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Abstract. Using fractal self-similarity and functional-expectation re-
lations, the classical theory of box integrals—being expectations on unit
hypercubes—is extended to a class of fractal “string-generated Can-
tor sets” (SCSs) embedded in unit hypercubes of arbitrary dimension.
Motivated by laboratory studies on the distribution of brain synapses,
these SCSs were designed for dimensional freedom—a suitable choice
of generating string allows for fine-tuning the fractal dimension of the
corresponding set. We also establish closed forms for certain statistical
moments on SCSs, develop a precision algorithm for high embedding
dimensions, and report various numerical results. The underlying nu-
merical quadrature issues are in themselves quite challenging.

1. Introduction

The development of the following mathematics was motivated by recent
laboratory data concerning the spatial locations of 106 mouse-brain synapses
naturally embedded in three dimensions. The synapses were found to be
distributed in a fractal manner, with fractal box dimension strictly less than
the limiting value of 3 that would be expected from a set of points randomly
distributed throughout a cuboid (see [11] for full details and [15] for a recent
popular account).1

Another way that laboratory distributions loom non-random is that sta-
tistical moments, such as expected pairwise distances, do not follow the sta-
tistics of random distributions. Indeed, the aforementioned brain data pos-
sesses certain expectations from non-random distributions. To understand
such phenomena further, we develop herein various statistical measures—
in particular, separation moments (box integrals)—on a particular class of
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abstract fractal sets, in the hope that these measures can assist the identi-
fication of empirical synapse distributions.

Box integrals were first introduced in 1976 as a means of analysing the
expected norm on points uniformly distributed through unit hypercubes [1].
Following intensive study over the last decade, a number of closed-form
results pertaining to box integrals have been developed; see for example [2],
[3] and [9]. The canonical definitions are as follows [3].

Definition 1.1. Given dimension n, complex parameter s and a fixed point
q in the unit n-cube, the box integral Xn(s, q) is defined as the expectation of
a certain norm |r− q|s, with q fixed and r chosen at random from a uniform
distribution over the unit n-cube. That is,

Xn(s, q) : = 〈|r − q|s〉r∈[0,1]n

=

∫
r∈[0,1]n

|r − q|s Dr(1.1)

where Dr := dr1 . . . drn is the n-space volume element.

Example 1.2 (Classical Box Integrals). Three important instances of
the X-integrals follow. First is Bn(s), the order-s moment of separation
between a random point and a vertex of the n-cube (such as the origin):

Bn(s) := Xn(s, 0) = 〈|r|s〉r∈ [0,1]n =

∫
r∈[0,1]n

|r|s Dr;(1.2)

second is Γn(s), the order-s moment of separation between a random point
and the centroid 1/2 = (1/2, 1/2, . . . , 1/2) of the n-cube:

Γn(s) := Xn(s,1/2) = 〈|r − 1/2|s〉r∈ [0,1]n =

∫
r∈[0,1]n

|r − 1/2|s Dr;

(1.3)

and finally ∆n(s), the order-s moment of separation between two random
points in the n-cube:

∆n(s) := 〈Xn(s, q)〉q∈[0,1]n = 〈|r − q|s〉r,q ∈ [0,1]n =

∫
r,q∈[0,1]n

|r − q|s DrDq.

(1.4)

It is these three expectations which we aim to generalize, with particular
emphasis on ∆n(s) as the measure most relevant to the analysis of empirical
synapse distributions. 3

The existence of well-defined analytic continuations for Bn(s) and ∆n(s)
over the complex s-plane was established in [2] and [3]. In particular, Bn(s)
was found to have the following absolutely convergent analytic series:

(1.5) Bn(s) =
n1+s/2

s+ n

∞∑
k=0

γn−1,k

(
2

n

)k
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where the γm,k are fixed real coefficients defined by the following two-variable
recursion [12]:

(1.6) (1 + 2k/m)γm,k = (k − 1− s/2)γm,k−1 + γm−1,k

for m, k ≥ 1; this recursion being ignited by γ0,k := δ0,k, γm,0 := 1. Of
particular interest to the present work is the fact that the analytic series
(1.5) exhibits a pole at s = −n, the negated dimension of the sample space
(cf Theorem 8.1).

1.1. The goal of this paper. Our goal to establish a solid theoretical
foundation and closed form results for box integrals over a restricted class
of fractal sets; namely, what we call string-generated Cantor sets (SCSs).
These sets are formally introduced in Section 2 and a closed form is provided
for the relationship between their fractal dimensions and generating strings.
We begin to extend the classical box integrals Bn(s), Γn(s) and ∆n(s) over
the SCSs in Section 3, using a heuristic notion of expectation. A spectral
formalism is brought to bear in Section 4. This with the addition of fractal
self-similarity relations developed in Section 5 enables closed forms for the
expectations to be obtained. Exact results are obtained for arbitrary mo-
ments in embedding-dimension one in Section 6, and for second moments
in arbitrary dimensions in Section 7. Self-similarity relations are used to
analyse the complex poles of Bn(s) (as defined over SCSs) in Section 8. We
finish with some numerical results and open questions in Section 9. Some
numerical data and plots regarding the fractal dimensions and second-order
separation moments on various SCSs is given in Appendix A—along with a
discussion of the methods employed.

Let us emphasise that in this paper we take very much a physicist’s view
of the expectations we will uncover. We leave the considerable work of
producing a mathematically fully rigorous accounting (in terms of abstract
measure theory, and invariant measures on fractals) for a subsequent paper.

2. String-generated Cantor sets

As a first step towards full generalisation of classical box integrals to ar-
bitrary fractal sets, we introduce the concept of a string-generated Cantor
set (SCS). Though our definition will perhaps appear arbitrary, or not gen-
eral enough, our motive was simply to construct a large class of Cantor-like
fractals embedded in dimension n with controllable fractal box dimension [4]
lying in some convenient interval. The brain-synapse research in [11] showed
that experimental fractal dimensions tended to be near n = 3 for the 3-
dimensional data, yet varying along the penetration axis of the tissue. Thus
a fractal model is motivated in which one may “tune” the dimension as re-
quired. A similar motivation is apparent in a recent paper on scattering [10]
which considers only a somewhat coarser fractal model.
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2.1. Formal Definition of a String-generated Cantor Set. The com-
plete structure of any SCS is encoded within its generating string. For
known embedding dimension n, let P = P1P2 . . . Pp denote a periodic string
of digits with period p, some positive integer. For instance, with n = 1,
P = 01 will denote the period-2 string 01 = 010101 . . . (the over-line being
henceforth omitted from our notation for convenience). In the embedding
space [0, 1]n we will consider only those strings for which Pi ≤ n for all i.
This restriction enables us to define a family of SCSs embedded in the unit
n-cube for a given embedding dimension n.

Consider the ternary expansion for coordinates of x = (x1, . . . , xn) ∈
[0, 1]n, namely:

x1 = 0 . x11 x12 x13 . . .

x2 = 0 . x21 x22 x23 . . .
...

xn = 0 . xn1 xn2 xn3 . . .

↑ ↑ ↑
c1 c2 c3 . . .

with every digit xjk ∈ {0, 1, 2} (or, when working with “balanced” ternary
vectors, xjk ∈ {−1, 0, 1}) and the vectors ck = (x1k, . . . , xnk) denoting re-
spective columns of digits. Each periodic string defines an SCS by singling
out points with admissible ternary expansions (the SCS being the collection
of such admissible points). More precisely, in a given generating string P
the value of Pk determines the maximum number of coordinates of x that
are permitted to have the digit 1 in the kth (and (k + p)th, (k + 2p)th, . . .)
place of the ternary expansion.

For the purpose of enumerating the digits that are restrained by the gen-
erating strings, we define the following counting functions. First, the “unit”
counter, appropriate to vectors c having all elements ∈ {0, 1, 2}:

U(c) := #{1’s in ternary vector c},

and for later use with balanced-ternary vectors b having all elements ∈
{−1, 0, 1}, the “zero” counter:

Z(b) := #{0’s in balanced-ternary vector b}.

(Typically we create a balanced-ternary vector b from a standard ternary
vector c simply by b = c− 1n.)
We are now ready to formally define a string-generated Cantor set.

Definition 2.1 (String-generated Cantor set). Fix positive integers n
and p. Given an embedding space [0, 1]n and an entirely-periodic string
P = P1P2 . . . Pp of non-negative integers with Pi ≤ n for all i = 1, 2, . . . , p,
the String-Generated Cantor Set (SCS), denoted Cn(P ), is the set of all
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admissible x ∈ [0, 1]n, where

(2.1) x admissible ⇐⇒ U(ck) ≤ Pk ∀ k ∈ N

with notational periodicity assumed: Pp+k := Pk for all k ≥ 1.

Remark 2.2. We make the following preliminary observations:

(1) C1(0) is the classical “middle-thirds-removed” Cantor set on [0, 1], as
a point x ∈ C1(0) is defined to be admissible iff its ternary expansion
is entirely devoid of 1’s (i.e. U(ck) ≤ 0).

(2) Cn(n) is the full unit n-cube [0, 1]n, as all points x ∈ [0, 1]n are
admissible (every ternary vector is allowed for every column ck).

(3) For a fixed embedding dimension n, if a single element Pk < n of a
periodic string P is increased, the restrictions on admissible points
are relaxed and so the resulting SCS contains the original SCS. Every
SCS Cn(P ) contains the maximally-restricted SCS, Cn(0), and is
contained by the full n-cube, Cn(n) (which places no restrictions on
admissible points).

