
High-Precision Computation:

Mathematical Physics and Dynamics

D. H. Bailey∗ R. Barrio† J. M. Borwein‡

March 21, 2012

Abstract

At the present time, IEEE 64-bit floating-point arithmetic is sufficiently accurate for most
scientific applications. However, for a rapidly growing body of important scientific computing
applications, a higher level of numeric precision is required. Such calculations are facilitated
by high-precision software packages that include high-level language translation modules to
minimize the conversion effort. This paper presents an overview of recent applications of
these techniques and provides some analysis of their numerical requirements. We conclude
that high-precision arithmetic facilities are now an indispensable component of a modern
large-scale scientific computing environment.

1 Introduction

Virtually all present-day computer systems, from personal computers to the largest supercom-
puters, implement the IEEE 64-bit floating-point arithmetic standard, which provides 53 man-
tissa bits, or approximately 16 decimal digit accuracy. For most scientific applications, 64-bit
arithmetic is more than sufficient, but for a rapidly expanding body of applications, it is not.
In this paper we will examine a variety of situations where high-precision arithmetic is useful:

1. Ill-conditioned linear systems. Many innocent-looking problems involve ill-conditioned
linear systems that give rise to numerical errors with 64-bit arithmetic.

2. Large summations. Anomalous results often stem from the loss of associativity in summa-
tions, particularly when executed on a parallel computer environment where the order of
summation cannot be controlled [71].

∗Lawrence Berkeley National Laboratory, Berkeley, CA 94720, dhbailey@lbl.gov. Supported in part by
the Director, Office of Computational and Technology Research, Division of Mathematical, Information, and
Computational Sciences of the U.S. Department of Energy, under contract number DE-AC02-05CH11231.
†Depto. Matemática Aplicada and IUMA, Universidad de Zaragoza, E-50009 Zaragoza, Spain

rbarrio@unizar.es. Supported in part by the Spanish research project MTM2009-10767.
‡Centre for Computer Assisted Research Mathematics and its Applications (CARMA), University of Newcastle,

Callaghan, NSW 2308, Australia, jonathan.borwein@newcastle.edu.au. Supported in part by the Australian
Research Council.

1

3. Long-time simulations. Almost any kind of physical simulation, if performed over many
time intervals, will eventually depart from reality, due to cumulative round-off error, in
addition to errors arising from discretization of time and space.

4. Large-scale simulations. Computations that are well-behaved on modest-sized problems,
such as those run on a single-CPU system, may exhibit significant numerical errors when
scaled up massively parallel systems.

5. Resolving small-scale phenomena. It is often necessary to employ a very fine-scale resolu-
tion to “zoom” in on the phenomena in question.

6. “Experimental mathematics” computations. Numerous recent results in experimental
mathematics could not be obtained except by very high precision computations.

With regards to item 1, it should be kept in mind that the vast majority of persons currently
performing numerical computations are not experts in numerical analysis, and this fact is not
likely to change anytime soon. For example, in 2010 at the University of California, Berkeley,
a total of 219 students enrolled in the two sections of Math 128A, a one-semester introductory
numerical analysis course required of applied math majors, but only 24 enrolled in Math 128B,
a more advanced course. By contrast, in the same year a total of 870 seniors graduated in the
Division of Mathematical and Physical Sciences (including Mathematics, Physics and Statistics),
the College of Chemistry and the College of Engineering (including Computer Science). If we add
to this list graduates in other fields with computational components, such as biology, geology,
medicine and social sciences, we conclude that fewer than 2% of the Berkeley graduates each
year who likely will be using numerical computations in their career work have advanced training
in numerical analysis.

Thus, for the foreseeable future, almost all technical computing will be performed by persons
who have had only basic training in numerical analysis, or none at all. High-precision arithmetic
is an attractive option for such users, because even in situations where numerically better be-
haved algorithms are known in the literature that may resolve a numerical problem, it is often
both easier and more reliable to simply increase the precision used for the existing algorithm,
using tools such as those described in Section 2. And, as we will see below, there are problems
for which no known algorithmic change can rectify the numerical difficulties encountered.

1.1 Extra precision versus algorithm changes

The following example illustrates some of the issues involved. Suppose one wishes to recover the
integer polynomial that produces the result sequence (1, 32771, 262217, 885493, 2101313,
4111751, 7124761) for integer arguments (0, 1, . . . , 6). While there are several ways to approach
this problem, many scientists and engineers will employ a least-squares scheme, since this is a
very familiar tool in scientific data analysis, and efficient library software is readily available.
Indeed, this approach is suggested in a widely used reference [70, pg. 44]. In this approach, one

2

constructs the (n+ 1)× (n+ 1) linear system
n+ 1

∑n
k=1 xk · · ·

∑n
k=1 x

n
k∑n

k=1 xk
∑n

k=1 x
2
k · · ·

∑n
k=1 x

n+1
k

...
...

. . .
...∑n

k=1 x
n
k

∑
k=1 x

n+1
k · · ·

∑n
k=1 x

2n
k



a0
a1
...
an

 =


∑n

k=1 yk∑n
k=1 xkyk

...∑n
k=1 x

n
kyk

 , (1)

where (xk) are the integer arguments and (yk) are the sequence values. Then one solves for
(a1, a2, · · · , an) using, for example, LINPACK [45] or LAPACK [44] software.

In the specific problem mentioned above, a double-precision (64-bit) floating-point imple-
mentation of the least-squares scheme succeeds in finding the correct polynomial coefficients,
which, after rounding to the nearest integer, are (1, 0, 0, 32769, 0, 0, 1), or, in other words,
f(x) = 1 + (215 + 1)x3 + x6. Unfortunately, this scheme fails to find the correct polynomial for
a somewhat more difficult problem, namely to find the degree-8 polynomial that generates the
9-long sequence (1, 1048579, 16777489, 84941299, 268501249, 655751251, 1360635409,
2523398179, 4311748609), for integer arguments (0, 1, · · · , 8). The program finds approximate
degree-8 polynomial coefficients, but they are not correct, even after rounding to the nearest
integer — too much floating-point round-off error has occurred.

Numerical analysts may point out here that this approach is not the best scheme for this type
of problem, in part because the Vandermonde matrix system (1) is known to be ill-conditioned.
A more effective approach in the cases such as this is to employ the Lagrange interpolating
polynomial, which, given a set of n + 1 data points (x0, y0), (x1, y1), · · · , (xn, yn), is defined as
L(x) =

∑n
j=0 yjpj(x), where

pj(x) =
∏

0≤i≤n, i 6=j

x− xi
xj − xi

. (2)

In the problem at hand, xj = j for 0 ≤ j ≤ n. The chief sources of numerical error here are the
summations inherent in the formula L(x) =

∑n
j=0 yjpj(x) (see item 2 above).

This scheme, implemented with 64-bit IEEE arithmetic, correctly deduces that the 9-long
data sequence above is produced by the polynomial 1 + (220 + 1)x4 + x8. However, this scheme
fails when given the more challenging 13-long input data vector (1, 134217731, 8589938753,
97845255883, 549772595201, 2097396156251, 6264239146561, 15804422886323, 35253091827713,
71611233653971, 135217729000001, 240913322581691, 409688091758593), which is generated by
1 + (227 + 1)x6 + x12.

The state-of-the-art algorithm in this area, as far as the present authors are aware, is a
technique due to James Demmel and Plamen Koev [42], which accurately solves “totally positive”
systems such as (1), where the determinant of any square submatrix is positive. A Matlab
implementation of this scheme is available at [62]. We found that this program solves the
degree-6 and degree-8 problems mentioned above, but, like the Lagrange polynomial scheme,
fails for the degree-12 problem.

