered new mathematical results
by experimenting with numbers and
looking for patterns. When Gauss
was & teenager, for instance, his
experiments led him to one of the
most important conjectures in the
history of number theory: that the
number of prime numbers less than
a number & is roughly equal to =
divided by the logarithm of .

Gauss often discovered results
experimentally long before he could
prove them formally. Once, he com-
plained, “T have the ~esult, but Ido
not yet know how to get it

In the case of the prime number
theorem, Gauss later refined his
conjecture but never did figure out
how to prove it, It took more thana
century for mathematicians to come
up with a prootf.

Like today’s mathematicians,
math cxperimenters in the late 19th
century used computers - but in
thase days, the word ~eferred to peo-
ple with a special facility for calen

Comparing —y?In(y) (red) to y-y? and y2-y*




1d. What is that number? (1995-2009)

In 1995 or so Andrew Granville emailed me the number
o :==1.433127426722312. ..

and challenged me to identify it (our inverse calculator was new in
those days).

Changing representations, | asked for its continued fraction? It was

[1,2,3,4,5,6,7,8,9,10,11,...] (1)
| reached for a good book on continued fractions and found the answer
, — 1o(2)
11(2)

where |, and |, are Bessel functions of the first kind. (Actually | knew
that all arithmetic continued fractions arise in such fashion).

In 2010 there are at least three other strategies:
» Given (1), type “arithmetic progression”, “continued fraction” into Google
* Type “1,4,3,3,1,2,7,4,2" into Sloane’s Encyclopaedia of Integer Sequences

| illustrate the outcomes on the next few slides:




“arithmetic progression”, “continued fraction”
In Google on October 15 2008 the first three hits were

Continued Fraction Constant -- from Wolfram MathWorld
- 3 visits - 14/09/07Perron (1954-57) discusses continued fractions having
terms even more general than the arithmetic progression and relates

them to various special functions. ...
mathworld.wolfram.com/ContinuedFractionConstant.html - 31k

HAKMEM -- CONTINUED FRACTIONS -- DRAFT, NOT YET PROOFED

The value of a continued fraction with partial quotients increasing in
arithmetic progression is | (2/D) A/D [A+D, A+2D, A+3D, . ...
www.inwap.com/pdpl0/hbaker/hakmem/cf.ntml - 25k -

On simple continued fractions with partial quotients in arithmetic ..

0. This means that the sequence of partial quotients of the contlnued
fractions under. investigation consists of finitely many arithmetic

progressions (with ..
www.springerlink.com/index/COVXH71366ZG1815.pdf - by P Bundschuh

— 1998

_ Lyp (%)
Moreover the MathWorld entry includes [A+D,A+2D,A4+3D, ...] = -

"] +AD | ‘,; '

(Schroeppel 1972) forreal A and 1) # ().
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http://www.springerlink.com/index/C0VXH713662G1815.pdf
http://www.springerlink.com/index/C0VXH713662G1815.pdf
http://www.springerlink.com/index/C0VXH713662G1815.pdf
http://www.springerlink.com/index/C0VXH713662G1815.pdf

In the Integer Sequence Data Base

| illlllll

AT&Tl Enf&&pr’ 5,-_7,@;%@&‘; RESEARCH

Greetings from The On-Line Encvclopedla of Integer Sequences!