(4) The Lebesgue measure of (the always uncountable set) Cn(P ) is zero
unless P = n, in which case the Lebesgue measure is n (since the
SCS is exactly the full n-cube)—this follows from the Borel Zero-One
law [5].2

Some pictorial examples of string-generated Cantor sets in one, two and
three dimensions are shown in Figure (2.1, showing both dependence on the
defining string and different styles of visualization. The upper image shows
the ‘middle-thirds-removal’ procedure for generating the standard Cantor
ternary set C1(0) of dimension log3 2—the thin, wide rectangle showing the
‘dusty’ set remaining after 6 recursive removals. At middle left is C2(0)—
sometimes called Cantor dust, of dimension log3 4. Middle right shows an-
other 2-dimensional variant, C2(1)—sometimes called a gasket or the Sier-
pinski carpet, of dimension log3 8. Lower-left shows C3(0), also of dimension
log3 8 (image due to A. Baserinia (2006)) and lower-right shows C3(1), of
dimension log3 20 (image due to R. Dickau (2008)). 3

2A brief outline of the argument, which generalises to higher dimensions n, is as follows.
A point chosen at random from the set C1(0) is admissible only if the digit 1 is avoided
in every position of the ternary expansion. The probability that this occurs at each
appropriate digit in the expansion is 2/3, and

∞∑
n=1

(
2

3

)n
= 2 <∞

so the Borel Zero-One law implies a zero probability of admissibility—and so Lebesgue
measure 0 by definition (over strings). Uncountability follows immediately upon mapping
digits 0→ 0, 2→ 1, so the cardinality of C1(0) is that of [0, 1].
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Figure 1. Images of various string-generated Cantor sets (SCSs).

2.2. Fractal dimension of an SCS. The periodic string formulation in
Definition 2.1 immediately gives rise to a closed form for the fractal dimen-
sion of an SCS.3 The proof of this closed form result utilises the machinery
of iterated function systems, which we briefly introduce below [14].

Definition 2.3 (Iterated function system). A mapping S : Rn → Rn
is a contraction if there exists a contraction factor 0 < c < 1 such that
|S(x) − S(y)| ≤ c|x − y| for all x, y ∈ Rn. If equality holds for all x and y,
the mapping is said to be a similarity. An iterated function system (IFS) is
a finite family of contractions {S1, S2, . . . , Sm} with m ≥ 2. Every IFS has
a unique attractor - a non-empty compact subset A ⊂ Rn such that

A =
m⋃
i=1

Si(A).

3In this paper, the phrase “fractal dimension” will always refer to both the Haus-
dorff and box-counting dimensions [14, Chapters 2 & 3], which are shown in the proof of
Proposition 7 to be identical for any given SCS.
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An IFS is said to satisfy the open set condition if there exists a non-empty
bounded open set V ⊂ Rn such that

V ⊃
m⋃
i=1

Si(V ).

Theorem 2.4 (Fractal dimension of a self-similar set). Suppose that
the open set condition holds for the IFS {S1, S2, . . . , Sm} on Rn (with asso-
ciated contraction factors {c1, c2, . . . , cm}). Then the Hausdorff dimension
and box-counting dimension of the IFS attractor are equal and take the value
δ, where:

(2.2)
m∑
i=1

(ci)
δ = 1.

As a final preliminary observation, note that for a given periodic string
P the set of admissible columns ck is enumerated by the formula:

(2.3) Nk(P, n) := Nk = #{admissible columns ck} =

Pk∑
j=0

(
n

j

)
2n−j ,

which follows directly from the observation that j ≤ Pk coordinates may
attain the value 1, leaving n − j positions each able to attain the value 0
or 2. Note also that the minimum fractal dimension (corresponding to the
sparsest SCS) has Nk = 2n, while the maximum dimension (corresponding
to the unit n-cube) has Nk = 3n.

Proposition 2.5 (Fractal dimension—closed form). The fractal dimen-
sion (in both the Hausdorff and box-counting sense) δ(Cn(P )) of the SCS
Cn(P ) is given by the closed form

(2.4) δ (Cn(P )) =
log
∏p
k=1Nk(P, n)

p log 3
.

Proof. The set Cn(P ) is the union of finitely many copies of itself scaled by a
factor of 3−p (cf Figure 2.1). Overlay the unit n-cube with 3p hypercubes of
side length 3−p and consider the similarities Si that map the unit n-cube into
these hypercube subsets. Then all such similarities have contraction factor
3−p. The IFS with attractor Cn(P ) consists of those ‘admissible’ similarities
Si which map the unit n-cube into a hypercube subset that intersects Cn(P ).
To enumerate these we use our column-counting formula (2.3).

Consider the fractal approximation to Cn(P ) obtained by truncation of
the periodic string P to its first p digits (ie. its first complete period).
This set is identical to Cn(P ) on scales greater than 3−p, but contains no
fine structure below this limit. Equivalently, the equivalence classes con-
tain those points in the unit n-cube whose coordinate ternary expansions
are equal up to and including the p-th digit. Each equivalence class (rep-
resented by a coordinate ternary expansion consisting of all 0’s after the
p-th place) can be mapped one-to-one onto its own 3−p-scaled hypercube.
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The number of such hypercubes that intersect Cn(P ) is therefore equal to
the number of admissible equivalence classes. Each admissible equivalence
class corresponds to a ordered concatenation of admissible ck columns for
k = 1, . . . , p.

For the kth ternary place there are Nk admissible columns ck, so the
number of admissible similarities is enumerated by:

m =

p∏
k=1

Nk.

Assign each admissible similarity an unique index i ranging from 1 to m =∏p
k=1Nk. Then, the self-similar structure of Cn(P ) is encapsulated by

Cn(P ) =

∏
Nk⋃

i=1

Si(Cn(P )).

The similarities Si satisfy the open set condition with V the interior of
the unit n-cube. It remains to verify the summation in (2.2) for δ:

m∑
i=1

(ci)
δ =

∏
Nk∑

i=1

(
3−p
) log

∏
Nk

p log 3 =
∏

Nk

(
3− log3

∏
Nk
)

= 1.

Having satisfied all conditions of Theorem 2.4, the result immediately fol-
lows. �

Example 2.6 (Fractal dimensions). Note that the fractal dimension
δ(Cn(P )) of the SCS Cn(P ) depends only on the embedding dimension n
and the generating string P = (P1 . . . Pp), as exemplified by the following:

(1) The dimension of the full unit n-cube is δ(Cn(n)) = n, as expected.
(2) The dimension of the classical Cantor set is the celebrated result

δ(C1(0)) = log3(2).

(3) In n = 6 embedding dimensions, the Cantor set C6(1012) has di-
mension

δ(C6(1012)) =
26 log 2 + log 31

4 log 3
≈ 4.8848.

(4) We can derive arbitrary-dimension formulae for a given string P .
For example, when P = 2 (and n ≥ 2):

δ(Cn(2)) = log3(2
n−3(n2 + 3n+ 8)).

3

Remark 2.7. Note also that the fractal dimension δ(Cn(P )) of the SCS
Cn(P ) depends only on the elements present in the generating string, and
not the order in which they occur. This has a nice consequence for mod-
elling applications—permuting the generating string of an SCS allows for
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fine-tuning of the statistical measures without altering the fractal dimen-
sion of the model. 3

2.3. Density theorem for SCS fractal dimensions. The range of avail-
able fractal dimensions in any given class of SCSs is quantified by the fol-
lowing proposition, which is a straightforward deduction from the explicit
formula (2.4). Recall that the minimum fractal dimension for a given em-
bedding space has Nk = 2n, while the maximum dimension has Nk = 3n.

Proposition 2.8 (Density). For given embedding dimension n, the set of
possible fractal dimensions δ(Cn(P )) is dense on the interval [n log3 2, n].

Proposition 2.8 ensures that for 3-dimensional embedding we can al-
ways select some SCS with fractal dimension dense the interval [1.90, 3.00].
The motivating research in [11] experimentally requires this sort of span—
certainly in [2.4, 3.0]—as brain-synapse dimensions vary importantly across
neural layers. Indeed. the simple form δ (Cn(P )) = (log3

∏p
k=1Nk)/p has

various computational applications, such as “matching” an SCS to an actual
laboratory distribution.

2.4. Expectations for the full cube. In Tables 1 and 2 we show various
results for expectations over the full cube in two and three dimensions as
established in [2]. The evaluations are hypergeometric in stark contrast with
our later rationality results such as Corollary 8.7 of Section 8.4.

3. Statistical definitions

To extend the classical box integrals of Section 1 to string-generated Can-
tor sets as in Section 2, we proceed from their interpretation as expecta-
tions over the unit n-cube. We will later connect the generalised integrals
B(s, Cn(P )), Γ(s, Cn(P )) and ∆(s, Cn(P )) to explicit integrals over the unit
n-cube; for now, we denote certain expectations over an arbitrary SCS Cn(P )
by the following formal assignments (after all, we have not yet defined ex-
pectations over an SCS): for <(s) > 0

B(s, Cn(P )) := 〈|r|s〉r∈Cn(P ),(3.1)

Γ(s, Cn(P )) := 〈|r − 1/2|s〉r∈Cn(P ),(3.2)

∆(s, Cn(P ) := 〈|r − q|s〉r,q ∈Cn(P ).(3.3)

A pictorial of the basic notion of expectation is Figure 3.

Remark 3.1. Note that we have suppressed the subscript n on B, Γ and ∆,
since the embedding dimension n is now implicit in the choice of Cn(P ).
Although expectations on a fractal SCS have yet to be defined, we will
require from our definition that

B(s, Cn(n)) = Bn(s), Γ(s, Cn(n)) = Γn(s) and ∆(s, Cn(n)) = ∆n(s)

since Cn(n) is always the full n-cube [0, 1]n. 3
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Figure 2. The fractal-box integral B(2, C2(1)) is (top-left)
the average squared distance of a carpet point from the ori-
gin. The number ∆(2, C1(1)) is the expected squared separa-
tion (top-right) between two carpet points. Over the classi-
cal unit square, the corresponding quantities are B(2, C2(2))
(bottom-left) and ∆(2, C1(2)) (bottom-right). As distance
increases, the colour is shifted further towards the violet end
of the visible spectrum. The figure gives exact theoretical
values for these B,∆ cases. Numerical verification of such
results is nontrivial (see Section 9 and Appendix A).
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n s B(s, C2(2))

2 -4 −1
4 −

π
8

2 -3 −
√

2

2 -2 ∞

2 -1 2 log(1 +
√

2)

2 1 1
3

√
2 + 1

3 log(1 +
√

2)

2 3 7
20

√
2 + 3

20 log(1 +
√

2)

n s B(s, C3(3))

3 -5 −1
6

√
3− 1

12π

3 -4 −3
2

√
2 arctan 1√

2

3 -3 ∞

3 -2 −3G+ 3
2π log(1 +

√
2) + 3 Ti2(3− 2

√
2)

3 -1 −1
4π + 3

2 log
(
2 +
√

3
)

3 1 1
4

√
3− 1

24π + 1
2 log

(
2 +
√

3
)

3 3 2
5

√
3− 1

60π + 7
20 log

(
2 +
√

3
)

Table 1. Evaluations for B2,3(s). For Cn(n) all integer val-
ues for 1 ≤ n ≤ 5 have closed forms. Ti2 is a generalized
tangent (polylog) value and G is Catalan’s constant.