However, there is another approach to these problems: simply modify the source code of any
reasonably effective solution scheme to invoke higher-precision arithmetic. For example, when

3

Precision Problem degree
Algorithm (digits) 6 8 12

Least-squares 16 succeeded failed failed
31 succeeded succeeded succeeded

Lagrange 16 succeeded succeeded failed
31 succeeded succeeded succeeded

Demmel-Koev 16 succeeded succeeded failed

Table 1: Success and failure of various polynomial data fit schemes

we modified our Fortran-90 least-squares scheme to employ double-double precision (approxi-
mately 31-digit accuracy), using the QD software [59] mentioned in Section 2, we were able to
correctly solve all three problems (degrees 6, 8 and 12). Converting the Lagrange polynomial
scheme to use double-double arithmetic was even easier, and the resulting program also solved
all three problems without incident. These results are summarized in Table 1. No entry is listed
for the Demmel-Koev scheme with 31-digit arithmetic, because we relied on a 16-digit Matlab
implementation, although we have no reason to doubt that it would also succeed.

2 High-precision software

Efficient algorithms are known for performing, to any desired precision, the basic arithmetic
operations, square and n-th roots, and most transcendental functions [30, pp. 215–245], [31,
pp. 299–318], [32, 33, 34, 37]. Until recently, utilizing high-precision arithmetic required one
to rewrite a scientific application with individual subroutine calls for each arithmetic operation.
The difficulty of writing and debugging such code has deterred all but a few computational
scientists and mathematicians from using such tools.

In the past 10 years or so, several high-precision software packages have been produced
that include high-level language interfaces that make such code conversions relatively painless.
These packages typically utilize custom datatypes and operator overloading features, which are
available in languages such as C++ and Fortran-90, to facilitate conversion. Here are some
high-precision arithmetic software packages that are freely available on the Internet, listed in
alphabetical order. The ARPREC [19], QD [59] and MPFUN90 packages are available from the
first author’s website: http://crd-legacy.lbl.gov/~dhbailey/mpdist.

• ARPREC. This package includes routines to perform arithmetic with an arbitrarily high
level of precision, including many algebraic and transcendental functions. High-level lan-
guage interfaces are available for C++ and Fortran-90, supporting real, integer and com-
plex datatypes.

• GMP. This package includes an extensive library of routines to support high-precision
integer, rational and floating-point calculations. GMP has been produced by a volunteer
effort and is distributed under the GNU license by the Free Software Foundation. It is
available at http://gmplib.org.

4

• MPFR. The MPFR library is a C library for multiple-precision floating-point computations
with exact rounding, and is based on the GMP multiple-precision library. Additional
information is available at http://www.mpfr.org.

• MPFR++. This is a high-level C++ interface to MPFR. Additional information is avail-
able at http://perso.ens-lyon.fr/nathalie.revol/software.html. A similar pack-
age is GMPFRXX, available at http://math.berkeley.edu/~wilken/code/gmpfrxx.

• MPFUN90. This is similar to ARPREC in user-level functionality, but is written entirely
in Fortran-90 and provides a Fortran-90 language interface.

• QD. This package includes routines to perform “double-double” (approx. 31 digits) and
“quad-double” (approx. 62 digits) arithmetic. High-level language interfaces are available
for C++ and Fortran-90, supporting real, integer and complex datatypes. This software is
much faster than using arbitrary precision software when only 31 or 62 digits are required.

Just as an example of the simple case, the QD package, which provides double-double and
quad-double arithmetic, is based on the following algorithms for the accurate addition and
multiplication of two IEEE 64-bit operands using rounded arithmetic, due to Knuth [61] and
Dekker [41]:

function [x, y] = TwoSum(a; b)
x = fl(a+ b)
z = fl(x− a)
y = fl((a− (x− z)) + (b− z))

function [x, y] = Split(a)
c = fl(factor · a) (in double precision factor = 227 + 1)
x = fl(c− (c− a))
y = fl(a− x)

function [x, y] = TwoProd(a; b)
x = fl(a · b)
[a1, a2] = Split(a)
[b1, b2] = Split(b)
y = fl(a2 · b2− (((x− a1 · b1)− a2 · b1)− a1 · b2))

In the above, fl stands for the floating-point evaluation using rounded arithmetic. These algo-
rithms satisfy the following error bounds [68] (where F denotes the set of floating-point numbers
and u the rounding unit of the computer):

Theorem 1 For a, b ∈ F and x, y ∈ F, TwoSum and TwoProd verify

[x, y] = TwoSum(a, b), x = fl(a+ b), x+ y = a+ b, |y| ≤ u|x|, |y| ≤ u|a+ b|,
[x, y] = TwoProd(a, b), x = fl(a× b), x+ y = a× b, |y| ≤ u|x|, |y| ≤ u|a× b|.

5

One downside of using high-precision software is that such facilities greatly increase computer
run times, compared with using conventional 64-bit arithmetic. For example, computations
using double-double precision arithmetic typically run five to ten times slower than with 64-
bit arithmetic. This figure rises to at least 25 times for the quad-double arithmetic, to more
than 100 times for 100-digit arithmetic, and to well over 1000 times for 1000-digit arithmetic.
However, in some cases high-precision arithmetic is only needed in one or two places in the code
(such as in a summation loop), so that the total run time is not greatly increased.

3 Applications of high-precision arithmetic

3.1 High-precision solutions of ordinary differential equations

One central question of planetary theory is whether the solar system is stable over cosmological
time frames (many millions or billions of years). Planetary orbits are well known to exhibit
chaotic behavior. Indeed, as Isaac Newton once noted, “The orbit of any one planet depends on
the combined motions of all the planets, not to mention the actions of all these on each other.
To consider simultaneously all these causes of motion and to define these motions by exact laws
allowing of convenient calculation exceeds, unless I am mistaken, the forces of the entire human
intellect.” [47, p. 121].

 1e-008

 1e-007

 1e-006

 1e-005

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 20 40 60 80 100 120 140 160 180 200

di
st

an
ce

 b
et

w
ee

n
si

bl
in

gs

time T in millions of years

Chaotic orbit

WisHol,dt=8
WisHol,dt=4

NBI,dt=4

 1e-008

 1e-007

 1e-006

 1e-005

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 20 40 60 80 100 120 140 160 180 200

Chaotic orbit

Taylor (ext. prec.)
5e-8*exp(T/12)

 1e-008

 1e-007

 1e-006

 1e-005

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 20 40 60 80 100 120 140 160 180 200

di
st

an
ce

 b
et

w
ee

n
si

bl
in

gs

time T in millions of years

Non-chaotic orbit

WisHol,dt=8
WisHol,dt=4

NBI,dt=4

 1e-008

 1e-007

 1e-006

 1e-005

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 20 40 60 80 100 120 140 160 180 200

Non-chaotic orbit

Taylor (ext. prec.)
1e-8*T^1.5

Figure 1: Divergence between nearby trajectories, integrated with four different numerical integrators
(the Wisdom-Holman symplectic integrator with two stepsizes, the NBI’s 14th order Cowell-Sörmer
integrator and the Taylor method to check the results). Left: a chaotic trajectory with a Lyapunov
time of about 12 million years. Right: a trajectory showing no evidence of chaos over 200My. Both
trajectories are within observational uncertainty of the outer planetary positions. (Reproduced with
permission from [57])

Scientists have studied this question by performing very long-term simulations of planetary
motions, often using special-purpose computer systems [4]. These simulations typically do fairly
well for long periods, but then fail at certain key junctures, such as when two planets pass
fairly close to each other. Researchers have found that double-double or quad-double arithmetic
is required to avoid severe numerical inaccuracies, even if other techniques are employed to

6

reduce numerical error [63]. A team led by W. Hayes studied solar system orbits using various
numerical ordinary differential equation (ODE) integrators, checked to higher precision using a
Taylor series integrator, performed using 19-digit Intel extended precision [57] (see Figure 1).

High-precision arithmetic has also arisen in the study of dynamical systems, such as in the
study of the bifurcations and stability of periodic orbits. Runge-Kutta schemes have been widely
used for such calculations, but during the last few years the Taylor method, augmented with
high-precision arithmetic, has emerged as a preferred method [76].