14,3,3,1,2,7,4,2 | .
e ] e The Inverse Calculator
Search 1,4, 3,3, 1,2, 7, 4,2 returns
Cisplaying 1-1 of 1 results found. page
Format: long | short | internal | text Sort: relevance | references | number Highlight: on | off .
AOE0A9T Decimal representation of continued fracton 1, 2, 3,4, 5,6, 7, ... + BeSt gueSS
1, 4,3,3,1,2, 79 4,2, 6,7, 2, 2,3, 1, 1,7, 5,48, 3,1, 7 1,8, 3, 4, 53, 5,
i, 7, 5,9, 9,1, &, Z, 0, 4, 3, 1, 5, 1, &, 7, 6, 7, 9, 0, 5, 9, 8, 0, 5, 2, 3, 4 BeSI(O’Z)/BeSI(l’Z)
3! 41 4{ 2{ B! E! 3! El 3{ gl 4{ 3! I:I! g! ll 8{ 3{ 2! 5! 4! ll '-II‘J 2{ gl D! I:I! ll 31
&, 5, 0, 3, 7, 2, &, 4, 3, 5, 7, 8, 6, 1, 1, 4, 6, 5, 9, 5, 0 {it;cons; gragh; listen
OFFSET 1,2
COMMENT The walue of this continued fraction is the ratio of two Bessel
functions: BesselI(0,2)/Bessell(1,2) = A070910/4096789. Or, e \We ShOW the ISC on
equivalently, to the ratio of the suws: sum_{n=0..inf} 1/(n'n') and
:ﬁ:l_fnjg;l.;.rfféugg[n!n!j. - Mark Hudson (mrmarkhudson(AT)hotmail. another number neXt
FORMUL & 1/a0352119.
EXAMPLE €=1.4331274267223117568317183455775 ... e Most func’“ona“ty of
MATHEM ATICA RealDigits[ FromContinuedFraction[ Range[ 4411, 10, 1107 [[1]] . ] . - ) ”
[* Or *) RealDigits[ BesselI[0, 2] / BesselI[l, Z], 10, 1107 [[1]] 'I:y
[* Or *) RealDigits[ Swe[l/(n'n'), {n, 0, Infinity}] / Sww[n(n'n!), ISC IS bUIIt Into Identl
{n, 0, Infinity}], 10, 1107 [[1]1] 1
RO55REFS cf. A052119, A001053. In Maple'
Adjacent sequences: AOB0094 2060995 ADE0Y9586 this sequence A060093
2060999 A061000 ° )
Sequence in context: AQ166989 AO060373 AQ90ZE80 this sequence AI1Z0624 There S aISO WOIfram «
a019975 aA073871
KEYWORD CONS, ERSY, nONN
AITHOR Robert &. Wilson w [rgw{ATjrgw.comj

“The price of metaphor is eternal vigilance.”
guoted by R. C. Leowontin, Science p.1264, Feb

- Arturo Rosenblueth & Norbert Wiener

16, 2001 [ ].




Calculator [ISC] uses a
combination of lookup
tables and integer
relation algorithms in
order to associate
with a user-defined,
truncated decimal
expansion
(represented as a
floating point
expression) a closed
form representation
for the real number,

NSERC

*4Drive Neine

Maplesoft

otandard lookup results for 12.587886229548403854

exp(1)+Pi"2

lSC The original ISC

The Dev Team: Nathan Singer , Andrew Shouldice , Lingyun Ye,
Tomas Daske, Peter Dobcsanyi, Dante Manna, O-Yeat Chan, Jon Borwein

3.146264370 [ Tryit |

accepts either floating
point expressions or
as input. However, for
Maple syntax requiring
too long for
eyvaluation, a timeout
has been
implemented,

Yisit

Jon Borwein's
Webpage

David Bailey's
Webpage

Math Resources Portal

19.99909998
ISC The original ISC

e |ISC+ now runs at CARMA

* Less lookup & more
algorithms than 1995

The Dev Team: Nathan Singer, Andrew Shouldice , Lingyun Ye,
Tomas Daske , Peter Dobcsanyi. Dante Manna, O-Yeat Chan, Jon Borwein




Veit Elser, Ph.D.

2007 Elser solving Sudoku G. H. Hardy (1877-1947)

with reflectors

1e. Phase Reconstruction

Projectors and Reflectors: P,(x) is the metric projection or nearest
point and R,(x) reflects in the tangent: x is red

2008 Finding exoplanet
Fomalhaut in Piscis
with projectors

projection (black) and reflection iblue) of point (red) on
boundary (blue) of ellipse (yellow)

"All physicists and a good
many quite respectable
mathematicians are
contemptuous about proof."

N -
of Sabin Lew, Comeld Moty Relitices (Da. Copymght & Comell Siveetty




Interactive exploration in CINDERELLA

The simplest case is of a line A of height h and the unit circle B. With
zn = (xn,yn) the iteration becomes

Tp41 = COSOn,Ypt1 :=yYn+h—sinby, (Onh:=argz,)

A Cinderella picture of two steps from (4.2,-0.51) follows:

¥=04.2]-0.57}

Showe Construction



http://www.carma.newcastle.edu.au/~jb616/reflection.html

Computer Algebra + Interactive Geometry
the Grlef IS in the GUI

Divide —and-Concur D@@W DR [2] =I5 -IZ]EP@Q:I@
before and after accessing numerical |+ a8 [« o1 Al e i on G TS A O
output from Maple '

Thelnteractive
Géometry Software

(2 [Tl 8] S

Move free elements by dragoing the mouse



http://users.cs.dal.ca/~jborwein/expansion.html

This picture is worth 100,000 ENJACs

Eckert & Mauchly (1946)

[~ 7

The number of ENIAC
needed to store the 20Mb
TIF file the Smithsonian
g=;-\sold me

et s
Gt
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nnoonon
. ptnonnt
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Projected Performance

i\ MECOMPUTES SiTIN

Projected Performance Development
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THE REAL COST OF NEW

