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Abstract. We prove upper and lower bounds for the complementary incomplete gamma function
Γ(a, z) with complex parameters a and z. Our bounds are refined within the circular hyperboloid
of one sheet {(a, z) : |z| > c|a − 1|} with a real and z complex. Our results show that within the
hyperboloid, |Γ(a, z)| is of order |z|a−1e−Re(z), and extends an upper estimate of Natalini and Palumbo
to complex values of z.
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1. Introduction

Euler’s gamma function

Γ(a) :=

∫ ∞
0

e−xxa−1dx, (1.1)

defined for complex a, with simple poles at −1,−2, . . . , is an important object in many
areas of mathematics and has been widely studied. The incomplete gamma function
γ(a, z) and its complement Γ(a, z), defined for z > 0 by

γ(a, z) :=

∫ z

0

e−xxa−1dx (1.2)

and

Γ(a, z) :=

∫ ∞
z

e−xxa−1dx, (1.3)

also appear in many different contexts and applications. For example, γ(a, z) appears
in the asymptotic expansions of the Bessel functions [10, pp. 204–205], and Γ(a, z) is
closely related to the generalized complementary error function

erfcp(x) :=
2√
π

∫ ∞
x

e−tpdt =
2

p
√

π
Γ(

1

p
, xp). (1.4)

One can find an extended and highly readable overview on γ(a, z) and Γ(a, z) in [3].
Our present investigation was motivated by the need for explicit upper bounds on

|Γ(a, z)| in large regions of the complex z-plane in order to give effective asymptotic
formulas for Laguerre Polynomials [2]. While there are many asymptotic formulas [5],
[7], [8], [9], and inequalities [1], [4], [6] for Γ(a, z) in the literature, these results were
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not applicable in the context of [2] either because the errors to the asymptotics were
non-effective, or because the inequalities were only proved for restricted domains.

For example, Alzer [1, eq. 2.6] derived inequalities for the generalized complementary
error function, and thus for Γ(1/p, xp) by (1.4), but only for real positive x and p. Of
particular note are the inequalities of Natalini and Palumbo [4], which include the

following: for a > 1, B > 1 and x >
B

B − 1
(a− 1), we have

xa−1e−x < |Γ(a, x)| < Bxa−1e−x. (1.5)
The inequalities of both Alzer and Natalini-Palumbo were proved for real a and z.

In this note, we prove upper and lower bounds for |Γ(a, z)| that are uniform in the
region |z| > c|a − 1|, where c is a constant and both a and z are complex. We also
prove that our upper bound is asymptotically tight.

2. Bounds on Γ(a, z)

We begin by making a change of variable in (1.3) to obtain the following alternative
definition for Γ(a, z).

Γ(a, z) = zae−z

∫ ∞
0

e−zs(1 + s)a−1ds. (2.1)

It is clear that (2.1) can be analytically continued for complex values of both a and z,
and converges for all a when Re(z) > 0, and at least for Re(a) < 0 if Re(z) = 0. With
Γ(a, z) expressed as in (2.1), estimating |Γ(a, z)| reduces to estimating the integral

I(a, z) :=

∫ ∞
0

e−zs(1 + s)a−1ds. (2.2)

For convenience, we write z = x + iy, a = u + iv, where u, v, x, y ∈ R. We begin with
two trivial estimates.

Theorem 2.1. When x > 0, we have

|I(a, z)| ≤


1

x− (u− 1)
, if u ≥ 1,

1

x
, if u ≤ 1.

(2.3)

Proof. When u ≥ 1, we have 0 < (1 + s)u−1 ≤ (es)u−1 for s ∈ [0,∞). Therefore,

|I(a, z)| ≤
∫ ∞

0

∣∣e−zs(1 + s)a−1
∣∣ ds

≤
∫ ∞

0

e−xse(u−1)sds =
1

x− (u− 1)
.

When u ≤ 1, we use the estimate 0 ≤ (1 + s)u−1 ≤ 1. �

Theorem 2.2. For x ≥ 0 and u < 0, we have

|I(a, z)| ≤ −1

u
. (2.4)
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Proof. We apply the same argument as that of Theorem 2.1 except we bound |e−zs| < 1
instead of (1 + s)u−1. This yields

|I(a, z)| ≤
∫ ∞

0

∣∣e−zs(1 + s)a−1
∣∣ ds

≤
∫ ∞

0

(1 + s)u−1ds = −1

u
.