10
−30

10
−20

10
−10

10
−1

10
0

10
1

C
PU

 ti
m

e

dop853
odex
TIDES

100 200 300 400 500
0

2

4

6

8

10

12

14

16

−Log
10

(Relative error)

C
PU

 ti
m

e

TIDES (variable precision)

Relative error

quadruple precision multiple precision

Figure 2: Left: Precision vs. CPU time diagram in quadruple precision for the numerical integration of

the unstable periodic orbit LR for the Lorenz model using a Runge-Kutta code (dop853), an extrapolation

code (odex) and a Taylor series method (TIDES). Right: Precision vs. CPU time diagram for the multiple-

precision numerical integration of an unstable periodic orbit for the Lorenz model using the TIDES code.

The Taylor method is as follows [21, 24, 39]. Consider the initial value problem ẏ = f(t, y).
The value of the solution at ti (that is, y(ti)) is approximated by yi from the n-th degree Taylor
series of y(t) at t = ti (the function f must be a smooth function). So, denoting hi = ti − ti−1,

y(t0) =: y0,

y(ti) ' yi−1 + f(ti−1,yi−1)hi + . . .+
1

n!

dn−1f(ti−1,yi−1)

dtn−1
hni =: yi.

The problem is thus reduced to the determination of the Taylor coefficients {1/(j+1)! djf/dtj}.
This may be done quite efficiently by means of the automatic differentiation (AD) techniques.
Note that the Taylor method has several good features (for details see [21, 22, 24]).

In the Figure 2 we present some comparisons on the Lorenz model [67] for the classical
Saltzman’s parameter values using the Taylor method (TIDES code) and the well established
codes dop853 (a Runge-Kutta code) and odex (an extrapolation code) developed by Hairer and
Wanner [53]. We observe that in quadruple precision the Taylor method is the fastest and,

7

as expected, the odex code is more efficient than the Runge-Kutta code (note that odex is a
variable order code, as TIDES, and so it is more adaptable than the fixed order method). In
double precision the most efficient code is the Runge-Kutta code, but for high precision the
Taylor series method is the only reliable method among the standard methods. Note that the
computer time for a high-precision numerical integration of one period (T = 1.55865) of the
LR unstable periodic orbit (in symbolic dynamics notation one loop around the left equilibrium
point, and one around the right one [80]) maintaining 500 digits is just around 16 seconds using
a normal desktop computer, a quite reasonable time.

−10 0 10 −20
0

200

5

10

15

20

25

30

35

40

45

y
x

z

 1 period - TIDES (16 digits)
 16 periods -TIDES (300 digits)

First point TIDES (16 digits)
First-Last point TIDES (300 digits)

Last point TIDES (16 digits)

Figure 3: Numerical integration of the L25R25 unstable periodic orbit for the Lorenz model during 16

time periods using the TIDES code with 300 digits and 1 time periods using double precision.

One may wonder whether such high accuracy is required in these kind of systems. To
illustrate this need, we show in Figure 3 the results of 16 time periods computing using the the
TIDES code with 300 digits and 1 time period using double precision for the numerical simulation
of the L25R25 unstable periodic orbit for the Lorenz model. Note that we lose more than 16
digits on each period (the period of the orbit is T = 33.890206423038 and the largest Lyapunov
exponent λ = 0.958, so exp(λT) ≈ 1.5324 · 1016), and therefore it is not possible to simulate
any period of this orbit in double precision. The double precision orbit is not periodic (see the
zoom) and it also loses the symmetry of the correct orbit. The TIDES (Taylor series Integrator for
Differential EquationS) used here [1, 27] is available from http://gme.unizar.es/software/tides

(or send email to tides@unizar.es or rbarrio@unizar.es).

8

3.2 High precision arithmetic in recurrences

Computations involving recurrences are often highly unstable [49]. A classical example of un-
stable recurrence is the evaluation of the Bessel function of first kind Ji(x) [3] by means of the
three-term recurrence

Jn+1(x) =
2n

x
Jn(x)− Jn−1(x). (3)

In this case, virtually all numerical significance is lost after just a few iterations, and, what’s
more, there is no way of using extended precision to improve the results. The reason of this
disastrous build-up of errors [49] is due to the fact that the Bessel function of the first kind, but
also the Bessel function of the second kind Yi(x) are solutions of the recurrence relation (3) and
Ji(x)/Yi(x) ∼ (x/2)2i/(2(i!)2) as i→∞, and so Ji(x) is a (highly) minimal solution at infinity.
This implies that any error is extremely amplified and the numerical solution goes quite fast to
the dominant one. In this case we have to look for another completely different algorithm.

In other circumstances the recurrence is more stable, and high-precision arithmetic can
produce useful results. One example here is the evaluation of coefficients of orthogonal poly-
nomials. Such expansions have application in almost all mathematical and physical disciplines,
including approximation theory, spectral methods, representation of potentials and others. In
the last few years, researchers have studied different extensions, like orthogonal polynomials in
Sobolev spaces [43]. One particular case of interest is when measures related to derivatives are
purely atomic, with a finite number of mass points. That is, given a set of K evaluation points
{c1, . . . , cK} (the support of the discrete measure), a set of indexes that indicate the maximum
order of derivatives in each evaluation point {r1, . . . , rK}, and a set of non-negative coefficients
{λji | j = 1, . . . ,K; i = 0, . . . , rj}, we define the Sobolev inner product

〈p, q〉W =

∫
R
p(x) q(x) dµ0(x) +

K∑
j=1

rj∑
i=0

λji p
(i)(cj) q

(i)(cj), λji ≥ 0. (4)

We are interested in evaluating a finite series of orthogonal polynomials with respect to a discrete
Sobolev inner product. Some algorithms for such calculations were proposed in [26, 28], but the
resulting algorithms are slightly unstable, and so, a combination of double and multiple precision
is required. This may be done in such a way that the theoretical error bounds permit us to use
high-precision just on the unstable cases, and so the computational complexity does not grows
significantly.

In Figure 4 we show the behavior of some theoretical error bounds [28]: a backward error
bound, the running error bound and the relative error in a multiple-precision evaluation of a
Sobolev series. Note that we present relative error bounds and relative rounding errors, that is,
for q(x) 6≈ 0 we divide by |q(x)|. We have up to degree 50 of the function f(x) = (x+1)2 sin(4x)
in Chebyshev-Sobolev orthogonal polynomials, considering one mass point c = 1 up to first
derivative in the discrete part of the inner product. In the figures on the left we use double
precision (53 bits on the mantissa) and on the right we use multiple precision (96 bits on the
mantissa for x < −0.5 (on the left of the vertical line) and 64 for x > −0.5). The turning
point x = −0.5 is the point where the relative running error in double precision is greater than
10−10. These results make it clear that the combination of rounding error bounds (in this case

9

-2 -1 0 1 2

10-20

10-10

100

1010

-2 -1 0 1 2

10-20

10-10

100

1010

10-30 10-30

BE

RE

Error

BE

RE

Error

double precision multiple precision

-0.5
point x point x

Figure 4: Behavior of the theoretical error bounds (BE a backward error bound and RE for the running

error bound) and the relative error in the double- and multiple-precision evaluation of the Chebyshev-

Sobolev approximation of degree 50 of the function f(x) = (x + 1)2 sin(4x), where the discrete Sobolev

measure have one mass point c = 1 up to 1st derivative in the discrete part of the inner product. In the

figure on the left we use double precision and on the right multiple-precision (on the left of the vertical

line we use 96 bits on the mantissa and 64 on the right part). (Reproduced with permission from [28].)

the running error bound) and multiple-precision libraries permits us to evaluate Sobolev series
accurately.