APPLE PRODUCTS
(ACCOUNTING FOR INFLATION)

Jul. 1976 Apple | Cntry Level Price $666.66

Today Appie | computers are a rare coliecior’s item
Onily 30 10 £0 sre estimaled (o exsl. An Apple | , [ )

reportedly sold for $£0,000 in 1999

May 1977 Applell $4,641.25
May. 1980 Apple Il $11,412.88
E] B Jan.1983  Applelisa ELP $9,995.00
— Tha mos! expersive Apple personal compter
: , ever, fhe Lisa was the first commercially sold 2 1’1“.85
,\-M/ 3 personal computer to have a GUI
Jan. 1984 Macinfosh 128K $5,204.70
Mar. 1987  Macinfosh i $7.322.64
- | Sep1589  Macintosh Portable ELP $6,500.00

: | Apple’s frst portable compute” waigied a mighty
~ W 16bswith a 2ib battery which allowed It to run for 511 358.59
up 10 12 howrs ,

—
Oct. 1990 Macintosh LC $3,707.62
Oct. 1991 PowerBook 100 $3,660.90

Aug.1993 Newton Message Pad OMP ELP $699.00

Iwo ex-Apple Newton developers went on 10 1 048 47
foLna Pixo, the ccmpany that created e operaiing y )

system for e original iPoc

Mar.1994  Power Macintosh 6100 $2,486.23
Aug.1998 iMac G3 $1,593.91
Sep.1999 iBook G3 $2,079.73
e )
Oct. 2001 iPod ELP $359.00
Tha iPod neme was thought up Ly & freelanca copywrter
WO atter NIrst seeing a prototype thought of e Juote ‘Upen 5488'46
s the pod bay door, Hal!' fom 200 |; A Space Cddasey
5

Apr. 2002 eMac $1,023.00
lun. 2005 Mac Mini $553.64
lan 2006 MacBook Pro $2,148.60
May 2006  MacBook $1,181.25
lun 2007 iPhone $521.49

Apr.2010  iPad

Apple's bigges: product launch since the iPhone s‘gg.w

Apple surprsed averyone with an incredibly
compatitve price or the new device,

he Apple Index

Accounting for inflation you can buy 43 iPads
for the same cost of the Apple Lisa

- U
)
Al ce e roduct
S e ising ne If’.’- ) 135 L d are correctas

Caiculaor ar

. VoucherCodes.co.uk
evedane leves a doal

Only two years ago, Jobs contemptuously predicted
that the Kindle would flop: “It doesn’t matter how
good or bad the product is,” he told The New York
Times, because “the fact is that people don’t read
anymore. Forty percent of the people in the U.S.
read one book or less last year. The whole
conception is flawed at the top because people
don’t read anymore.” (Alan Deutschman)

In Steve Jobs: Flip-Flopper, Daily Beast 1/26/2010.



http://www.thedailybeast.com/blogs-and-stories/2010-01-26/steve-jobs-flip-flopper/
http://www.thedailybeast.com/blogs-and-stories/2010-01-26/steve-jobs-flip-flopper/
http://www.thedailybeast.com/blogs-and-stories/2010-01-26/steve-jobs-flip-flopper/

The Rest Is Software

“It was my luck (perhaps my bad luck) to be the world
chess champion during the critical years in which

computers challenged, then surpassed, human chess
players. Before 1994 and after 2004 these duels held

little interest.” - Garry Kasparov, 2010

WHILE YOU'RE DOING THE | | A USB PORT? . THIS WONT LET YOUR. BRAN | THE REST IS SOFTWARE; TM SURE
SURGERY, CAN YOU ALSD TUST WIRE IT mnﬂm_ USE DEVICEE, YOU KNOW. | THERE WILL BE A PROTECT TO PATCH
IMPLANT THIS IN MY ARME UP TO SOME GURE — T JUST TOGETHER SURFORT EVENTUALLY.
NERVES. WANT THE HARDWARE. ~ YOURE \.h YEAH: HOWD
A LINUX YOU KNCW?

P




PART [I MATHEMATICS

“The question of the ultimate foundations and the
ultimate meaning of mathematics remains open: we
do not know In what direction it will find its final
solution or even whether a final objective answer can
be expected at all. ‘Mathematizing' may well be a
creative activity of man, like language or music, of
primary originality, whose historical decisions defy
complete objective rationalisation.” - Hermann Weyl

In “Obituary: David Hilbert 1862 — 1943,” RSBIOS, 4, 1944, pp. 547-553;
and American Philosophical Society Year Book, 1944, pp. 387-395, p. 392.




lla. The Partition Function (1991-2009)

Consider the number of additive partitions, p(n), of n. Now
5=4+1 =342 =3+1+1 = 2+2+1 = 2+1+1+1 = 1+1+1+1+1
so p(5)=7. The ordinary generating function discovered by Euler is

©.