3.1. Precise definition of expectation. For a complex-valued function
F : Rn → C we consider the evaluations of F at every admissible point in
an SCS and adopt the definition:

Definition 3.2 (Expectation of an SCS). The expectation of F : Rn → C
on an SCS Cn(P ) is defined by

〈F (r) 〉r∈Cn(P ) := lim
j→∞

1

N1 · · ·Nj

∑
U(ci)≤Pi

F (c1/3 + c2/3
2 + · · ·+ cj/3

j),

〈F (r − q) 〉r,q∈Cn(P ) := lim
j→∞

1

N2
1 · · ·N2

j

∑
U(ci),U(di)≤Pi

F ((c1 − d1)/3 + · · ·+ (cj − dj)/3j),

when the respective limits exist.

For functions such as F (r) := |r|s, such limits exist, uniformly on compact
sets with <(s) ≥ 0 and so are analytic. 4 In Section 4 we determine a

4Analytic continuation beyond this half s-plane is possible. We allow “primed
sums,excluding F arguments of the 0 vector on the right. Or—for the first part of the
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n s ∆(s, C2(2))

2 -5 4
3 + 8

9

√
2

2 -2,-3,-4 ∞

2 -1 4
3 −

4
3

√
2 + 4 log(1 +

√
2)

2 1 2
15 + 1

15

√
2 + 1

3 log(1 +
√

2)

n s ∆(s, C3(3))

3 -7 4
5 −

16
√
2

15 + 2
√
3

5 + π
15

3 –3,-4,-5,-6 ∞

3 –2 2π − 12 G+ 12 Ti2
(
3− 2

√
2
)

+ 6π log
(
1 +
√

2
)

+2 log 2− 5
2 log 3− 8

√
2 arctan

(
1√
2

)
3 -1 2

5 −
2
3π + 2

5

√
2− 4

5

√
3 + 2 log

(
1 +
√

2
)

+12 log
(
1+
√
3√

2

)
− 4 log

(
2 +
√

3
)

3 1 −118
21 −

2
3 π + 34

21

√
2− 4

7

√
3

+2 log
(
1 +
√

2
)

+ 8 log
(
1+
√
3√

2

)
3 3 − 1

105 −
2

105 π + 73
840

√
2 + 1

35

√
3

+ 3
56 log

(
1 +
√

2
)

+ 13
35 log

(
1+
√
3√

2

)
Table 2. Evaluations for ∆2,3(s). For Cn(n) all integer val-
ues for 1 ≤ n ≤ 5 have closed forms.

probability measure such that, at least formally,

〈F (r) 〉r∈Cn(P ) =

∫
r∈[0,1]n

F (r)φ(r)Dr,(3.4)

where φ is a density that vanishes on inadmissible r ∈ [0, 1]n \ Cn(P ).5

4. Spectral formalism of the SCS random walk

4.1. Random-walk approach. Let us view the vector r (of Definition 2.1)
as a random walk whose N -th step has position

r(N) = c1/3 + c2/3
2 + · · · cN/3N ,

definition—to replace c1/3 + c2/3
2 + · · · + cj/3

j → c1/3 + c2/3
2 + · · · + (cj + 1/2)/3j ,

thereby offsetting the argument vector to coincide with the centroid of a given box.
5Such a measure-based definition requires φ to be pathological, as in mathematical

physics. Even for the classical Cantor set C1(0), such a φ—a Cantor function derivative–
must take infinite values on a fractal of measure 0, and so corresponds to a singular
measure.
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with U(ck) ≤ Pk.
6 Then the transition probability density for displacement

u := r(k) − r(k−1) can be formally cast as

τk(u) =
1

Nk

∑
U(ck)≤Pk

δn(u− ck/3k).

The physical analogy is simple: the random walk jumps to its k-th position
according to a comb of n-dimensional delta functions. This is compatible
with the expectation definition of (3.2). Now the density τk enjoys a Fourier
transform

Tk(ω) =

∫
τk(u)eiω·uDu,

where the integral is taken over Rn.

4.2. The underlying density. The convolution principle then establishes—
at least formally—that the random walk’s overall density is

φ(r) =
1

(2π)n

∫ ∞∏
k=1

Tk(ω) e−iω·r Dω.(4.1)

This formal result is quite powerful if we carefully denote a spectral kernel

nGP (ω) :=

∞∏
k=1

1

Nk

∑
Z(bk)≤Pk

eiω·bk/3
k
,(4.2)

where we have transformed to balanced ternary vectors bk—being vectors of
elements xjk ∈ {−1, 0, 1}, each vector having zero-count Z(bk) not exceeding
Pk (see Definition 2.1). Note that Z(bk) = Z(|bk|) where |bk| represents the
coordinate-wise absolute value. It is useful to observe that

nGP (ω) :=

∞∏
k=1

1

Nk

∑
Z(bk)≤Pk

cos(ω · bk/3k),(4.3)

since −bk is admissible exactly when bk is.
When it is clear from context we will denote GP := nGP . With this

notation in mind we have the fundamental density relation

φ(r) =
1

(2π)n

∫
e−iω·reiω·1/2GP (ω)Dω,(4.4)

and a similarly derived representation for the density Φ of a two-vector
difference r − q:

Φ(d := r − q) =
1

(2π)n

∫
e−iω·d|GP (ω)|2Dω,(4.5)

6Links to classical lattice theory of random walks arise on restricting to finitely many
steps.
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It is instructive (and as we shall see, lucrative) to observe that our spectral
kernel has a simple interpretation as an expectation; that is, application of
Definition 3.2 to (4.2) immediately yields

GP (ω) =
〈
eiω·(r−1/2)

〉
r∈Cn(P )

.

In addition,

|GP (ω)|2 =
〈
eiω·(r−q)

〉
r,q∈Cn(P )

.

It is likewise instructive simply to insert such functions as f(r) := eiω·r into
the expectation Definition 3.2.

In Section 5, we record cases where the spectral kernel associated with an
SCS reduces to a product of simpler kernels. In particular, both nGn and

nG0 factor into a n-fold product of 1-dimensional kernels (see Example 5.3).

Example 4.1 (Cantor dust). The 2-dimensional Cantor Dust C2(0) has
an associated spectral kernel which can be factored as

2G0(ω1, ω2) = 1G0(ω1) · 1G0(ω2)

and so〈
eiω·(r−1/2)

〉
r∈C2(0)

=
〈
eiω1·(x−1/2)

〉
x∈C1(0)

〈
eiω2·(x−1/2)

〉
x∈C1(0)

Similarly, the 3-dimensional Cantor Dust C3(0) has an associated spectral
kernel

3G0(ω1, ω2, ω3) = 1G0(ω1) · 1G0(ω2) · 1G0(ω3)

and so the pattern continues. 3

5. Fundamental fractal relations

Remarkably, many of the exact results we shall derive depend exclusively
on self-similarity relations. At the very core of such analysis is the following.

Proposition 5.1 (Spectral self-similarity). The spectral kernel for a
given SCS in n-dimensions with string P satisfies

GP (ω) = SP (ω)GP (ω/3p),

where p is the period of the generating string P , with the similarity factor
SP = nSP given by the finite product

SP (ω) : =

p∏
k=1

1

Nk

∑
Z(bk)≤Pk

eiω·bk/3
k

(5.1)

=

p∏
k=1

1

Nk

∑
Z(bk)≤Pk

cos(ω · bk/3k).(5.2)

It is fairly easy to compute nSP symbolically. We look at the one dimen-
sional case in more detail in the following section.
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Example 5.2 (Similarity relations in two and three dimensions).
We have

1S0(ω1) = cos

(
1

3
ω1

)
2S0(ω1, ω2) = 1S0(ω1)1S0(ω2)

2S1(ω1, ω2) =
1

4
(1S0(ω1) + 1S0(ω2) + 22S0(ω1, ω2))

2S2(ω1, ω2) = 1S1(ω1)1S1(ω2)

3S0(ω1, ω2, ω3) = 1S0(ω1)1S0(ω2)1S0(ω3)

3S1(ω1, ω2, ω3) =
1

5
(2S0(ω1, ω2) + 2S0(ω1, ω3) + 2S0(ω2, ω3) + 23S0(ω1, ω2, ω3))

3S2(ω1, ω2, ω3) =
1

13
(1S0(ω1) + 1S0(ω2) + 1S0(ω3)

+22S0(ω1, ω2) + 22S0(ω1, ω3) + 22S0(ω2, ω3) + 43S0(ω1, ω2, ω3))

3S3(ω1, ω2, ω3) = 1S1(ω1)1S1(ω2)1S1(ω3)

as illustrative of the structure of all similarity relations for SCSs. 3

Example 5.3 (Similarity relations for period-1 strings in n dimen-
sions).

nS0(ω1, ω2, . . . , ωn) =

n∏
k=1

1S0(ωk) and nSn(ω1, ω2, . . . , ωn) =

n∏
k=1

1S1(ωk)

and there is more to say as we shall see in Section 8.4. 3

Such self-similarity triggers a cascade of results attendant on fractal the-
ory. Using the S-factor to rescale integral representations such as (4.4, 4.5)
yields:

Proposition 5.4 (Scaling relations). For r, q in Rn, the probability den-
sities, respectively pertaining to the box integrals B,Γ and ∆, satisfy the
scaling relations:

φ(r) =
3pn∏p
k=1Nk

∑
U(ck)≤Pk

φ(3p(r − c1/3− c2/32 − · · · − cp/3p))(5.3)

φ(d := r − 1/2) =
3pn∏p
k=1Nk

∑
Z(bk)≤Pk

φ(3p(d− b1/3− b2/32 − · · · − bp/3p))

(5.4)

Φ(d := r − q) =
3pn∏p
k=1N

2
k

∑
Z(bk),Z(ak)≤Pk

Φ

3p(d−
p∑
j=1

(bj − aj)/3j)

 .