Another situation where high precision is useful is in evaluating ill-conditioned polynomials.
For instance, numerical errors are encountered when evaluating the polynomial p(x) = (x −
0.75)7(x− 1)10 close to one of its multiple roots. One solution is to find an optimal polynomial
basis, although this may not be practical in many real-world situations. Another option is to
use a good algorithm (e.g., Horner’s algorithm for power series, the de-Calteljau’s algorithm
for the Bernstein basis and Clenshaw’s algorithm for classical orthogonal polynomial basis),
implemented with high-precision arithmetic. A third option, which is quite attractive when
one does not want to deal with high-precision software, is to employ “compensated” algorithms
that recently emerged in stability analysis [68, 72]. This approach permits one to use double
precision arithmetic, yet still maintain the quality of the numerical evaluations with a relative
error on the order of the rounding unit u, plus the conditioning of the problem times the square
of the rounding unit. For instance, recently Graillat et al. [51] developed a “compensated”
version of the Horner’s algorithm. Also, H. Jiang et al. [60] developed a “compensated” version
of Clenshaw’s algorithm [38] to evaluate a finite series of Chebyshev orthogonal polynomials
p(x) =

∑n
j=0 ajTj(x). For this compensated algorithm (and all the other ones) it is possible to

prove the following relative error bounds:

Theorem 2 [60] Let p(x) =
∑n

i=0 aiTi(x) be a polynomial in Chebyshev form. If the condition
number for polynomial evaluation of p(x) at entry x is defined by

cond(p, x) =
p̃(|x|)
|p(x)|

=

∑n
j=0 |aj |T̃j(|x|)
|
∑n

j=0 ajTj(x)|
, (5)

10

with T̃j(|x|) the absolute polynomials associated with Tj(x) [60], then the relative forward error
bounds of the Clenshaw algorithm and compensated Clenshaw algorithm are such that

|Clenshaw(p, x)− p(x)|
|p(x)|

≤ O(u) · cond(p, x), (6)

|CompClenshaw(p, x)− p(x)|
|p(x)|

≤ u+O(u2) · cond(p, x). (7)

0.749 0.75 0.751
−2

−1

0

1

2
x 10−12

0.749 0.75 0.751
−2

0

2
x 10−26

Clenshaw CompClenshaw

point x point x

Figure 5: Evaluation of p(x) = (x− 0.75)7(x− 1)10 in the neighborhood of the multiple root x = 0.75,

using Clenshaw (left) and Compensated Clenshaw (right). (Reproduced with permission from [60]).

This theorem shows one particularly nice feature of compensated algorithms, namely that
the effect of the conditioning of the problem is delayed up to second order in the rounding unit
u, yielding highly accurate (in relative error) computations.

Figure 5 presents the evaluation of the polynomial p(x) = (x−0.75)7(x−1)10 for 400 equally
spaced points in the interval [0.74855, 0.75145]. It is clear that the compensated Clenshaw’s
algorithm gives a much smoother solution than the original Clenshaw’s algorithm. Moreover,
the relative error is always (except when p(x) is very close to zero) of the order of the rounding
unit u. This is often a crucial consideration in algorithms for locating zeros of polynomials in
floating point arithmetic, because oscillations like the ones presented on the left figure can make
impossible to obtain accurate results.

While compensated algorithms are often quite effective, they are not suitable for all sit-
uations, and so the use of high-precision software such as the QD library [59] is sometimes
required.

3.3 High precision arithmetic in dynamical systems

In the words of Henri Poincaré, periodic orbits form the “skeleton” of a dynamical system and
provide much useful information. Therefore, the search for periodic orbits is a quite old problem
and numerous numerical and analytical methods have been designed for them. Here we mention

11

just two methods that have been used with high-precision in the literature: the Lindstedt-
Poincaré technique [79] and one of the most simple and powerful method to find periodic orbits,
namely the systematic search method [23], where one takes advantage of symmetries of the
system to find symmetric periodic orbits [64].

Theorem 3 Let o(x) be an orbit of a flow of an autonomous vector field dx/dt = f(x) with
a reversal symmetry S (thus dS(x)/dt = −f(S(x))). Then, an orbit o(x) intersects Fix(S) :=
{x |S(x) = x } in precisely two points if and only if the orbit is periodic (and not a fixed point)
and symmetric with respect to S.

−5 −4 −3 −2 −1 0 1 2
−8

−7

−6

−5

−4

coordinate x

Ja
co

bi
 c

on
st

an
t C

−5 −4 −3 −2 −1 0 1 2
−8

−7

−6

−5

−4

coordinate x

Ja
co

bi
 c

on
st

an
t C

limit
m=1
m=2
m=3
m=4

B

A

Figure 6: Symmetric periodic orbits (m denotes the multiplicity of the periodic orbit) in the most

chaotic zone of the 7 + 2 Ring problem using double (A) and quadruple (B) precision. (Reproduced with

permission from [23]).

The above results were already known by Birkhoff, DeVogelaere and Strömgren (among
others) and were used to find symmetric periodic orbits.

The usage of high-precision numerical integrators in the determination of periodic orbits is
required in the search of highly unstable periodic orbits. For instance, in Figure 6 we show
the computed symmetric periodic orbit for the 7 + 2 Ring problem using double and quadruple
precision [25]. The (n + 2)-body Ring problem [25] describes the motion of an infinitesimal

12

particle attracted by the gravitational field of n+1 primary bodies, n in the vertices of a regular
polygon that is rotating on its own plane about the center with a constant angular velocity.
Each point on the figures corresponds to the initial conditions of one symmetric periodic orbit,
and the grey area corresponds to regions of forbidden motion (delimited by the limit curve).
Note that in order to avoid “false” initial conditions it is useful to check if the initial conditions
generate a periodic orbit up to a given tolerance level. But in the case of highly unstable periodic
orbits we may lose several digits in each period, so that double precision is not enough in many
unstable cases, resulting in gaps in the figure.

Figure 7: Fractal property of the Lorenz attractor. On the first plot, the intersection of an arbitrary

trajectory on the Lorenz attractor with the section z = 27. The plot shows a rectangle in the x−y plane.

All later plots zoom in on a tiny region (too small to be seen by the unaided eye) at the center of the red

rectangle of the preceding plot to show that what appears to be a line is in fact not a line. (Reproduced

with permission from [81]).

The Lindstedt-Poincaré method [79] for computing periodic orbits is based on the Lindstedt-
Poincaré technique of perturbation theory, Newton’s method for solving nonlinear systems and
Fourier interpolation. D. Viswanath [80] uses this algorithm in combination with high-precision
libraries to obtain periodic orbits for the Lorenz model at the classical Saltzman’s parame-
ter values. This procedure permits one to compute, to high accuracy (more than 100 digits
of precision), highly unstable periodic orbits (for instance the orbit with symbolic dynamics
LRL2R2 · · ·L15R15 has a leading characteristic multiplier 3.06× 1059, which means that we can
expect that at each period we lose around 59 digits of precision). For these reasons, high-
precision arithmetic plays a fundamental role in the study of the fractal properties of the Lorenz
attractor (see Figure 7) and in a consistent formal development of complex singularities of the
Lorenz system using psi series [80, 81].

13

0 200 400 600 800 1000
10

−2

10
0

10
2

10
4

−log
10

|error|

C
PU

 ti
m

e

Lorenz model

1 2 3 4 5 6 7 8 910
0

10
1

10
2

10
3

number of iterations

−
lo

g 10
|E

rr
or

|

Lorenz model

Quadratic convergence

LR
LLRLR

LR
LLRLR

O(log (precision)4)10

Figure 8: Computational relative error vs. CPU time and number of iterations in a 1000-digit computa-

tion of the periodic orbits LR and LLRLR of the Lorenz model. (Reproduced with permission from [2]).

A simpler option to compute high-precision periodic orbits has been proposed recently in
[2], where the use of the Taylor series method permits to apply modified versions of the Newton
method to obtain periodic orbits with more than 1000 precision digits. Figure 8 presents, as an
example, the computational relative error vs. CPU time and number of iterations in a 1000-digit
computation of the periodic orbits LR and LLRLR in the Lorenz model.