©@)
-1
Y p(n)g" = J](1-4"". (1)
n=0 k=1
(Use the geometric formula for 1/(1-g¥) and observe how powers of g occur.)

The famous computation by MacMahon of p(200)=3972999029388 done
symbolically and entirely naively using (1) on an Apple laptop took 20 min
In 1991, and about 0.17 seconds in 2009. Now it took 2 min for

P(2000) = 4720819175619413888601432406799959512200344166

In 2008, Crandall found p(10°) in 3 seconds on a laptop, using the Hardy-
Ramanujan-Rademacher ‘finite’ series for p(n) with FFT methods.

Such fast partition-number evaluation let Crandall find probable primes
P(1000046356) and p(1000007396). Each has roughly 35,000 digits.

When does easy access to computation discourages innovation: would Hardy
and Ramanujan have still discovered their marvellous formula for p(n)?




“You cAN'T IMAGINE VMOW TiGHT OUR BUDGET 15,
WE. Al ONLY WORK WITH SINGLE-DIGIT NUMBERS ™




lIb. The computation of Pi (1986-2009)

Y1 = ﬂ’al = ag (1+y1)4—28~y1 (1+y1+y12)
1+ \4/1—yo4
1_4/1_ 4

Y2 = —fylk,mzai(l‘l—yz)‘l*fyz (1+yz+y22)
].+ \I].—y14

BB4: Pito 2.59 [
4 G1—%"

\4/ 1—ya*
) 4

Ya yas = az (1+y3)* —27ys (1 + ya + 45”)

trillion places
In 21 steps

1/m ~ A
1—\/4 — 2
Yo= ———"" as=as(L+ ¥) —2 ’yﬁu-t—ys-t-ys )
14+ Y1—ys?
s 41_ 4
Yr = Tﬂ%’av =as (L+y7)* — 2% (L +yr +3:7)
— Y
e 4/1_ 4
ya = m*/—l%,as = ar (1+98)* = 2'"ys (1 + 95 +35%)
—yr
1_ 4/1_ 4
TN ;1/138 —,a0 = as (1+90)* —2'%y0 (1 + 9o +107)
—Ys
1_4/1_y94

Y10 = W =, a10 = as (1 +y10)* — 2% 910 (1+y10+9102)
wf L —da

Set ag = 6 — 4v/2 and yg = V2 — 1. Iterate
1—(1—yHl/*
14 (1 —yHi/4
ap(1+ ypa1)?

and

Yk+1

Af41
22k 3y 1 (L + a1 + yR)-

Then 1/a; converges quartically to =

~ The-se equations specify @

Y = —1 — Vl _y104,a11 = Q10 (]. = ?/11)4 = 228?/11 (1 + Y11 +y112)
1+ /1 —y1o*

1— Y1 —yut
Yig—=——F—"—""—

1+ 41—yu®
1 — 14/ l —'y124
e

Yig = — ————

a1z = a1t (1+ y12)4 — 2252}12 (1 +yio + y122)

4

R O I L P (o Ly DO s (T O +y132)

n algebraic number:

oyt (1 +yis + yisz)

A 4 33 2
yis = ya16 = a1s (L +y16)” — 27 y1e (14 y1s + yie
14 /1 —ys? { )
1T —yue®
Y17 = T Yie , Q17 = Q16 (1 -+ y17)4 — 235y17 <1 + yir + y172)
1+ /1 —y16*
Ve g
yra= ——f—o-— L ya1s = atr (L+ y18)* — 2%7y1s (1 + y1e + y18”)
I+ 1 —yu®
O —
Y10 = 4—%8, ate = ais (1 + y10)* — 2%%y10 (1+y1e+ y192)
Tt L —yus®
]. = \4/]. =S y194

(14 y20)* — 2*'y20 (1 + y20 + y20°) -

Y20 = —  /——,A20 = Q19
1+ 14/1* 7J1o4

A random walk on a
million digits of Pi




Moore’ s Law Marches On

1986: It took Bailey 28 hours to compute 29.36 million digits
on 1 cpu of the then new CRAY-2 at NASA Ames using (BB4).
Confirmation using another BB quadratic algorithm took 40
hours.

This uncovered hardware and software errors on the CRAY.