(5.5)
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Finally ,we arrive at a functional relation for general expectations; by
substitution of the Proposition (5.4) formulae into expectation integrals such
as (3.4) we achieve:

Proposition 5.5 (Functional equations for expectations). For r, q in
Rn, and appropriate F we have:

〈F (r)〉r∈Cn(P ) =
1∏p

j=1Nj

∑
U(ck)≤Pk

〈F (r/3p + c1/3 + · · ·+ cp/3
p)〉

(5.6)

〈F (d := r − 1/2)〉r∈Cn(P ) =
1∏p

j=1Nj

∑
Z(bk)≤Pk

〈F (d/3p + b1/3 + · · ·+ bp/3
p)〉

(5.7)

〈F (d := r − q)〉r,q∈Cn(P ) =
1∏p

j=1N
2
j

∑
Z(bk),Z(ak)≤Pk

〈F (d/3p +

p∑
j=1

(bj − aj)/3j)〉

(5.8)

It is typical of such functional equations—at least in one dimension—
that any solution is either absolutely continuous or is singular with respect
to Lebesgue measure, as described in [8] or [7, Chapter 2].

Remark 5.6. We shall see at the end of the next section that Proposition 5.1
allows us to show that GP (ω) is everywhere convergent as a product. That
is, the product is finite and vanishes only if one of the nSP (ω) terms does.3

6. Exact analyses in n = 1 dimension

There are but two SCS with period p = 1 in dimension n = 1; namely
C1(0) (the standard middle-thirds Cantor set) and C1(1) (the full interval
[0, 1]).

6.1. The case of C1(1). From our results on self-similarity we have, for the
SCS C1(1) = [0, 1], that

1G1(ω) =
∏
k≥1

1

3

(
1 + eiω/3

k
+ e−iω/3

k
)

This expression is reducible by the following lemma in which sinc(x) :=
sin(x)/x:

Lemma 6.1. For all ω in R we have

1G1(ω) =
∏
k≥1

1

3

(
1 + eiω/3

k
+ e−iω/3

k
)

= sinc
(ω

2

)
.(6.1)
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Proof. Note as above, that eiω/3
k

+ e−iω/3
k

= 2 cos(ω/3k). Define the func-
tion:

Q(x) := x
∏
k≥1

1

3

(
1 + 2 cos(2x/3k)

)
.

Lemma 6.1 is equivalent, on setting x = ω/2, to: Q(x) = sin(x). Now,

Q(3x)

Q(x)
=

3x
∏
k≥1

1
3

(
1 + 2 cos(2x/3k−1)

)
x
∏
k≥1

1
3 (1 + 2 cos(2x/3k))

= 3
∏
k≥1

(
1 + 2 cos(2x/3k−1)

1 + 2 cos(2x/3k)

)

= 3

(
1 + 2 cos(2x)

1 + 2 cos(2x/3)

)(
1 + 2 cos(2x/3)

1 + 2 cos(2x/32)

)
· · ·

= 3

(
1 + 2 cos(2x)

1 + 2 cos(0)

)
= 1 + 2 cos(2x) =

sin(3x)

sin(x)

and by recursion,

Q(x)

sin(x)
=

Q(x/3)

sin(x/3)
=

Q(x/9)

sin(x/9)
= . . .

Therefore,

Q(x)

sin(x)
= lim

x→0

Q(x)

sin(x)

= lim
x→0

1

x
· x
∏
k≥1

1

3

(
1 + 2 cos(2x/3k)

)
= lim

x→0

∏
k≥1

(
1− 4

3
sin2(x/3k)

)
= 1,

since the final product is absolutely convergent and is continuous at zero. �

Returning to the SCS C1(1) = [0, 1] with 1G1(ω) = sinc(ω/2), we see
that this special case (of fractal dimension 1) has probability density

φ(r) =
1

2π

∫
e−iω(r−1/2)1G1(ω)dω

which is a “square pedestal” situated on [0, 1]—the transform of sinc (which
is only conditionally convergent) is of course the characteristic function of
the interval.

Example 6.2 (The easiest classical box integral). Likewise, continuing
to imaginary ω = it, we have an expectation for parameter t:〈

e−tr
〉
r∈[0,1] =

1− e−t

t
,
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giving in turn the (trivially known) box integral

B(s, C1(1)) = B1(s) =
1

s+ 1
.(6.2)

When s ≥ 0 is integer, this follows from the series for (1 − e−t)/t. When s
is non-integer, consider the region <(s) ∈ (−1, 0), where

〈rs〉 =
1

Γ(−s)

∫ ∞
0

t−s−1〈e−rt〉 dt

=
1

Γ(−s)

∫ ∞
0

t−s−2(1− e−t) dt =
1

s+ 1
.

We may then infer (6.2) by analytic continuation on appealing to analyticity
of the box representation as discussed at the end of §3.1. 3

The scaling relation for this SCS is also instructive. We have N1 = 3
admissible ternary digits, so from Proposition 5.4 we have

φ(r) = φ(3r) + φ(3r − 1) + φ(3r − 2),

which (almost everywhere) admits the unit pedestal solution. Perhaps most
interesting in this simple case is the two-point density Φ(d := r − q), with
scaling relation for r, q ∈ [0, 1]:

Φ(d) =
1

3
(3 Φ(3d) + 2 Φ(3d− 1) + 2 Φ(3d+ 1) + Φ(3d+ 2) + Φ(3d− 2))) .

This is satisfied a.e. by the “unit tent,” with graph a triangle with base
[−1, 1] and apex at (0, 1) and likewise for the appropriate density for the
difference d = r − q.

6.2. The case of C1(0). As one would expect, the above discussion for
the degenerate case C1(1) = [0, 1] only becomes more complicated as the
defining string is modified. For the standard Cantor set C1(0) we have the
scaling relation

φ(r) =
3

2
(φ(3r) + φ(3r − 2)),

which is satisfied a.e. in the sense of distribution theory.7 However, one may
often integrate over such pathological densities with impunity. The spectral
kernel as defined in (4.2) now becomes:

1G0(ω) =
∏
k≥1

cos(ω/3k),(6.3)

from which we develop generating-function relations, starting with:∑
m≥0

B(m,C1(0))
tm

m!
=
〈
etr
〉
r∈C1(0)

= et/2
∏
k≥1

cosh(t/3k).(6.4)

7Recall this φ is nonzero only on the Cantor set—and yet should have measure one, so it
belongs to the world of delta-functions and their generalizations (or of singular measures).
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Now a simple scaling t→ 3t results in another series∑
k≥0

B(k,C1(0))
3ktk

k!
=
〈
e3tr
〉
r∈C1(0)

= e3t/2 cosh t
∏
k≥1

cosh(t/3k)(6.5)

= et cosh t
∑
m≥0

B(m,C1(0))
tm

m!
.

Matching the coefficients of powers of t for the far left and far right series
in (6.5) immediately resolves all box integrals B(m,C1(0)) for nonnega-
tive integers m. Note importantly that both Theorem 6.3 below and the
∆-counterpart theorem following can alternatively be established via self-
similarity relations starting with (8.1) below, without direct recourse to
series algebra. We thus have:

Theorem 6.3 (Closed form for certain B(s, C1(0))). For any non-
negative integer m, the expectation 〈|r|m〉 for r in the standard Cantor
set C1(0) is given exactly by the recursion, ignited by B(0, C1(0)) = 1, for
m ≥ 1,

(6.6) B(m,C1(0)) =
1

3m − 1

m−1∑
j=0

(
m

j

)
2m−j−1B(j, C1(0)).

Corresponding considerations to those used to derive Theorem 6.3 yield
an attractive recursion for the even moments:

Theorem 6.4 (Closed form for even moments B(s, C1(0))). For any
non-negative even integer 2m, the expectation 〈|r|2m〉 for r in the standard
Cantor set C1(0) is given exactly by the recursion, ignited by B(0, C1(0)) =
1, for m ≥ 1,

(6.7) B(2m,C1(0)) =
1

32m − 1

m∑
j=1

(
2m

2j

)
(22j − 1)B(2(m− j), C1(0)).

Let us illustrate as follows:

Example 6.5. The first eight values of the box integral B over C1(0) are
thus:

{B(0, C1(0)), . . . , B(7, C1(0)), . . . } =

{
1,

1

2
,

3

8
,

5

16
,

87

320
,

31

128
,

10215

46592
,

2675

13312
, . . .

}
,

and so on. 3

A very similar argument—this time involving the square of 1G0(ω), yields
a companion result for any separation moment ∆(m,C1(0)) form = 0, 1, 2, 3, . . . :

Theorem 6.6 (Closed form for certain ∆(s, C1(0)). For any non-negative
integer m, the expectation 〈|r−q|m〉 for r, q in the standard Cantor set C1(0)
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Figure 3. Sinc function 1G1(ω) (6.1) and more oscillatory

1G0(ω) (6.3).

is given exactly by the ignition ∆(0, C1(0)) := 1 and the recursion
(6.8)

∆(m,C1(0)) =
2m

2 · 3m − 2 + (m mod 2))

b(m−1)/2c∑
k=0

(
m

2k

)
4−k ∆(2k,C1(0)).