Another area of dynamical systems that often requires high precision is the study of split-
ting of separatrices in area preserving maps [50, 54]. Numerical difficulties arise because this
phenomena can exhibit exponentially small splitting. One of the most common examples is the
standard map defined by (x, y) 7→ (x̂, ŷ), where

ŷ = y + ε sinx, x̂ = x+ ŷ,

and ε is a small positive constant. This map can be obtained, for example, by a simple time
discretization (a symplectic Euler of discretization step

√
ε) of the pendulum equation ẋ = y, ẏ =

sinx [54]. The phase space structure of both systems, the continuous case and the map, are
very different (except for small values of ε). In fact, the pendulum problem is an integrable
system and its phase space is very regular (see Figure 9). There is a unique separatrix that
connect the hyperbolic fixed point at 0 and at 2π, that is, the unstable manifold at 0 coincide
with the stable manifold at 2π. When we see the map, the two manifolds do not coincide and so
the separatrix splits (splitting of separatrices). Now we have transverse intersection points that
gives homoclinic points and that imply the existence of complex dynamics or chaotic motion.
Therefore the study of this phenomena of splitting of separatrices gives a deep information about
the system, and so related with this, it is important to study the angle between the stable and
the unstable separatrices at the intersection points. If the angle does not vanish we may affirm
that this phenomena occurs. In Figure 9 we illustrate also the phenomena with two other maps
(the quadratic map and the asymmetric cubic map [50]).

14

1 2 3 4 5 6

1

2

3

0
0

α
standard map

(ε=1)

0

3
pendulum

quadratic map

asymmetric cubic map

(ε=1)

x

y

y

Figure 9: Left: Phase-space for the pendulum equations with the separatrix in red and the discrete

version (standard map) for ε = 1 with the stable and the unstable separatrices. Right: stable and the

unstable separatrices for the quadratic map and the asymmetric cubic map. (Partially reproduced with

permission from [50].)

An asymptotic formula for the angle between the stable and the unstable separatrices for
the standard map at the primary homoclinic point was given by Lazutkin [66]:

α =
π

ε
e
− π

2
√
ε
(
1118.8277059409 . . .+O(

√
ε)
)
.

As a result, the separatrices are transversal, but the angle between them is exponentially small
compared to ε. This leads to severe problems in numerical simulations. Gelfreich and Simó [50]
use a homoclinic invariant ω that gives the area of a parallelogram defined by two vectors tangent
to the stable and the unstable manifolds at the homoclinic point. While ω in the standard map
can be represented by an asymptotic series, one question is what happens when we use several
generalizations of the standard map. In [50], the authors employed high-precision computation
of the homoclinic invariant and consecutive extraction of coefficients of an asymptotic expansion,
in order to obtain a numerical evidence that various different types of asymptotic expansions
arise in this class of problems. These results are unachievable using standard double precision; in
some numerical simulations 1000-digit precision was required. In the literature there are other
numerous examples of high-precision computation of this phenomena of exponentially small
splitting of separatrices.

15

3.4 High precision arithmetic in experimental mathematics

In this section we give a selection of five less directly applied applications:
Very high-precision computations (typically 100 to several thousand digits) have proven to

be an essential tool in “experimental mathematics” [30, 7]. One of the key techniques used
here is the PSLQ integer relation detection algorithm [14], which, given an n-long vector (xi)
of real numbers (presented as a vector of high-precision values), attempts to recover the integer
coefficients (ai), not all zero, such that

a1x1 + a2x2 + · · ·+ anxn = 0 (8)

(to available precision), or else determines that there are no such integers (ai) of a given size.
Perhaps the best-known application of PSLQ in experimental mathematics is the 1996 computer-
based discovery of what is now known as the “BBP” formula for π:

π =
∞∑
k=0

1

16k

(
4

8k + 1
− 2

8k + 4
− 1

8k + 5
− 1

8k + 6

)
. (9)

This formula has the remarkable property that it permits one to calculate binary (or hexadec-
imal) digits beginning at the n-th digit, without needing to calculate any of the first n − 1
digits, using a simple scheme that requires very little memory and no multiple-precision arith-
metic software [6], [30, pp. 135–143]. Since 1996, numerous other formulas of this type have
been found using PSLQ and then subsequently proven [5]. For example, a binary formula is
known for Catalan’s constant G =

∑
n≥0(−1)n/(2n+ 1)2, and both binary and ternary (base-3)

formulas are known for π2 [13].
In 2010, Tse Wo Zse, a researcher with Yahoo! Cloud Computing, used a variant of this

formula to compute a string of hexadecimal digits of π beginning at the 500 trillionth digit (cor-
responding to the two quadrillionth binary digit) [78]. In 2011, IBM researchers used BBP-type
formulas to calculate base-64 digits of π2; equation, base-729 digits of π2, and base-4096 digits
of G, in each case beginning at the ten trillionth position and validated by a second indepen-
dent computation [13]. These computations were performed on IBM’s benchmark machine in
Rochester Minnesota.

In an unexpected turn of events, it has been found that these computer-discovered formulas
have implications for the age-old question of whether (and why) the digits of certain well-
known math constants are statistically random. In particular, one of the present researchers
and Richard Crandall found that the question of whether constants such as π and log 2 are
2-normal (i.e., every string of m binary digits appears, in the limit, with frequency 2−m) reduces
to a conjecture about the behavior of a certain explicit pseudorandom number generator that is
related to the respective BBP-type formula for that constant [15], [30, pp. 163–178]. This same
line of investigation has led to a formal proof of normality for an uncountably infinite class of
explicit real numbers [16], the simplest instance of which is

α2,3 =

∞∑
n=1

1

3n23n
,

16

which is provably 2-normal (and provably not 6-normal) [9]. The normality of π and some
related constants is analyzed statistically and graphically in [10]. In particular, very strong
evidence for the normality of π based on analysis of nearly 16 trillion bits is presented. An
illustration is provided in Figure 10, while ten billion digits may be visually explored at http:

//gigapan.org/gigapans/99214.

Figure 10: A walk on the first billion base 4 digits of Pi. The digits 0,1,2,3 are coded to up, down, left

or right respectively.

Very high-precision computations, combined with the PSLQ algorithm, have been remark-
ably effective in recognizing (in terms of analytic formulas) certain classes of definite integrals
that arise in mathematical physics settings. In one study, the tanh-sinh quadrature scheme
[18, 77], implemented using the ARPREC software [19], was employed to study the following
classes of integrals [11, 12]. Here, the Dn integrals arise in the Ising theory of mathematical
physics, and the Cn have tight connections to quantum field theory:

Cn =
4

n!

∫ ∞
0
· · ·
∫ ∞
0

1(∑n
j=1(uj + 1/uj)

)2 du1
u1
· · · dun

un

Dn =
4

n!

∫ ∞
0
· · ·
∫ ∞
0

∏
i<j

(
ui−uj
ui+uj

)2
(∑n

j=1(uj + 1/uj)
)2 du1

u1
· · · dun

un

En = 2

∫ 1

0
· · ·
∫ 1

0

 ∏
1≤j<k≤n

uk − uj
uk + uj

2

dt2 dt3 · · · dtn,

where (in the last line) uk =
∏k
i=1 ti.

17

Evaluating these n-dimensional integrals to high precision presents a daunting computational
challenge, but in the first case we were able to show that the Cn integrals can be written as
one-dimensional integrals:

Cn =
2n

n!

∫ ∞
0

pKn
0 (p) dp,

where K0 is the modified Bessel function [3]. After computing Cn to 1000-digit accuracy for
various n, we were able to identify the first few instances of Cn in terms of well-known constants,
e.g., C4 = 7ζ(3)/12, where ζ denotes the Riemann zeta function. When we computed Cn for
fairly large n, for instance

C1024 = 0.63047350337438679612204019271087890435458707871273234 . . . ,

we found that these values rather quickly approached a limit. By using the new edition of the
Inverse Symbolic Calculator, available at http://carma-lx1.newcastle.edu.au:8087, this numer-
ical value can be identified as

lim
n→∞

Cn = 2e−2γ ,

where γ is Euler’s constant, which we were subsequently able to prove [11]. Some results were
also obtained for the Dn and En, although these computations were considerably more difficult.