2009 Takahashi on 1024 cores of a 2592 core Appro Xtreme -
X3 system 1.649 trillion digits via (Salamin-Brent) took 64
hours 14 minutes with 6732 GB of main memory, and (BB4)
took 73 hours 28 minutes with 6348 GB of main memory.

The two computations differed only in the last 139 places.

Fabrice Bellard (Dec 2009) 2.7 trillion places on a 4 core
desktop in 133 days after 2.59 trillion by Takahashi (April)

“The most important aspect in solving a mathematical problem is the conviction
of what is the true result. Then it took 2 or 3 years using the techniques that had
been developed during the past 20 years or so0.” - Leonard Carleson (Lusin’s
problem on p.w. convergence of Fourier series in Hilbert space)




m..q/ i 7 / /
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¥ THERE WERE COMPUTERS
N GALILEDS TIME




Il c. Guiga and Lehmer (1932-2009)

As another measure of what changes over time and what doesn't,
consider two conjectures regarding Euler’s totient ¢(n) which

counts positive numbers less than and relatively prime to n.

Giuga's conjecture (1950) nis prime if and only if

n—1
Gn = Z k"1 = (n—1)modn.
k=1

Counterexamples are Carmichael numbers (rare birds only
proven infinite in 1994) and more: if a number n=p;--- p,

with m>1 prime factors p; is a counterexample to Giuga's
conjecture then the primes are distinct and satisfy

|

— > 1
z; bi
and they form a normal sequence: p; #1 mod P;

(3rules out 7, 13, 19,31,... and 5 rules out 11, 31, 41,...)




Guiga’s Conjecture (1951-2009)

With predictive experimentally-discovered heuristics, we built an
efficient algorithm to show (in several months in 1995) that any
counterexample had 3459 prime factors and so exceeded
1013886 — 1014164 jn a 5 day desktop 2002 computation.

The method fails after 8135 primes---my goal is to exhaust it.

2009 While preparing this talk, | obtained almost as good a
bound of 3050 primes in under 110 minutes on my notebook
and a bound of 3486 primes in 14 hours: using Maple not as
before C++ which being compiled is faster but in which the
coding is much more arduous.

One core of an eight-core MacPro obtained 3592 primes and
S0 exceeds 16673 digits in 13.5 hrs in Maple. (Now running
on 8 cores.)




Lehmer’s Conjecture (1932-2009)

A tougher related conjecture is
Lehmer's conjecture (1932) nis prime if and only if
$(n)[(n— 1)
He called this “as hard as the existence of odd perfect numbers.”

Again, prime factors of counterexamples form a normal sequence,
but now there is little extra structure.

In a 1997 SFU M.Sc. Erick Wong verified this for 14 primes,
using normality and a mix of PARI, C++ and Maple to press the
bounds of the ‘curse of exponentiality.’

The related ¢(n) |(n+1) is has 8 solutions with at most 7 factors (6 factors is due
to Lehmer). Recall F:=22"+1 the Fermat primes. The solutions are 2, 3,
3.5,3.5.17,3.5.17.257, 3.5.17.257.65537 and a rogue pair: 4919055 and
6992962672132095, but 8 factors seems out of sight.

6992962672132097= 73x95794009207289.
9 é(n) |(n+1) and n+2 prime = N:=n(n+2) satisfies ¢(N)|(N+1)




"Vacuums, black holes, antimatter - it's the elusive
and intangible which appeals to me."




Il d. Apéry-Like Summations

The following formulas for £(n) have been known for many decades:

(@ @) = 32@,
< (_1\k+1 The RH in Maple
®) ¢B3) = gk; (k;()zkk) ,
© @ =3y ék).
These results have led many to speculate that
Qs = <(5>/§j1 (k;()%l

might be some nice rational or algebraic value.

Sadly, PSLQ calculations have established that if Q. satisfies a polynomial
with degree at most 25, then at least one coefficient has 380 digits.

"He (Gauss) is like the fox, who effaces his tracks in the sand
with his tail." - Niels Abel (1802-1829)




wo more things about {(5)

= (1)
N e = 20(5) — L7 + BLPC(2) + 4L%(3)

03 (e~ @)

Here p 1= ‘/52_1 and L :=1ogp

(JMB-Broadhurst-Kamnitzer, 2000).
Also, there is a simpler Ramanujan series for

((4n + 1). In particular:

0

1 9 72 =~
5 -
<(5) = 204" T 35 Z; (1+ e%ﬂ k5 35 ; 1 — e%’”

and ¢(5) — 7°/294 = —0.0039555 . . ..