Again we illustrate :

Example 6.7. The first eight values of the box integral ∆ over C1(0) are
thus:

{∆(0, C1(0)), . . . ,∆(7, C1(0)), . . . } =

{
1,

2

5
,

1

4
,

19

106
,

11

80
,

427

3880
,

529

5824
,

139681

1819168
, . . .

}
,

and so on. 3

Theorems 6.3 and 6.6 immediately imply the following striking result:

Corollary 6.8 (Rationality of moments for the Cantor set). For
any non-negative integer s, all moments B(s, C1(0)) and ∆(s, C1(0)) are
rational.

The complexity of nGP is illustrated in Figure 6.2 just for n = 1. It is
also instructive to compute and plot 1G01 and 1G10 which share their fractal
dimension but not their moments (see Appendix A). Note that

1S01(ω1) =
1

3
(cos (2/9ω1) + cos (3/9ω1) + cos (4/9ω1)) ,

and

1S10(ω1) =
1

3
(cos (1/9ω1) + cos (2/9ω1) + cos (4/9ω1)) ,

while

2S20(ω1, ω2) =1 S10(ω1) ·1 S10(ω2).
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6.3. Estimation of nGP . We conclude this section with a simple estimate
of the size of GP (ω) for arbitrary P of period length p and any n. We first
observe that

nGP (ω) =

∞∏
m=1

nSp

( ω

3mp

)
(6.9)

where

nSP (ω) =

p∏
k=1

1

Nk

∑
Z(bk)≤Pk

cos

(
ω · bk

3k

)
(6.10)

is as given by (5.2) of Proposition 5.1. Fix ω and select m0 so that |ω/3mp| ≤
π/2 for m ≥ m0. Since (6.10) represents nSP (ω/3mp) as a product of
weighted arithmetic means of cosine values with domain in [−π/2, π/2] each
term is larger than cos(‖ω‖1/3mp+k) and no greater than 1 we deduce that

m0−1∏
m=1

∣∣∣nSp ( ω

3mp

)∣∣∣ ≥ |nGP (ω)| ≥
m0−1∏
m=1

∣∣∣nSp ( ω

3mp

)∣∣∣ ∞∏
m=m0

p∏
k=1

cos

(
‖ω‖1

3mp+k

)

=

m0−1∏
m=1

∣∣∣nSp ( ω

3mp

)∣∣∣ ∞∏
i=m0

cos

(
‖ω‖1

3i

)
.(6.11)

From (6.11) and Lemma 6.1 we deduce:

Lemma 6.9. For all ω in Rn we have∏
m<m0

∣∣∣nSp ( ω

3mp

)∣∣∣ ≥ |nGP (ω)| ≥
∏

m<m0

∣∣
nSp

(
ω

3mp

)∣∣∣∣∣cos
(
‖ω‖1
3m

)∣∣∣ · 1G0(‖ω‖1).(6.12)

In particular, the kernel nGP (ω) =
∏∞
m=1 nSp(ω/3

pm) is an everywhere con-
vergent product which can vanish only at zeros of nSp or of cosine.

In (6.12) we note that the denominator on the right can only vanish when

1G1 does and so the apparent singularities disappear.

7. Second moments for a general SCS

The functional expectation relations of Proposition 5.5 can be used di-
rectly to yield all expectations B(2, Cn(P )) as rational numbers depending
only on the defining string P and embedding dimension n, as follows:

Theorem 7.1 (Closed forms for B(2, Cn(P )) and ∆(2, Cn(P ))). For
any embedding dimension n and SCS Cn(P ) the box integral B(2, Cn(P )) is
rational, given by the closed form:

(7.1) B(2, Cn(P )) =
n

4
+

1

1− 9−p

p∑
k=1

1

9k

∑Pk
j=0

(
n
j

)
2n−j(n− j)∑Pk

j=0

(
n
j

)
2n−j

,
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and the corresponding box integral ∆(2, Cn(P )) is also rational, given by:

(7.2) ∆(2, Cn(P )) = 2B(2, Cn(P ))− n

2
.

Proof. For (7.1), take F (r) := |r|2 in Proposition 5.5, so that for d := r−1/2
the expectation 〈d · d〉 is proportional to a sum of expectations

〈(d/3p + b1/3 + · · ·+ bp/3
p)2〉.

Observe that expectations of dot-products bj · bk all vanish (this is how
the second-moment problem especially simplifies), and one is left with a
simple if tedious combinatorial end-argument for this sum of bk-dependent
expectations.

For (7.2), we argue as follows. We have, simply, for vectors r, q each
ranging over the given SCS,

∆(2, Cn(P )) =
〈
|r − q|2

〉
=
〈
r2
〉

+
〈
q2
〉
− 2 〈r · q〉

= 2B(2, Cn(P ))− 2 〈r · q〉 .
Now there is a trick to evaluate the dot-product expectation, namely write

(r − 1/2) · (q − 1/2) = 0,

by symmetry of any SCS around the centroid vector 1/2. Expanding out
this vanishing expectation, we find 〈r ·q〉 = n/4, which proves the ∆ relation
of the theorem. �

Example 7.2 (Values of B and ∆). The first few cases of Theorem 7.1
for period-1 strings P are:

B(2, Cn(0)) =
3

8
n, B(2, Cn(1)) =

n(3n+ 5)

8n+ 16
,

B(2, Cn(2)) =
n(3n2 + 7n+ 22)

8n2 + 24n+ 64
, B(2, Cn(n− 1)) =

n

4

(
1 +

3n−1

3n − 1

)
,

together with:

∆(2, Cn(0)) =
1

4
n, ∆(2, Cn(1)) =

n(n+ 1)

4n+ 8
,

∆(2, Cn(2)) =
n(n2 + n+ 6)

4n2 + 12n+ 32
,

∆(2, Cn(n− 1)) =
n

6

(
3n

3n − 1

)
,

Note for comparison that the classical box integrals over the unit n-cube
are:

(7.3) Bn(2) =
n

3
and ∆n(2) =

n

6

which matches the output of Theorem 7.1 for P = n. 3
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Exact rational values for various strings in dimensions 1, 2 and 3 are
shown in Appendix A. Computational data derived from Proposition and
Theorem 7.1 concerning the relationship between fractal dimension and the
box integrals B(2, Cn(P )) and ∆(2, Cn(P )) is shown in tabulated values and
scatterplots in the appendix. These scatterplots show a great deal of fractal
structure in and of themselves.

Remark 7.3. An example of ordering of box-integral values is the amusing
pair:

B3(2) = 1, but B(2, C3(2)) =
105

104
.

This kind of observation provokes thoughts of a monotonicity-ordering prin-
ciple. One might hypothesise that any two SCSs Cn(P ) and Cn(P ′) will
satisfy

δ(Cn(P )) ≥ δ(Cn(P ′))
?

=⇒ B(s, Cn(P )) ≤ B(s, Cn(P ′)),

and similarly for ∆(s, Cn(P )). However, our computational experiments
show that no such ordering principle exists. For instance, in embedding
dimension n = 1,

δ(C1(100)) = 0.75 . . .

δ(C1(01)) = 0.81 . . . ,

while

B(C1(100)) =
123

364
= 0.33 . . .

B(C1(01)) =
89

240
= 0.37 . . .

Appendix A holds more computational data for second separation moments
of SCSs. 3

8. Self-similarity and analyticity

What can be said about integrals B(s, Cn(P )) in general? Certainly the
relative ease of analysis for a simple string P or moment s = 2 will not carry
over generally. For one thing, the classical box integrals Bn(s)—which are
as our fractal cases for Cn(n) = [0, 1]n—are currently unknown in closed
form past n = 5, see [9]. Nonetheless, one may still exploit self-similarity
for general s.
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For example, it follows from Proposition 5.5 that for the standard middle-
thirds Cantor set:

B(s, C1(0)) := 〈|rs|〉r∈C1(0) =
1

2

〈(r
3

)s〉
+

1

2

〈(
r + 2

3

)s〉
,

(8.1)

∆(s, C1(0)) := 〈|d := r − q|s〉 =
1

2

1

3s
〈|d|s〉 +

1

4

1

3s
〈(2 + d)s + (2− d)s〉 .

(8.2)

These are powerful self-similarity relations, yielding both theoretical knowl-
edge and exact expressions for certain values of s. An immediate result
emerges from an equivalent form of (8.1), using the fact that the first ex-
pectation, that of (r/3)s, is a scaled expectation itself. This leads to

B(s, C1(0)) =
1

2 · 3s − 1
〈(r + 2)s〉 .(8.3)

8.1. Pole theorem. This last expression (8.3) reveals a pole in the s-plane,
namely at s = − log3 2. It is not a coincidence that the pole location is the
negated fractal dimension. Indeed, self-similarity implies a general result:

Theorem 8.1 (Poles of B(s, Cn(P ))). For any embedding dimension n and
any SCS Cn(P ), the (analytically continued) box integral B(s, Cn(P )) has a
pole at

(8.4) s = −δ(Cn(P )).

Proof. The functional relations of Proposition 5.5 let us write

B(s, Cn(P )) := 〈|r|s〉r∈Cn(P ) =
1∏p

j=1Nj

∑
U(ck)≤Pk

〈|r/3p+c1/3+· · ·+cp/3p|s〉

=
1∏p

j=1Nj
3−psB(s, Cn(P )) +

1∏p
j=1Nj

′∑
U(ck)≤Pk

〈|r/3p+c1/3+· · ·+cp/3p|s〉,

where the last, primed sum indicates—importantly—that not all ck can be
0 in the sum. But said primed sum is always finite for any complex s, as it
is a finite sum of expectations of 3ps|r + b|s for nonzero vectors b.

Now on regrouping we have

(
1− 3−ps∏

j Nj

)
B(s, Cn(P )) =

1∏p
j=1Nj

′∑
U(ck)≤Pk

〈|r/3p + c1/3 + · · ·+ cp/3
p|s〉,

(8.5)

Now the companion factor to B in (8.5), namely (1− 3−ps/
∏
j Nj) vanishes

at the fractal dimension s = −δ(Cn) (given in Proposition 7) while the right
side remains bounded away from zero. It follows that B must have a pole
at such s. �
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Note the attractive corollary that for the full n-cube [0, 1]n, the pole is at
s = −n, which is entirely consistent with the classical theory (as in Equation
(1.5)).