A more recent study considered, for complex s, the n-dimensional ramble integrals [8]

Wn(s) =

∫
[0,1]n

∣∣∣∣∣
n∑
k=1

e2πxki

∣∣∣∣∣
s

dx, (10)

which occur in the theory of uniform random walk integrals in the plane, where at each step
a unit-step is taken in a random direction. Integrals such as (10) are the s-th moment of the
distance to the origin after n steps. It is shown in [35] that when s = 0 the first derivatives of
these integrals can be written as

W ′n(0) = log(2)− γ −
∫ 1

0
(Jn0 (x)− 1)

dx

x
−
∫ ∞
1

Jn0 (x)
dx

x
(11)

= log(2)− γ − n
∫ ∞
0

log(x)Jn−10 (x)J1(x)dx, (12)

where Jn(x) denotes the Bessel function of the first kind.
Due to the oscillatory nature of these integrals, they present substantial challenges for high-

precision numerical integration. One approach that we have found effective for these integrals
is known as the Sidi mW extrapolation algorithm, as described in a 1994 paper by Lucas and
Stone [65] (which in turn is based on two earlier papers by Sidi [73, 74]), combined with tanh-
sinh quadrature and Gaussian quadrature [8]. Using this scheme, we were able to evaluate
these integrals to 1000-digit accuracy, at least when n is odd, using the ARPREC software [19].
This scheme is not very effective when n is even, but in this case we were able to compute

18

modestly high precision results (50–100 digits) by employing asymptotic formulas for the Bessel
function. In response to this ineffectiveness, Sidi [75] has made an analysis and proposed a more
sophisticated scheme which should redress the situation.

These results were used to verify several other studies. For instance, our result when n = 6
matched to 80-digit precision a computation based on a conjecture due to Villegas [36]. Similarly,
for n = 4 our 80-digit result agrees to full precision with the closed form given in [35].

Our calculations also confirmed, to 600-digit precision, the following amazing conjecture
based on one of Villegas, [36]:

W
′
5(0)

?
=

(
15

4π2

)5/2 ∫ ∞
0

{
η3(e−3t)η3(e−5t) + η3(e−t)η3(e−15t)

}
t3 dt, (13)

where

η(q) = q1/24
∏
n≥1

(1− qn) = q1/24
∞∑

n=−∞
(−1)nqn(3n+1)/2. (14)

While the intuitive genesis of equation (13) lies in algebraic K-theory, it is fair to say that there
is no inkling of how to prove it.

The research on ramble integrals also led us to examine moments of elliptic integral functions
of the form [8]:

I(n0, n1, n2, n3, n4) =

∫ 1

0
xn0Kn1(x)K ′n2(x)En3(x)E′n4(x)dx, (15)

where the elliptic functions K,E and their complementary versions are given by:

K(x) =

∫ 1

0

dt√
(1− t2)(1− x2t2)

K ′(x) = K(
√

1− x2)

E(x) =

∫ 1

0

√
1− x2t2√
1− t2

dt E′(x) = E(
√

1− x2). (16)

To better understand these product integrals, we computed a large number of them (4389
individual integrals in total) to extreme precision — 1500 to 3000-digit precision — using the
ARPREC software. We then discovered, using PSLQ, thousands of intriguing relations between

19

these numerical values, including the following limited selection [8]:

81

∫ 1

0
x3K2(x)E(x)dx

?
= −6

∫ 1

0
K3(x)dx− 24

∫ 1

0
x2K3(x)dx

+51

∫ 1

0
x3K3(x)dx+ 32

∫ 1

0
x4K3(x)dx (17)

−243

∫ 1

0
x3K(x)E(x)K ′(x)dx

?
= −59

∫ 1

0
K3(x)dx+ 468

∫ 1

0
x2K3(x)dx

+156

∫ 1

0
x3K3(x)dx− 624

∫ 1

0
x4K3(x)dx− 135

∫ 1

0
xK(x)E(x)K ′(x)dx (18)

−20736

∫ 1

0
x4E2(x)K ′(x)dx

?
= 3901

∫ 1

0
K3(x)dx− 3852

∫ 1

0
x2K3(x)dx

−1284

∫ 1

0
x3K3(x)dx+ 5136

∫
x4K3(x)dx− 2592

∫ 1

0
x2K2(x)K ′(x)dx

−972

∫ 1

0
K(x)E(x)K ′(x)dx− 8316

∫ 1

0
xK(x)E(x)K ′(x)dx. (19)

These identities led to a detailed study by James Wan [82], who has been able to prove many
but by no means all of them.

4 Other brief examples

We briefly summarize here a number of other applications of high-precision arithmetic that have
been reported to us. For additional details, please see the listed references.

4.1 Supernova simulations

Recently Edward Baron, Peter Hauschildt, and Peter Nugent used the QD package [59] to
solve for the non-local thermodynamic equilibrium populations of iron and other atoms in the
atmospheres of supernovae and other astrophysical objects [20, 55]. Iron, for example, may exist
as Fe II in the outer parts of the atmosphere, but in the inner parts Fe IV or Fe V could be
dominant. Introducing artificial cutoffs leads to numerical glitches, so it is necessary to solve
for all of these populations simultaneously. Since the relative population of any state from the
dominant stage is proportional to the exponential of the ionization energy, the dynamic range of
these numerical values can be large. Among various potential solutions, these authors found that
using double-double (or, in some cases, quad-double) arithmetic to be the most straightforward
and effective.

4.2 Climate modeling

It is well-known that climate simulations are fundamentally chaotic — if microscopic changes are
made to the present state, within a certain period of simulated time the future state is completely

20

different. Indeed, ensembles of these calculations are required to obtain statistical confidence
in global climate trends produced from such calculations. As a result, climate modeling codes
quickly diverge from any “baseline” calculation, even if only the number of processors used to
run the code is changed. For this reason, it is often difficult for researchers to compare results, or
even to determine whether they have correctly deployed their code on a given system. Recently
Helen He and Chris Ding found that almost all of the numerical variation in an atmospheric code
occurred in a long inner product loop in the data assimilation step and in a similar operation
in a large conjugate gradient calculation. He and Ding found that employing double-double
arithmetic for these loops dramatically reduced the numerical variability of the entire application,
permitting computer runs to be compared for much longer run times than before [58].

4.3 Coulomb n-body atomic system simulations

Numerous computations have been performed using high-precision arithmetic to study atomic-
level Coulomb systems. For example, Alexei Frolov of Queen’s University in Ontario, Canada has
used high-precision software to solve the generalized eigenvalue problem (Ĥ −EŜ)C = 0, where
the matrices Ĥ and Ŝ are large (typically 5, 000×5, 000 in size) and very nearly degenerate. Until
recently, progress in this area was severely hampered by the numerical difficulties induced by
these nearly degenerate matrices. Frolov found that by employing 120-digit arithmetic, “we can
consider and solve the bound state few-body problems which have been beyond our imagination
even four years ago” [17, 48].

4.4 Studies of the fine structure constant of physics

In the past few years, significant progress has been achieved in using high-precision arithmetic to
obtain highly accurate solutions to the Schrodinger equation for the lithium atom. In particular,
the non-relativistic ground state energy has been calculated to an accuracy of a few parts in a
trillion, a factor of 1500 improvement over the best previous results. With these highly accurate
wave functions, researchers have been able to test the relativistic and QED effects at the 50
parts per million (ppm) level and also at the one ppm level [83]. Along this line, a number
of properties of lithium and lithium-like ions have also been calculated, including the oscillator
strengths for certain resonant transitions, isotope shifts in some states, dispersion coefficients
and Casimir-Polder effects between two lithium atoms. When some additional computations are
completed, the fine structure constant may be obtained to an accuracy of 16 parts per billion
[84].