Nothing New under the Sun

Margo Kondratieva found a formula of Markov in 1890:

- 1 1 (=1)" (n)°
;(n+a)3 - Z (2n + 1)!
(5 (n—l—l) —|—6(a—1)(n—|—1)+2(a—1))
Hk o(a+k)

Note: Maple establishes this identity as

Hence

m—1 m—1
¢(4) = Z ( 1) 3 Z - l)zm L= lk

m=1 (m)m3

¢ The case a=0 above is Apéry’s formula for (3) !

Andrei Andreyevich Markov
(1856-1922)




Two Discoveries: 1995 and 2005

¢ Two computer-discovered generating functions
= (1) was ‘intuited’ by Paul Erdds (1913-1996) &
¢ and (2) was a designed experiment
= was proved by the computer (Wilf-Zeilberger)
= and then by people (Wilf included)
=  What about 4k+1?

o0 5 0 k—l—l k—1 1 _|_4$4/m4
Dcukea = 33 mnm 1 (Towme) )
x=0 gives (b) and (a) respectively
i((2k+2)ﬂf% _ 3§: ’ﬁ (1—4w2/m2) 2)
— g2 (2F) (1 - 22/k2) 4\ 1—22/m?




¢Euler g

1. via PSLQ to
5,000 digits
(120 terms)

0

7'('2 7'('4
((2) =5 ((8) = 5, (6) = e

= 2k o 1

Bailey, Bradley kz::o nzzzl n? —
& JMB discovered and 1 —gmzcot(nx) 2 reduced
proved - in 3Ms - three — S { as hopéd

equivalent binomial
identiti k—1 4 n2—m?
identities zznr:b Hm:n—l—l ng_ﬂffbg 1 1
2k > >\ ~ (2n) (3n
k=n+1 (k)(k _”) (n) (n)

(%)
(+)

3n7n+1,_n .1
3F2 ) =
2n+1,n+1/2" 4

3.
(now 2 human proofs)
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Il e Ramanujan-Like ldentities

Truly novel series for 1/m, based on elliptic in-
tegrals, were discovered by Ramanujan around

1910. One is:
Ak |1 2v2 X (4k)! (1103 + 26390k) (1)
A " |Each term of (1) adds 8 correct digits. Gosper

completing the first proof of (1).

"% |used (1) by the computation of a then-record
17 million digits of the c.f. for w in 1985—

little later David and Gregory Chudnovsky

found the following variant, which liesin Q(1/—163)
rather than Q(v/58):

1

T

Ea

_ 15 i (—1)* (6k)! (13591409 + 545140134k)
k=0 (3k)! (k)3 6403203k+3/2

ch term of (2) adds 14 correct digits.

(2)

The brothers used (2) several times --- culminating in a 1994 calculation to over four billion
decimal digits. Their remarkable story was told in a Pulitzer-winning New Yorker article.




New Ramanujan-Like ldentities

Guillera has recently found Ramanujan-like identities, including:

128 o0 1\2n
o = (—1)"r(n)°(13 + 180n 4+ 820n°) [ —
2 n;O 2(32)
3 B 00 \n 5 5 l n
= = ngo( 1)(n)3(1 4 8n + 20n )(2)
- 00 2n
% = Y r(n)"(1 4+ 14n+ 76n° + 168n°) (%) .
T n=0
where
) — (1/2)n _ 1/2-3/2-----(2n—1)/2 _ T(n+1/2)
n! n! ValT(n+1)

Guillera proved the first two using the Wilf-Zeilberger algorithm. He
ascribed the third to Gourevich, who found it using integer relation methods.
It is true but has no proof.

As far as we can tell there are no higher-order analogues!




Example of Use of Wilf-Zeilberger, |

The first two recent experimentally-discovered identities are

4n)\ (2n\4
ioj (222)1(6?5) (12002 +34n+3) = ig
n=0
o2n)\ O
3 (_12):()(”””) (82002 + 180n + 13) = 15—28
n=0

Guillera cunningly started by defining

2n\ 4 (2k\3 (4n—2k
G(n, k) = 2(_n)k (12012 + 84nk + 34n + 10k + 3) ) G (5.5%)

()
n
He then used the EKHAD software package to obtain the companion
3 /40—
P gy = LB12 G G (5.5
’ 216124k 4p — 2k — 1 (an) (n+k)2
n




Wilt-Zeilberger, Il

When we define
H(n,k) = F(n+1,n+k)+Gn,n+k)

Zellberger's theorem gives the identity

oo 0. @)