Remark 8.2. We have been unable to determine pole structure for integrals
∆(s, Cn), with arbitrary n. For classical box integrals ∆n(s) always has
(n + 1) complex poles, unlike Bn(s) which only has one. And yet, we have
seen no evidence of multiple poles for any SCS of fractal dimension less than
the embedding dimension. 3

8.2. Fractal-box series. Relation (8.3) also allows us to expand the ex-
pectation bracket to obtain an analytic series in s for the Cantor case
C := C1(0):

(8.6) B(s, C) =
2s

2 · 3s − 1

∑
j≥0

(
s

j

)
1

2j
B(j, C),

where—remarkably enough—we know every B(j, C) via Theorem 6.3. As
for a ∆-series again for C := C1(0), we may use (8.2) similarly to develop

(8.7) ∆(s, C) =
2s

2 · 3s − 1

∑
even j≥0

(
s

j

)
1

2j
∆(j, C),

and knowledge of ∆(j, C) for j = 0, 1, 2, 3, . . . gives rise to a fine numerical
series.

It seemed to us natural to look at such expansions and infer asymptotic
behavior for large s. Numerical experiments are embodied in accurate B-
plots of Figure 4, and made good use of the fractal-box series (8.6); all of
this leading us to

Conjecture 8.3 (Asymptotics). Let δ := log3 2, the fractal dimension of
C1(0).

(1) For large s we have

B(s, C1(0)) ∼ A

sδ
,

where A ≈ 0.7 is an absolute constant.
(2) Similarly,

∆(s, C1(0)) ∼ A′

s2δ
,

where the absolute constant A′ ≈ 1.07.

Remark 8.4. Conjecture 1 seems reasonable, on the very loose heuristic
that if, in the sum (8.6), we have Bj ∼ A/jδ, then a complicated integral-

approximation argument gives the left-hand side ∼ A/sδ. We have left out
the heuristic argument, but we do emphasize the conjecture. The corre-
sponding conjecture for ∆(s, C1(0)), follows from the numerical observation
that 2B(s, C1(0))2/∆(s, C1(0)) appears to tend to a limit of approximately
0.73 for large real |s|. 3
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(a) B(s, C1(1)) and B(s, C1(0)) (b) Reciprocals of B(s, C1(1)) and
B(s, C1(0))

Figure 4. Analytic plots of box integrals for real s. Figure
4(a) shows B1(s) = B(s, C1(1)) = 1/(s + 1) (with a pole at
s = −1) and B(s, C1(0)) (with a proven pole at s = − log3 2).
Figure 4(b) plots reciprocals: a perfectly straight line ∼ s
itself and 1/B(s, C1(0)) ∼ slog3 2 for large s (unproven).

8.3. High-precision algorithm for general B. We next exhibit a novel
algorithm that allows not only high-precision expectations,8 but also rigor-
ous bounds on such expectations. Note first the principle—immediate from
the SCS definition—that we have the equality

Cn(P ) = Cn(P · P · · ·P ),

where P · P · · ·P is any finite string of copies of P . This trivial observation
gives rise to a powerful computational expedient. We first recast (8.5) as3pqs

p∏
j=1

N q
j − 1

B(s, Cn(P )) =

′∑
U(ck)≤Pk

〈|r + cp+13
p′−p−1 + · · ·+ cp′ |s〉 +

∑
U(ck)≤Pk

(c1,...cp)6=(0n,...,0n)

〈|r + c13
p′−1 + c23

p′−2 + · · ·+ cp′ |s〉,(8.8)

where now the sequence (Pk) is interpreted as having period p′ := pq. Free-
dom of choice on q allows arbitrarily large powers of 3 within the expectation
terms on the right of (8.8) and allows recursion on the multiplicity factor

8Meaning, say, 20 digits. In previous works we have used the phrase “extreme precision”
to mean at least 100 digits, or certainly enough to discover identities via integer-relation
detection.



EXPECTATIONS ON FRACTAL SETS 27

q.9 We arrive at

B(s, Cn(P )) =
1

Q(s, q, P )

∑
U(ck)≤Pk

(c1,...cp)6=(0n,...,0n)

〈|r + c13
p′−1 + c23

p′−2 + · · ·+ cp′ |s〉,

(8.9)

where

Q(s, q, P ) := 3ps(q−1)
p∏
j=1

N q−1
j

3ps
p∏
j=1

Nj − 1

 .

Since relation (8.9) is valid for every factor q = 1, 2, 3, . . . we have:

Algorithm 8.5 (High-precision B computation with rigorous bounds).
Given an SCS Cn(P ) and a complex power s, the algorithm returns a precise
value for B(s, Cn(P )), and—if desired, and for suitable s—rigorous bounds
on B.

(1) For increasing q, calculate B from B(s, Cn(P ))

= lim
q→∞

1

Q(s, q, P )

∑
U(ck)≤Pk

(c1,...cp)6=(0n,...,0n)

|(1/2)n + c13
p′−1 + c23

p′−2 + · · ·+ cp′ |s,

(8.10)

where p′ := pq, and we have fixed r to be the centroid of the unit
n-cube [0, 1]n, so expectation brackets have been removed.10

(2) Approximations for increasing q approach the true B value, often
smoothly enough that Aitken-like extrapolation will significantly in-
crease accuracy.

(3) For rigorous bounds, observe that all components of vectors within
the expectation brackets in (8.8) are nonnegative. For real s ≥ 0 we
may take r to be either the origin 0n or the far apex 1n of the unit
n-cube, to deduce

1

Q(s, q, P )

∑
U(ck)≤Pk

(c1,...cp)6=(0n,...,0n)

|0n + c13
p′−1 + c23

p′−2 + · · ·+ cp′ |s

≤ B(s, Cn(P )) ≤
1

Q(s, q, P )

∑
U(ck)≤Pk

(c1,...cp)6=(0n,...,0n)

|1n + c13
p′−1 + c23

p′−2 + · · ·+ cp′ |s.

Numerical examples of this algorithm in action are given in Section 9. �

9Indeed, the primed-sum in (8.8) is—up to a constant factor—a representation for the
same B but involving (q − 1) copies.

10Certainly this approximation sequence works for <(s) ≥ 0; we conjecture that it
works for all complex s, based on numerical trials.
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8.4. General monomial moments. We define a monomial moment in
terms of an n-vector m = (m1, . . . ,mn) of nonnegative integers

M(m,Cn(P )) := 〈xm1
1 xm2

2 · · ·x
mn
n 〉x∈Cn(P ) .

When the SCS Cn(P ) is understood, we shall simplify to nM(m) =M(m).
First we list some elementary properties of monomial moments M:

(1) M(m) =M(m′) where m′ is any coordinate permutation of m. This
follows from the symmetry in the definition of an SCS.

(2) For any SCS, M((1, 0, 0, 0, . . . )) = 1
2 . Again this follows from sym-

metry.
(3) For any Cantor dust Cn(0), the monomial moments are separable,

that is

M(m) :=
〈∏

xmhh

〉
=
∏〈

xmhh
〉
.

This follows in any of several ways. One is to observe that the
spectral G kernel separates for Cn(0), so that expectation integrals
completely factor. Another is to work through the combinatorics of
Theorem 8.6 below.11

(4) An immediate generalization is to difference-monomial moments.
For separation problems involving ∆ expectations, we define

D(m) := 〈(x1 − q1)m1 · · · (xn − qn)mn〉 ,

with elementary properties similar to those above. Now a coordinate
separation variable xi − qi is bipolar, running over [−1, 1]).

We now provide a theorem generalizing the explicit results of Theorem
7.1:

Theorem 8.6 (Monomial rationality). For any SCS Cn(P ), every mono-
mial moment M(m) is rational, and can be given an explicit closed form.
The same properties hold for difference-monomial moments D(m).

Proof. Now from the first functional relation in Proposition 5.5 we may use
F (x) :=

∏
xmhh to obtain

M(m) =
1∏p

j=1Nj

∑
U(ck)≤Pk

〈
n∏
h=1

(xh/3
p + c1h/3 + · · ·+ cph/3

p)mh

〉
,

(8.11)

where cjh is the h-th element of column cj from display (2.1). Now define the
weight of a monomial as W (m) :=

∑
mh, and observe that in this functional

11Caveat: we do not know precisely which monomial moments do not separate.
For example, in 2 dimensions, 〈xy〉 = 〈x〉〈y〉 for any SCS, meaning for any of
C2(0), C2(1), C2(2) = [0, 1]2.
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relation there are exactly
∏p
j=1Nj summands, each having a leading term

〈
∏

(xh/3
p)mh , so that(

1− 1

3pW

)
M(m) =

∑
R(m′)M(m′),(8.12)

where the R coefficients are all rational and m′ runs over a set of n-vectors
each of whose weights W (m′) being strictly less than W (m). Therefore one
has a multilevel recursion that has to finitely terminate withM(m) being a
rational number. �

Corollary 8.7 (Even moment rationality). For any SCS Cn(P ) and any
nonnegative even integer u, both B(u,Cn(P )) and ∆(u,Cn(P )) are rational
and each can be given an explicit closed form.