�

We may now prove our key upper bound.

Theorem 2.3. Let a and z be complex numbers with Re(z) > 0, and set θn := arg(a−
n), where n is any positive integer. Then, for u = Re(a) 6∈ Z, we have,

|I(a, z)| ≤



1

|z|
(1 + | sec θ1|) , if u < 1,

1

|z|

(
N−2∑
k=0

∣∣∣∣a− 1

z

∣∣∣∣k + (1 + | sec θN |)
∣∣∣∣a− 1

z

∣∣∣∣N−1
)

, if u > 1,

(2.5)

where N = due is the smallest integer greater than or equal to u.

Proof. Since we are integrating with respect to the real variable s, we integrate by parts
to find that

I(a, z) =

∫ ∞
0

e−zs(1 + s)a−1ds

= −e−zs

z
(1 + s)a−1

∣∣∣∣∞
s=0

+

∫ ∞
0

a− 1

z
e−zs(1 + s)a−2ds

=
1

z
+

a− 1

z
I(a− 1, z). (2.6)

For u < 1, we have, by (2.6) and Theorem 2.2,

|I(a, z)| ≤ 1

|z|
+

∣∣∣∣1− a

z

∣∣∣∣ · 1

1− u

=
1

|z|
(1 +

√
1 + tan2 θ1) =

1

|z|
(1 + | sec θ1|). (2.7)

Now, suppose u > 1. By iterating (2.6), we find that for any fixed integer N > 0,
we have

I(a, z) =
N−1∑
k=0

(a− 1)(a− 2) · · · (a− k)

zk+1
+

(a− 1) · · · (a−N)

zN
I(a−N, z). (2.8)

Set N = due. Then for 1 ≤ k < N we have,

|(a− 1) · · · (a− k)| ≤ |a− 1|k.
since u > 1. Clearly, we also have

|(a− 1) · · · (a−N)| ≤ |a− 1|N−1 |a−N |. (2.9)
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Thus, using (2.8), (2.9), and Theorem 2.2, we find that

|I(a, z)| ≤
N−1∑
k=0

∣∣∣∣(a− 1)(a− 2) · · · (a− k)

zk+1

∣∣∣∣+ ∣∣∣∣(a− 1) · · · (a−N)

zN
I(a−N, z)

∣∣∣∣
≤ 1

|z|

N−1∑
k=0

|a− 1|k

|z|k
+
|a− 1|N−1|a−N |

|z|N
|I(a−N, z)|

≤ 1

|z|

(
N−1∑
k=0

∣∣∣∣a− 1

z

∣∣∣∣k +

∣∣∣∣a− 1

z

∣∣∣∣N−1

| sec θN |

)
. (2.10)

�

Note that θN tends to zero as Im(a) approaches zero, provided that Re(a) > 1 and
is not an integer. Hence, for real a, we may refine the estimate in (2.5) by improving
the bound in (2.9).

Theorem 2.4. Let z be complex with Re(z) > 0 and a be real. Let N = dae as in
Theorem 2.3. Then we have

|I(a, z)| ≤



2

|z|
, if a < 1,

1

|z|

N−1∑
k=0

∣∣∣∣a− 1

z

∣∣∣∣k, if a ≥ 1, a ∈ Z,

1

|z|

(
N−1∑
k=0

∣∣∣∣a− 1

z

∣∣∣∣k +

∣∣∣∣a− 1

z

∣∣∣∣N−1
(N − 1)!

(N − 1)N−1

)
, if a > 1, a 6∈ Z.

(2.11)

Proof. When a < 1, the inequality follows from Theorem 2.3 since θ1 = π. When
a > 1, we follow the proof of Theorem 2.3 except that instead of the estimate (2.9), we
use

|(a− 1) · · · (a−N + 1)| ≤ |a− 1|N−1

N−1∏
k=0

∣∣∣∣a− 1− k

a− 1

∣∣∣∣ ≤ |a− 1|N−1 (N − 1)!

(N − 1)N−1
, (2.12)

since for any 0 < m ≤ n and ε > 0 we have
m

n
≤ m + ε

n + ε
.