> G(n,0) = ) H(n,0)

n=0 n=0

http://ddrive.cs.dal.ca/~isc/portal

which when written out is

5 OO (102 g aan ) = 5 GO k02 (G () ()
2 n

=0 = 22007 2n 43 (znn+2) (27?_[_'_11)2
= (~1)" oS 1 &= (D)
+n§:jo Sa0n (204n” +44n+3) (1) = ano 220(nn) (8200 + 180n + 13)

A limit argument and Carlson’s theorem completes the proof...



http://ddrive.cs.dal.ca/~isc/portal
http://ddrive.cs.dal.ca/~isc/portal

Searches for Additional Formulas

We had no PSLQ over number fields so we searched for
additional formulas of either the following forms:

& @)

fnim = > () (po +pin+ -+ pmn™)a>"
n=0

S = 2 GO0 o+ pin -+ pmn™a”"
n=0

where ¢ iIs some linear combination of

1) 21/2’ 21/3, 21/4’ 21/6, 41/3, 81/4, 321/6’ 31/2’ 31/3’ 31/4, 31/6’ 91/3,
271/4’ 2431/6’ 51/2, 51/4, 1251/4’ 71/2, 131/2, 61/2, 61/3, 61/4, 61/6’
7.36%/3 21614 77761/6 121/4 1081/4 101/2 101/4, 151/2

where each of the coefficients p; is a linear combination of
1, 21/2’ 31/2’ 51/2’ 61/2, 71/2’ 101/2’ 131/2’ 141/23 151/2’ 301/2

and where a is chosen as one of the following:
1/2,1/4,1/8,1/16, 1/32, 1/64, 1/128, 1/256, V5 — 2, (2 — V/3)?,
5v13 — 18, (v/5 — 1)4/128, (vV5 — 2)%, (21/3 — 1)4/2, 1/(2v2),
(V2 -1)% (V5 -2)% (vV3-v2)*




Relations Found by PSLQ

- Including Guillera’s three we found all known series for r(n) and no more.
- There are others for other pochhammer symbols

4 B oo 3 1\ 2n
.= L rm’a+en (5)
16 & 3 1\2"
= = gor(n) (5 + 42n) (8)
121/4 0 4n
= Y r(n)3(-154 9v3 - 36n + 24v3n) (2 - V3)
T n=0
o0 2n
32 _ 3" r(n)3(—1 4 5v5 + 30n 4 42V/5n) ((\/512_81)4)
T n=0
st _ f r(n)3(—525 4 235v/5 — 1200n + 540v/5n) (V5 — 2)8”
T n=0
2\/5 _ 00 . 3 1 2n
= ngo(—l) r(n)>(1+ 6n) (2\/5)
2 i n 3 4n
S = Y (-1D)"(n)3(-5+4v2 - 12n+ 12V2n) (\/5 - 1)
T n=0
2 _ § (—1)"r(n)3(23 — 10v/5 + 60n — 24v/5n) (V5 — 2)4”
T n=0
2 _ f (=)™ (n)3(177 — 72v6 + 420n — 168v6n) (\/5 — \/5)8”
T n=0
Baruah, Berndt, Chan, “Ramanujan Series for 1/7. A Survey.” Aug 09, MAA Monthly
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"What I appreciate even more than its
remarkable speed and accuracy are the
words of understanding and compassion

I get from it."
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Ill. A Cautionary Example

These constants agree to 42 decimal digits accuracy, but
are NOT equal:

/OOO cos(2x) lo_o[ cos(z/n)dxr =

n=0
0.39269908169872415480783042290993786052464543418723 ...

U

3
0.39269908169872415480783042290993786052464617492189. ..

\ Computing this integral is (or was) nontrivial, due largely to

\ difficulty in evaluating the integrand function to high

\ precision. _ _ _
\ Fourier analysis explains

\ i this happens when a t g

— \\‘a r/-/u P X.,_L3 1 5 hyperplane meets a n
W hypercube (LP) ... 2 1/k>2
k




V. Some Conclusions

¢

We like students of 2010 live in an information-rich, judgement-poor world

The explosion of information is not going to diminish
= nor is the desire (need?) to collaborate remotely

So we have to learn and teach judgement (not obsession with plagiarism)
= that means mastering the sorts of tools | have illustrated

We also have to acknowledge that most of our classes will contain a very
broad variety of skills and interests (few future mathematicians)

= properly balanced, discovery and proof can live side-by-side and
allow for the ordinary and the talented to flourish in their own fashion

Impediments to the assimilation of the tools | have illustrated are myriad
= as | am only too aware from recent experiences

These impediments include our own inertia and

= organizational and technical bottlenecks (IT - not so much dollars)
= under-prepared or mis-prepared colleagues

= the dearth of good modern syllabus material and research tools

= the lack of a compelling business model (societal goods)

“The plural of 'anecdote' is not 'evidence'.”
- Alan L. Leshner (Science's publisher)




Further Conclusions

SECOND EDITION ‘."