Proof. Everything follows with nonnegative even integer u, from

|x|u =
(
x21 + · · ·x2n

)u/2
,

whence the right-hand side can be expanded in monomials. �

Example 8.8 (Explicit coefficients). An instance of Corollary 8.7 is

B(4, C2(1)) = 〈(x2 + y2)2〉 = 2M((4, 0)) + 2M((2, 2)) =
429

640
,

while for the dust SCS, we obtain B(4, C2(0)) = 33
40 . Moreover, in the case of

n-dimensional Cantor dust we have complete separability of the underlying
density (as discussed above for the monomials). Thence, for integers m > 0
we obtain from the binomial theorem that

B(2m,Cn(0)) =
∑

k1,k2,...,kn≥0∑
j kj=m

(
m

k1, . . . , kn

) n∏
j=1

b2kj(8.13)

where bn := B(n,C1(0)) is as given by Theorem 6.3. 3

Example 8.9 (Monomial recursion). An example of using the recur-
sion in the proof of Theorem 8.6 is as follows. A collection of moments
M((i, j)) =

〈
xiyj

〉
for vectors (x, y) on the SCS C2(1) is

〈 1 y y2 y3

x xy xy2 xy3

x2 x2y x2y2 x2y3

x3 x3y x3y2 x3y3

〉
=



1 1
2

11
32

17
64

1
2

1
4

11
64

17
128

11
32

11
64

601
5120

923
10240

17
64

17
128

923
10240

1409
20480


,
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whereas for the SCS C2(0), the corresponding matrix of moments is

=



1 1
2

3
8

5
16

1
2

1
4

3
16

5
32

3
8

3
16

9
64

15
128

5
16

5
32

15
128

25
256


.

Remarkably, < xy >= 1/4 separates as (1/2) · (1.2) for each SCS here, and
for C2(2) = [0, 1]2, but some other elements of the matrix for C2(1) are not
separable. 3

9. Numerical algorithms, results, and challenges

We have given rational closed B(s, ·),∆(s, ·) forms for all non-negative
integer s in n = 1 dimension, and for all dimensions n we have proven the
existence of rational closed forms when s is even. Yet, we run into trouble
with regards to exact evaluation when n ≥ 2 and s is not an even integer,
say s = 1, n = 2 as the canonical ‘open case.’

In a word: We do not yet know the expectation of distance from the origin
B(1, ·) or the expected separation ∆(1, ·)) on any non-trivial SCS embedded
in n ≥ 2 dimensions. Even more stultifying: the scientifically important
case ∆(−1, C3(P )) seems to be inaccessible in closed form.12

Example 9.1. [Selected numerical excursions] We list some of our
successes and some of the challenges remaining.

1. An initial numerical foray was that of V. Klungre and D. Bailey (2010),
who used ‘offset-box’ integrals (see Appendix A) to achieve numerical values:

∆(1, C2(0)) = 0.63644048(5) . . . , ∆(1, C2(1)) = 0.553861543(7) . . . ,

where the symbol (digit) means it is questionable. By contrast, the full-
square classical case is known exactly [3]

∆(1, C2(2)) = ∆2(1) =
1

15

(
2 +
√

2 + 5 log
(

1 +
√

2
))

= 0.521405433164721 . . . ,

where fractal dimension and expected separation are both monotonically
ordered over the three SCS cases. (We have previously, though, by way of
Remark 7.3 demolished any general monotonicity-ordering conjecture.)

12This lies in embedding dimension n = 3 (relevant to laboratory work with brain
tissue) and is the expectation of 1/r, and so works to reject somewhat the effects of finite
cuboid boundaries. Pragmatically even better might be such expectations as the Yukawa
form 〈e−λr/r〉 [11].
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2. Application of the high-precision Algorithm 8.5 in Section 8.3 for the
(n = 2)-dimensional dust C2(0) involves the numerically powerful approxi-
mation (note p = 1 for this SCS, with the approximation exact as q →∞):

B(s, C2(0)) ≈ 3(1−q)s41−q

4 · 3s − 1

∑
U(ck)=0

c1 6=(0,0)

|(1/2)n + c13
q−1 + c23

q−2 + · · ·+ cq|s,

(9.1)

where it will be observed that the summation is over q ternary 2-vectors with
the constraint that c1 is not all 0’s. This approach leads via the algorithm
to rigorous bounds such as

791059

1000000
< B(1, C2(0)) <

791062

1000000
.

The approximation scheme of the algorithm, on the other hand, yields results
(using multiplicity q ≥ 10) such as

B(4, C2(0)) = 0.82500000000000000(0),

B(1, C2(0)) = 0.7910607171001881694140(5) . . . ,

B(1/2, C2(0)) = 0.85759154619636804162(5) . . . ,

B(−1, C2(0)) = 3.22851042553756462173(5) . . . ,

B(−12618595/10000000, C2(0)) = 105529978 . 23182819(5) . . . ,

B(−2, C2(0)) = −0.7222518765084439(9) . . . ,

B(−3, C2(0) = −0.1820952173493284(1) . . . .

where only the parenthetic digit is in doubt. This is evidently very difficult
to match in precision using Monte Carlo (MC) methods. (Of course, MC
methods are still useful, see the Appendix, as strong checks on any other
algorithm.) Note that the exact value ofB(4, C2(0)) is 33/40, so the reported
value lends credibility to the algorithm. Also the B values for sufficiently
negative s are negative—for these are analytic continuation values to the left
of the pole at s = log3 4; note a B value in excess of 108 for s near this pole
is on the list above.

3. More recently, we applied self-similarity expansions to effect more pre-
cise box-integral values. By self-similarity expansions we refer to the use of
formula such as the following one, appropriate for the function f(x, y) =

(x2 + y2)s/2, with the fractal C2(0) assumed. Note that B(s, C2(0)) =
〈f(x, y)〉:

(
4− 3−s

)
B(s, C2(0)) = 2

〈
f

(
x+ 2

3
,
y

3

)〉
+

〈
f

(
x+ 2

3
,
y + 2

3

)〉
.

(9.2)

One uses the binomial expansion on the right-hand-side and inserts known,
exact even-power moments. Applying self-similarity a few times recursively
gives intricate expansions with perhaps superior convergence. In this way
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we achieved (absent symbolic/numeric details attendant on 2-dimensional
Taylor expansions):

∆(1, C2(0)) = 0.636440485697895310368137114931019(3) . . . .

Though this is probably too imprecise to allow a modern experimental
closed-form search, it is nevertheless hard to imagine obtaining such 30+
decimal resolution via direct point-counting or offset-box summations.

This notion of moment expansions suggests there may be a sharp improve-
ment to Algorithm 8.5; namely, instead of forcing r → (1/2)n, the centroid
value, we can attempt expansion around the centroid and use known even
moments. Our best precision to date for (n = 2) dimensions being the 32
digits for ∆(1, C2(0)) above indicates that such future research is called for.

4. This self-similar expansion method is instructive in (n = 1)-dimensional
cases. We know from Section 8 that for d := r − 1/2,

B(1/2, C1(0)) =
2

2− 1√
3

√
5

6

〈√
1 +

2d

5

〉
.

Binomial expansion of the d-dependent term, with insertion into the expan-
sion of the d-moments, results in extreme precision in reasonable time, e.g.,
B(1/2, C1(0)) =

0.640051038674413046291777407650533688744217331985844782542398 . . .

with many more places possible. Alternatively, series (8.6) leads to the same
results.

By contrast, estimation with fractional s in higher dimensions is trickier.
Even for n = 2, s = −1 we have been able to do any better than

∆(−1, C2(0)) = 3.927(1) . . .

Incidentally, this expectation of (separation)−1—speaking formally—should
agree with

∆(−1, C2(0)) =
2

π

∫ ∞
0

∫ ∞
0

G(u)2G(v)2√
u2 + v2

dudv,

where we refer to the kernel G(w) := 1G0(w) =
∏
m≥1 cos(w/3m), yet we

have been unable to get even the rough value 3.927... via quadrature.
5. Indeed such numerical quadrature is for whatever reason generally

problematic. As derived ∆(1, C1(0)) = 2/5, leading to the peculiar integral
identity ∫ ∞

0

cos k + k sin k − 1

k2
G(k)2 dk =

π

5
,

which, again, does not seem to yield readily to numerical quadrature tech-
niques beyond just a few good decimals. 3
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10. Some open questions

We finish by emphasizing some outstanding questions:

• How can we get expectations such as ∆(1, C2(0)) to enough accuracy
(say 100+ decimals) for experimental-mathematical analysis as ex-
plored in [6]? (Note the final observations of Example 9.1 on possible
refinements on Algorithm 8.5.)
• It is shown in [12] that if the standard Cantor set is charged (say with

a total charge of +1), then the electrostatic potential at the position
(0, y)—so directly above the left-hand edge of C1(0)—is given by

V (0, y) =
1

2π

∫ ∞
0

J0(yk)G1(k) dk,

with 1G1 as in Section 6 and J0 the Bessel function. To date, this
integral has not been evaluated, even asymptotically. However, it is
known that V (0, y) behaves something like 1/y1−δ where δ = log3 2.
Might any of the new techniques in the present paper apply?
• For brain-synapse analysis, we would like to know at least a good

numerical values for ∆(s, C3(P ))—meaning separation moments in
(n = 3) embedding dimensions—and s = −2,−1, 1. It would be
useful, therefore. to work out a ∆-analogue of ALgorithm 8.5.
• How much can we build on these results to evaluate expectations

on a larger class of fractal sets embedded in the unit hypercube?
Perhaps on all fractals covered by Theorem 2.4.
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Appendix A. Expecation data for SCS cases

A.1. Scatterplots of second-order box integrals vs fractal dimen-
sion. The separation moments B(2, Cn(P )) and ∆(2, Cn(P )) (computed
using Theorem 7.1) and fractal dimension (computed using Proposition 7)
of various SCSs were plotted for embedding dimensions n = 2 and 3. The
resulting scatterplots are shown below.

A.2. Exact rational values and numerical verification for second-
order expectations. Below, for a selection of string-generated Cantor
sets Cn(P ), we present data comprising fractal dimensions δ(Cn(P )) and
second-order moments B(2, Cn(P )) and ∆(2, Cn(P )) for embedding dimen-
sion n = 1, 2 and 3, with entries arranged in order of increasing fractal
dimension. All such quantities are rational and were computed exactly—
fractal dimensions via Proposition 7, and separation moments via Theorem
7.1. Decimal equivalents (to six-digit accuracy) are included, together with
results of Monte-Carlo computations, as a check.