Applying (2.12) and Theorem 2.2 to the Nth iterate of (2.6) gives the desired result,
since when a is an integer, the product (a− 1) · · · (a−N) = 0. �

Given the form of the bound in Theorem 2.4, it is natural to consider what happens
within the circular hyperboloid of one sheet given by {(a, z) : |z| > c|a− 1|}. In fact,
in this region, we obtain a very clean upper bound. The original requirement in [2] was
met with c = 2.

Corollary 2.5. Let c > 1. For complex z and real a with Re(z) > 0, a ≥ 1, and
|z| ≥ c(a− 1), we have

|I(a, z)| ≤ 1

|z|
· c

c− 1
. (2.13)
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This is valid for a ≥ 1 if 1 < c ≤ 440 and valid for a > 2 for all c > 1.

Proof. Since |z| ≥ c(a− 1) we may bound (2.11) by

|I(a, z)| ≤ 1

|z|

(
N−1∑
k=0

c−1 +
(N − 1)!

(N − 1)N−1cN−1

)

=
1

|z|

(
c− c−N

c− 1
+

(N − 1)!

(N − 1)N−1cN−1

)
.

By Stirling’s Formula, we know that

n! < nne−n+1/12n
√

2πn.

For convenience, let n = N − 1. Thus

|I(a, z)| ≤ 1

|z|

(
c− c−n+1

c− 1
+ c−ne−n+1/12n

√
2πn

)
=

1

|z|

(
c

c− 1
+

c−n(c− 1)e−n+1/12n
√

2πn− c−n+1

c− 1

)
≤ 1

|z|
· c

c− 1

whenever
(c− 1)e−n+1/12n

√
2πn− c ≤ 0.

Or, equivalently,

e−n+1/12n
√

2πn ≤ 1 +
1

c− 1
.

It is easy to see that the left-hand side is a decreasing function of n for n ≥ 1, and is
less than one if n ≥ 2. The inequality is valid for n = 1 if

1 < c ≤ 1 +
1√

2πe−11/12 − 1
≈ 440.66 . . . .

�

The upper bound in Corollary 2.5 is best possible in the following limiting sense.

Theorem 2.6.

lim
a→∞

(a− 1)I(a, c(a− 1)) =
1

c− 1
. (2.14)

Proof. We derive the result from the following well-known [3, Eq. 2.12], [9] asymptotic
formula for Γ(a, z).

Γ(a + 1, x) =
e−xxa

x− a

(
1− a

(x− a)2
+

2a

(x− a)3
+ O

(
a2

(x− a)4

))
, (2.15)
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as
√

a/(x− a) tends to zero. Thus, by the definition of I(a, z), we find that,

lim
a→∞

aI(a + 1, ca) = lim
a→∞

aΓ(a + 1, ca)eca (ca)−a

= lim
a→∞

a

ca− a

(
1 + O

(
a

(ca− a)2

))
=

1

c− 1
, (2.16)

since
√

a/ (ca− a) → 0 as a →∞. Replacing a with a− 1 gives the stated claim. �

3. A lower bound

To determine a lower bound for |I(a, z)|, we apply the functional equation (2.6).

Theorem 3.1. Let c ≥ 2. Let z be complex and a be real with Re(z) > 0, a > 3, and
|z| ≥ c(a− 1). Then we have

|I(a, z)| ≥ 1

|z|
· c− 2

c− 1
. (3.1)

Proof. By (2.6), we have

I(a, z)− a− 1

z
I(a− 1, z) =

1

z
.

Therefore, by the triangle inequality we find that

|I(a, z)| ≥ 1

|z|
− |a− 1|

|z|
|I(a− 1, z)|.

Since |z| ≥ c(a − 1) > c(a − 1 − 1) and a − 1 > 2 we may apply the upper bound in
Corollary 2.5 to |I(a− 1, z)|. The result follows after some simplification. �

We close with a two-sided corollary.

Corollary 3.2. Let c, z, and a be as in Theorem 3.1, and recall that x = Re(z). Then

|z|a−1e−x · c− 2

c− 1
≤ |Γ(a, z)| ≤ |z|a−1e−x · c

c− 1
. (3.2)

Let us compare (3.2) with the Natalini-Palumbo bound (1.5). If we let c = B/(B−1),
we readily find that B = c/(c−1). Thus, we see that the upper bound in (3.2) extends
(1.5) to complex z. However, even though the lower bound in (3.2) is of the same order
as that of (1.5), it is much weaker when c is near 2.
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