New techniques now permit integrals, | [EEawd i S
Infinite series sums and other entities | NS
to be evaluated to high precision s me——— sl
(hundreds or thousands of digits), thus ﬂ‘gaghggfnt Jes
permitting PSLQ-based schemes to /

discover new identities.

These methods typically do not
suggest proofs, but often it is much . »
easier to find a proof (say via W2Z) -
when one “knows” the answer is right. MWUWW
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Full detalils of all the examples are in Mathematics by Experiment or its
companion volume Experimentation in Mathematics written with Roland
Girgensohn. A “Reader’s Digest” version of these is available at
www.experimentalmath.info along with much other material.

“Anyone who is not shocked by quantum theory has not understood a
single word.” - Niels Bohr



http://www.experimentalmath.info/

Experiencing Experimental Mathematics

Experimental Mathematics in Action
David H. Bailey, Jonathan M. Borwein, Neil J. Calkin, Roland
Girgensohn, D. Russell Luke, Victor H. Moll

“David H. Bailey et al. have done
a fantastic job to provide very
comprehensive and fruitful ex-
amples and demonstrations on

Experimental how experimental mathematics
Mathemqﬁcs acts in a very broad area of both
in Action pure and applied mathematical

research, in both academic and
industry. Anyone who is interest-
ed in experimental mathematics
should, without any doubt, read
this book!”

—Gazette of the
Australian Mathematical Society

978-1-56881-271-7; Hardcover; $49.00

Experimentation in Mathematics

Computational Paths to Discovery
Jonathan M. Borwein, David H. Bailey, Roland Girgensohn

Experiments in Mathematics (CD)
Jonathan M. Borwein, David H. Bailey, Roland Girgensohn

In the short time since the first edition of Mathematics
by Experiment: Plausible Reasoning in the 21st Century
and Experimentation in Mathematics: Computational
Paths to Discovery, there has been
a noticeable upsurge in interest in
using computers to do real math-
ematics. The authors have updated
and enhanced the book files and
are now making them available in
PDF format on a CD-ROM. This CD
provides several “smart” features,
including hyperlinks for all num-
bered equations, all Internet URLs,
bibliographic references, and an
augmented search facility assists one with locating a
particular mathematical formula or expression.

978-1-56881-283-0; CD; $49.00

EXPERIMENTS
IN MATHEMATICS

Mathematics by Experiment Second Edition

Plausible Reasoning in the 21st Century
Jonathan M. Borwein, David H. Bailey

EHp‘%arinlentatinn
Mathematics

Computational Paths to Discovery

“These are such fun books to read! Actually, calling them books
does not do them justice. They have the liveliness and feel of great
Web sites, with their bite-size fascinating factoids and their many
human- and math-interest stories and other gems. But do not be
fooled by the lighthearted, immensely entertaining style. You are
going to learn more math (experimental or otherwise) than you
ever did from any two single volumes. Not only that, you will learn
by osmosis how to become an experimental mathematician.”

Methemstics
by Experiment

» £

978-1-56881-136-9; Hardcover; $59.00

Communicating Mathematics in the Digital Era
Edited by J. M. Borwein, E. M. Rocha, J. F. Rodrigues

" Digital technology has dramatically
Rl @' changed the ways in which scientif-
= ic work is published, disseminated,
archived, and accessed. This book
is a collection of thought-provoking
essays and reports on a number of
projects discussing the paradigms
and offering mechanisms for pro-
ducing, searching, and exploiting
scientific and technical scholarship
in mathematics in the digital era.

COMMUNICATING
MATHEMATICS
IN THE DIGITAL ERA

978-1-56881-410-0; Hardcover; $49.00

—American Scientist Online

978-1-56881-442-1; Hardcover; $69.00

The Computer as Crucible

An Introduction to Experimental Mathematics
Jonathan Borwein, Keith Devlin

Keith Devlin and Jonathan Borwein
cover a variety of topics and ex-
amples to give the reader a good
sense of the current state of play
in the rapidly growing new field of
experimental mathematics. The
writing is clear and the explana-
tions are enhanced by relevant his-
torical facts and stories of math-
ematicians and their encounters
with the field over time.

978-1-56881-343-1; Paperback; $29.95

A K Peters, Ltd. www. akpeters.com

service@akpeters.com 781.416.2888