4.5 Scattering amplitudes of quarks, gluons and bosons

An international team of physicists working on the Large Hadron Collider (LHC) is computing
scattering amplitudes involving quarks, gluons and gauge vector bosons, in order to predict what
results could be expected on the LHC. By default, these computations are performed using con-
ventional double precision (64-bit IEEE) arithmetic. Then if a particular phase space point is
deemed numerically unstable, it is recomputed with double-double precision. These researchers

21

expect that further optimization of the procedure for identifying unstable points may be re-
quired to arrive at an optimal compromise between numerical accuracy and performance. Their
objective is to design a procedure where the number of digits in the higher precision calculation
is dynamically set according to the instability of the point [46]. Three related applications of
high-precision arithmetic are given in [29, 69, 40].

4.6 Detecting Strange Nonchaotic Attractors

In the study of dynamics of dissipative systems the detection of the attractors is quite important,
because they are the visible invariant sets of the dynamics of the problem. An attractor is defined
as strange if it is not a piecewise smooth manifold and chaotic if any orbit on it exhibits sensitive
dependence on initial conditions. All the first examples of strange attractors in the literature
where strange chaotic attractors, but soon some strange nonchaotic attractors (SNAs) were
identified [52]. Several authors suggested that in the transition to chaos in quasiperiodically
forced dissipative systems, in particular in the so called fractalization route in which a smooth
torus seems to fractalize, strange nonchaotic attractors appear. In [56], Haro and Simó showed
that in truth some of these attractors are nonstrange. These authors found that multiprecision
arithmetic with more than 30 digits was needed to reliably study this behavior at very small
scales. Therefore, in this case (and in many cases) the SNAs is not produced via the fractalization
route, but what is evident is that this phenomena requires a very high-precision numerical
simulation to give a correct information of what really happens on the systems.

5 Conclusion

For most scientific and engineering computations, either IEEE 32-bit or (more often) 64-bit
floating-point arithmetic provides sufficient accuracy. But for a rapidly expanding body of
applications, even 64-bit floating-point arithmetic is not sufficient. Typical situations that may
require higher-precision arithmetic include:

1. Ill-conditioned linear systems.

2. Large summations.

3. Long-time simulations.

4. Large-scale simulations.

5. Resolving small-scale phenomena.

6. “Experimental mathematics” computations.

Performing such calculations with high-precision arithmetic once was a major challenge, but
such tasks have been greatly facilitated by recently developed software packages that include
high-level language translation modules to minimize the conversion effort. Run times often
increase substantially when using high-precision arithmetic, but in many cases it suffices to

22

convert only a handful of key routines, and other portions of the computation can be done with
conventional arithmetic. Moreover, thanks to the sophistication of modern computer algebra
packages, it is often possible to do a portion of the high-precision component symbolically —
thereby improving both accuracy and run times.

In this paper, we have described a number of specific applications where these situations arise,
and where high-precision arithmetic is required. These include: (a) solution of certain types of
ordinary differential equations, (b) evaluation of recurrences, (d) detection of exponentially small
phenomena in dynamical systems, (d) computer-based discovery of new mathematical relations
(such as the “BBP” formula for π), (e) supernova simulations, (f) climate modeling, (g) Coulomb
n-body atomic system simulations, and others.

It is worth noting that all of these examples have arisen just in the past 10–15 years. Thus,
we may be witnessing the birth of a new era of scientific computing, in which the numerical
precision required for a computation is as important to the program design as are the algorithms
and data structures.

We conclude that high-precision arithmetic facilities are now an indispensable component of
a modern large-scale scientific computing environment. We hope that our survey and analysis
of these computations will be useful to help further develop these facilities into truly usable and
easy-to-use computational tools, and to identify additional classes of scientific computations
where these tools are useful.

References

[1] A. Abad, R. Barrio, F. Blesa and M. Rodriguez, “TIDES: a Taylor series Integrator for
Differential EquationS,” ACM Trans. Math. Software, to appear (2012). Software
available online at http:gme.unizar.es/software/tides.

[2] Alberto Abad, Roberto Barrio, and Angeles Dena, “Computing periodic orbits with
arbitrary precision,” Phys. Rev. E, vol. 84 (2011), 016701.

[3] M. Abramowitz and I. A. Stegun, ed., Handbook of Mathematical Functions, Dover, New
York, 1972.

[4] J. Applegate, M. Douglas, Y. Gursel, G. J. Sussman and J. Wisdom, “The outer solar
system for 200 Million years,” Astronomical Journal, vol. 92 (1986), 176–194.

[5] D. H. Bailey, “A compendium of BBP-type formulas,” Apr. 2011, available at
http://crd-legacy.lbl.gov/~dhbailey/dhbpapers/bbp-formulas.pdf. An interactive
database is online at http://bbp.carma.newcastle.edu.au.

[6] D. H. Bailey, P. B. Borwein, and S. Plouffe, “On the rapid computation of various
polylogarithmic constants,” Math. of Computation, vol. 66 (Apr 1997), 903–913.

[7] D. H. Bailey and J. M. Borwein, “Experimental mathematics: Examples, methods and
implications,” Notices of the AMS, vol. 52 (May 2005), 502-514.

23

[8] D. H. Bailey and J. M. Borwein, “Hand-to-hand combat with thousand-digit integrals,”
Journal of Computational Science, to appear,
http://crd-legacy.lbl.gov/~dhbailey/dhbpapers/combat.pdf.

[9] D. H. Bailey and J. M. Borwein, “Nonnormality of Stoneham constants,” 8 Dec 2011,
available at http://crd-legacy.lbl.gov/~dhbailey/dhbpapers/nonnormality.pdf.

[10] D. H. Bailey, J.M. Borwein, C. S. Calude, M. J. Dinneen, M. Dumitrescu, and A. Yee,
“An empirical approach to the normality of pi.” Experimental Mathematics. Accepted
February 2012.

[11] D. H. Bailey, J. M. Borwein and R. E. Crandall, “Integrals of the Ising class,” J. Physics
A: Math. and Gen., vol. 39 (2006), 12271–12302.

[12] D. H. Bailey, D. Borwein, J. M. Borwein and R. Crandall, “Hypergeometric forms for
Ising-class integrals,” Exp. Mathematics, vol. 16 (2007), 257–276.

[13] D. H. Bailey, J. M. Borwein, A. Mattingly and G. Wightwick, “The computation of
previously inaccessible digits of π2 and Catalans constant,” Notices of the AMS, to
appear, 2011, http://crd-legacy.lbl.gov/~dhbailey/dhbpapers/bbp-bluegene.pdf.

[14] D. H. Bailey and D. Broadhurst, “Parallel integer relation detection: Techniques and
applications,” Math. of Computation, vol. 70 (2000), 1719–1736.

[15] D. H. Bailey and R. E. Crandall, “On the random character of fundamental constant
expansions,” Exp. Mathematics, vol. 10 (2001), 175–190.

[16] D. H. Bailey and R. E. Crandall, “Random generators and normal numbers,” Exp.
Mathematics, vol. 11 (2004), 527–546.

[17] D. H. Bailey and A. M. Frolov, “Universal variational expansion for high-precision
bound-state calculations in three-body systems. Applications to weakly-bound, adiabatic
and two-shell cluster systems,” J. Physics B, vol. 35 (2002), 42870–4298.

[18] D. H. Bailey, X. S. Li and K. Jeyabalan, “A comparison of three high-precision
quadrature schemes,” Exp. Mathematics, vol. 14 (2005), 317–329.

[19] D. H. Bailey, X. S. Li and B. Thompson, “ARPREC: An arbitrary precision computation
package,” Sep 2002, http://crd.lbl.gov/~dhbailey/dhbpapers/arprec.pdf.

[20] E. Baron and P. Nugent, personal communication, Nov. 2004.

[21] R. Barrio, “Performance of the Taylor series method for ODEs/DAEs,” Appl. Math.
Comput., vol. 163 (2005), 525–545.

[22] R. Barrio, “Sensitivity analysis of ODEs/DAEs using the Taylor series method,” SIAM
Journal on Scientific Computing, vol. 27 (2006), 1929–1947.