(1) One possible Monte-Carlo approach is to utilize a uniform (0, 1)
pseudorandom number generator to generate pairs of n-tuples at
random, then check each pair of n-tuples so generated to see if it is
“admissible” for the given set Cn(P ). This is certainly a relatively
simple and straightforward scheme to code on a computer, and can
be used effectively in cases where the average “density” of the fractal
set is not too small.

– The disadvantage of this scheme is that for many fractal Cantor
sets that one might wish to examine, the density is so small that
only a microscopic fraction of the n-tuple pairs so generated
in each trial are admissible. In such cases, thousands or even
millions of pairs of n-tuples must be generated to find just one
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Figure 5. Separation moments plotted against fractal di-
mensions for SCSs. Top: separation moments ∆(2, C3(P ))
(left) and B(2, C3(P )) (right) for SCSs of period 8 or less in
embedding dimension n = 3. Bottom: separation moments
∆(2, C2(P )) (left) and B(2, C2(P )) (right) for SCSs of period
10 or less in embedding dimension n = 2. All plots have the
same scale.

admissible pair, and yet millions of such valid pairs must be
generated to obtain reliable mean statistics.

(2) A second approach, which we adopted below, is, for each case to be
studied, to first construct a table of all admissible columns ck for
each of the components of P , and then, for each of a large number
of trials, and for each ternary column 1 ≤ k ≤ 20 of a single trial,
pseudorandomly select an admissible column from the appropriate
table. While coding this scheme is much more complicated that the
more straightforward scheme, it has the distinct advantage that each
pair of n-tuples is guaranteed to be admissible.

– We have tabulated our results, with the columns headed by
“Numeric” giving Monte-Carlo results forB(2, Cn(P )) and ∆(2, Cn(P )).
In each line, figures are based on a computation of 109 pseu-
dorandom pairs of admissible n-tuples, each to 20 ternary digit
precision. Note that 20 ternary digit precision corresponds to
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Figure 6. Separation moments plotted against fractal di-
mensions for SCSs. Top: separation moments ∆(2, C3(P ))
(left) and B(2, C3(P )) (right) for SCSs of period 8 or less in
embedding dimension n = 3. Bottom: separation moments
∆(2, C2(P )) (left) and B(2, C2(P )) (right) for SCSs of period
10 or less in embedding dimension n = 2. The scale of each
plot has been adjusted to fill the plotting area.

roughly 9.5 decimal digit precision, which is adequate given
that fact that even with 109 pseudorandom trials per case, only
about 5 accurate digits can be expected in the output means.
At the bottom of each of the three tables are statistics giving
the maximum and root-mean-square error for the Monte-Carlo
results in the table. We observe that theory and computation
mesh very well.

– As a final set of results, we also exhibit, in Table 6, a few validat-
ing results for the box integrals Bn(s, Cn(P )), kindly provided
to the authors by Dirk Nuyens, who employed a multi-level
Monte-Carlo scheme to compute moments for s = 1, s = 2 and
s = 1/2, for various Cn(P ).

(3) We mention one other approach, which was taken by V. Klungre in
Example 9.1 of the previous section. Klungre utilized a Mathematica
program to compute the mean distance, in any given dimension n,
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between points in two square (or cube, etc.) Cantor patches. He
then recursively extended this scheme up to dimension 9. While
the results so produced are very accurate, so much computation is
required for a single case that it is not practical for a large number
of cases, as we required below.

We are investigating more sophisticated quasi-Monte-Carlo schemes, but
do not yet have any results.

A.2.1. Tabulated data for n = 1 (generating string period ≤ 4), with numeric
Monte-Carlo results based on 109 trials.

P
δ(C1(P )) B(2, C1(P )) ∆(2, C1(P ))

Decimal Rational Decimal Numeric Rational Decimal Numeric

0 0.630930 3
8 0.375000 0.375013 1

4 0.250000 0.250009

0001 0.723197 7379
19680 0.374949 0.374941 2459

9840 0.249898 0.249904

0010 0.723197 2457
6560 0.374543 0.374543 817

3280 0.249085 0.249080

0100 0.723197 2433
6560 0.370884 0.370887 793

3280 0.241768 0.241765

1000 0.723197 2217
6560 0.337957 0.337937 577

3280 0.175915 0.175928

001 0.753953 409
1092 0.374542 0.374552 68

273 0.249084 0.249092

010 0.753953 135
364 0.370879 0.370877 22

91 0.241758 0.241751

100 0.753953 123
364 0.337912 0.337895 16

91 0.175824 0.175824

0011 0.815465 737
1968 0.374492 0.374486 245

984 0.248984 0.248989

01 0.815465 89
240 0.370833 0.370836 29

120 0.241667 0.241661

0110 0.815465 243
656 0.370427 0.370429 79

328 0.240854 0.240850

10 0.815465 27
80 0.337500 0.337481 7

40 0.175000 0.175014

1001 0.815465 665
1968 0.337907 0.337894 173

984 0.175813 0.175812

1100 0.815465 219
656 0.333841 0.333825 55

328 0.167683 0.167686

011 0.876977 809
2184 0.370421 0.370397 263

1092 0.240842 0.240847

101 0.876977 737
2184 0.337454 0.337442 191

1092 0.174908 0.174904

110 0.876977 243
728 0.333791 0.333781 1

6 0.167582 0.167583

0111 0.907732 7289
19680 0.370376 0.370350 2369

9840 0.240752 0.240757

1011 0.907732 6641
19680 0.337449 0.337440 1721

9840 0.174898 0.174903

1101 0.907732 6569
19680 0.333791 0.333765 1649

9840 0.167581 0.167574

1110 0.907732 2187
6560 0.333384 0.333386 547

3280 0.166768 0.166774

1 1.000000 1
3 0.333333 0.333333 1

6 0.166667 0.166671

Max error 0.000033 0.000026
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RMS error 0.000014 0.000008

A.2.2. Tabulated data for n = 2 (generating string period ≤ 2), with numeric
Monte-Carlo results based on 109 trials.

P
δ(C2(P )) B(2, C2(P )) ∆(2, C2(P ))

Decimal Rational Decimal Numeric Rational Decimal Numeric

0 1.26186 3
4 0.750000 0.750012 1

2 0.500000 0.500036

01 1.577324 119
160 0.743750 0.743744 39

80 0.487500 0.487478

10 1.577324 111
160 0.693750 0.693716 31

80 0.387500 0.387514

02 1.630930 89
120 0.741667 0.741664 29

60 0.483333 0.483325

20 1.630930 27
40 0.675000 0.674983 7

20 0.350000 0.349996

1 1.892789 11
16 0.687500 0.687486 3

8 0.375000 0.374998

12 1.946395 329
480 0.685417 0.685414 89

240 0.370833 0.370830

21 1.946395 107
160 0.668750 0.668743 27

80 0.337500 0.337494

2 2.000000 2
3 0.666667 0.666646 1

3 0.333333 0.333335

Max error 0.000057 0.000036

RMS error 0.000024 0.000010

A.2.3. Tabulated data for n = 3 (generating string period ≤ 2), with numeric
Monte-Carlo results based on 109 trials.

P
δ(C3(P )) B(2, C3(P )) ∆(2, C3(P ))

Decimal Rational Decimal Numeric Rational Decimal Numeric

0 1.892789 9
8 1.125000 1.124983 3

4 0.750000 0.749994

01 2.309811 447
400 1.117500 1.117460 147

200 0.735000 0.734995

10 2.309811 423
400 1.057500 1.057481 123

200 0.615000 0.614989

02 2.429218 579
520 1.113462 1.113436 189

260 0.726923 0.726925

20 2.429218 531
520 1.021154 1.021104 141

260 0.542308 0.542313

03 2.446395 89
80 1.112500 1.112453 29

40 0.725000 0.725009

30 2.446395 81
80 1.012500 1.012502 21

40 0.525000 0.525011

1 2.726833 21
20 1.050000 1.049967 3

5 0.600000 0.599985

12 2.846240 5439
5200 1.045962 1.045915 1539

2600 0.591923 0.591917
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C B(2, C) B(1, C) B(1/2, C)
C3(0) 1.12500 1.00501 0.98359
C3(1) 1.05000 0.97909 0.97522
C3(2) 1.00961 0.96424 0.96957
C3(3) 1.00000 0.96059 0.96811
C2(0) 0.75000 0.79106 0.85759
C2(1) 0.68750 0.77261 0.85778
C2(2) 0.66667 0.76520 0.85581
C1(0) 0.37500 0.50000 0.64005
C1(1) 0.33333 0.50000 0.66667
C3(01) 1.11750 1.00196 0.98229
C3(10) 1.05750 0.98205 0.97648
C3(02) 1.11346 1.00028 0.98151
C2(01) 0.74375 0.78846 0.85735
C2(10) 0.69375 0.77507 0.85830
C2(02) 0.74167 0.78749 0.85700
C2(20) 0.67500 0.76846 0.85662
C2(12) 0.68542 0.77174 0.85748
C2(21) 0.66875 0.76605 0.85610

C ∆(2, C) ∆(1, C) ∆(1/2, C)
C3(01) 0.3675 0.5969 0.7694
C3(10) 0.3075 0.5404 0.7299
C3(02) 0.3634 0.5946 0.7683

Table 6. The expectation integrals for various s, computed
by Dirk Nuyens (for B) and Josef Dick (for ∆,).

21 2.846240 5271
5200 1.013654 1.013606 1371

2600 0.527308 0.527303

13 2.863417 209
200 1.045000 1.045028 59

100 0.590000 0.589982

31 2.863417 201
200 1.005000 1.004979 51

100 0.510000 0.509998

2 2.965647 105
104 1.009615 1.009601 27

52 0.519231 0.519224

23 2.982824 1049
1040 1.008654 1.008633 269

520 0.517308 0.517303

32 2.982824 1041
1040 1.000962 1.000925 261

520 0.501923 0.501918

3 3.000000 1 1.000000 0.999960 1
2 0.500000 0.499983

Max error 0.000065 0.000032

RMS error 0.000031 0.000012
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