24

[23] R. Barrio and F. Blesa, “Systematic search of symmetric periodic orbits in 2DOF
Hamiltonian systems,” Chaos, Solitons and Fractals, vol. 41 (2009), 560–582.

[24] R. Barrio, F. Blesa, M. Lara, “VSVO formulation of the Taylor method for the numerical
solution of ODEs,” Comput. Math. Appl., vol. 50 (2005), 93–111.

[25] R. Barrio, F. Blesa and S. Serrano, “Qualitative analysis of the (n+ 1)-body ring
problem,” Chaos Solitons Fractals, vol. 36 (2008), 1067–1088.

[26] R. Barrio, B. Melendo and S. Serrano, “Generation and evaluation of orthogonal
polynomials in discrete Sobolev spaces I. Algorithms,” J. Comput. Appl. Math., vol. 181
(2005), 280–298.

[27] R. Barrio, M. Rodŕıguez, A. Abad, and F. Blesa, “Breaking the limits: the Taylor series
method,” Applied Mathematics and Computation, vol. 217 (2011), 7940–7954

[28] R. Barrio and S. Serrano, “Generation and evaluation of orthogonal polynomials in
discrete Sobolev spaces II. Numerical stability,” J. Comput. Appl. Math., vol. 181 (2005),
299–320.

[29] C. F. Berger, Z. Bern, L. J. Dixon, F. Febres Cordero, D. Forde, H. Ita, D. A. Kosower
and D. Maitre, “An automated implementation of on-shell methods for one-loop
amplitudes,” Phys. Rev. D, vol. 78 (2008), 036003, http://arxiv.org/abs/0803.4180.

[30] J. M. Borwein and D. H. Bailey, Mathematics by Experiment: Plausible Reasoning in the
21st Century, A.K. Peters, Natick, MA, second edition, 2008.

[31] J. M. Borwein and D. H. Bailey, Experimentation in Mathematics: Computational Paths
to Discovery, A.K. Peters, Natick, MA, 2004.

[32] J. M. Borwein and P. B. Borwein, “The arithmetic-geometric mean and the fast
computation of elementary functions,” SIAM Review, vol. 26 (1984), 351–366.

[33] J. M. Borwein and P. B. Borwein, Pi and the AGM: A Study in Analytic Number Theory
and Computational Complexity, Canadian Mathematical Society Monographs,
Wiley-Interscience, New York, 1987, reprinted 1998.

[34] J. M. Borwein, P. B. Borwein, and D. H. Bailey, “Ramanujan, modular equations and pi
or how to compute a billion digits of pi,” American Mathematical Monthly, vol. 96 (1989),
201–219; reprinted in Organic Mathematics Proceedings,
http://www.cecm.sfu.ca/organics, April 12, 1996, with print version: CMS/AMS
Conference Proceedings, vol. 20 (1997), ISSN: 0731–1036.

[35] J. M. Borwein, A. Straub, and J. Wan, “Three-step and four-step random walk integrals,”
Experimental Mathematics, to appear, Sept 2010,
http://www.carma.newcastle.edu.au/~jb616/walks2.pdf.

25

[36] Jonathan M. Borwein, Armin Straub, James Wan and Wadim Zudilin, with an Appendix
by Don Zagier, “Densities of short uniform random walks.” Can. Math. Journal. Galleys,
October 2011. Available at http://arxiv.org/abs/1103.2995.

[37] R. P. Brent and P. Zimmermann, Modern Computer Arithmetic, Cambridge Univ. Press,
2010.

[38] C. W. Clenshaw, “A note on the summation of Chebyshey series,” Math. Tab. Wash., vol.
9 (1955) 118–120.

[39] G. Corliss and Y. F. Chang, “Solving ordinary differential equations using Taylor series,”
ACM Trans. Math. Software, vol. 8 (1982), 114–144.

[40] M. Czakon, “Tops from light quarks: Full mass dependence at two-Loops in QCD,” Phys.
Lett. B, vol. 664 (2008), 307, http://arxiv.org/abs/0803.1400.

[41] T. J. Dekker, “A floating-point technique for extending the available precision,” Numer.
Math., vol. 18 (1971), 224–242.

[42] J. Demmel and P. Koev, “The accurate and efficient solution of a totally positive
generalized Vandermonde linear system,” SIAM J. of Matrix Analysis Applications, vol.
27 (2005), 145–152.

[43] W. D. Evans, L.L. Littlejohn, F. Marcellán, C. Markett and A. Ronveaux, “On recurrence
relations for Sobolev orthogonal polynomials,” SIAM J. Math. Anal., vol. 26 (1995),
446–467.

[44] J. Dongarra, “LAPACK,” http://www.netlib.org/lapack.

[45] J. Dongarra, “LINPACK,” http://www.netlib.org/linpack.

[46] R. K. Ellis, W. T. Giele, Z. Kunszt, K. Melnikov and G. Zanderighi, “One-loop
amplitudes for W+3 jet production in hadron collisions,” manuscript, 15 Oct 2008,
http://arXiv.org/abs/0810.2762.

[47] T. Ferris, Coming of Age in the Milky Way, HarperCollins, New York, 2003.

[48] A. M. Frolov and D. H. Bailey, “Highly accurate evaluation of the few-body auxiliary
functions and four-body integrals,” J. Physics B, vol. 36 (2003), 1857–1867.

[49] W. Gautschi, “Computational aspects of three-term recurrence relations,” SIAM Rev.,
vol. 9 (1967), 24–82.

[50] V. Gelfreich and C. Simó, “High-precision computations of divergent asymptotic series
and homoclinic phenomena,” Discrete Contin. Dyn. Syst. Ser. B, vol. 10 (2008), 511–536.

[51] S. Graillat, P. Langlois and N. Louvet, “Algorithms for accurate, validated and fast
polynomial evaluation,” Japan J. Indust. Appl. Math., vol. 26 (2009), 191–214.

26

[52] C. Grebogi, E. Ott, S. Pelikan, and J. A. Yorke, “Strange attractors that are not chaotic,”
Phys. D, vol. 13 (1984), 261–268.

[53] E. Hairer, S. Nørsett and G. Wanner, Solving ordinary differential equations. I. Nonstiff
problems, second edition, Springer Series in Computational Mathematics, vol. 8,
Springer-Verlag, Berlin, 1993.

[54] Vincent Hakim and Kirone Mallick, “Exponentially small splitting of separatrices,
matching in the complex plane and Borel summation,” Nonlinearity, vol. 6 (1993), 57–70.

[55] P. H. Hauschildt and E. Baron, “The numerical solution of the expanding Stellar
atmosphere problem,” J. Comp. and Applied Math., vol. 109 (1999), 41–63.

[56] A. Haro and C. Simó, “To be or not to be a SNA: That is the question,” Preprint 2005-17
of the Barcelona UB-UPC Dynamical Systems Group (2005).

[57] W. Hayes, “Is the outer solar system chaotic?,” Nature Physics, vol. 3 (2007), 689–691.

[58] Y. He and C. Ding, “Using accurate arithmetics to improve numerical reproducibility and
stability in parallel applications,” J. Supercomputing, vol. 18 (Mar 2001), 259–277.

[59] Y. Hida, X. S. Li and D. H. Bailey, “Algorithms for Quad-Double Precision Floating
Point Arithmetic,” 15th IEEE Symposium on Computer Arithmetic (ARITH-15), 2001.

[60] H. Jiang, R. Barrio, H. Li, X. Liao, L. Cheng and F. Su, “Accurate evaluation of a
polynomial in Chebyshev form,” Applied Mathematics and Computation, vol. 217 (2011),
9702–9716

[61] D. E. Knuth, The Art of Computer Programming: Seminumerical Algorithms.
Addison-Wesley, third edition, 1998.

[62] P. Koev, “Software,” 2010, http://math.mit.edu/~plamen/software.

[63] G. Lake, T. Quinn and D. C. Richardson, “From Sir Isaac to the Sloan survey:
Calculating the structure and chaos due to gravity in the universe,” Proc. of the 8th
ACM-SIAM Symp. on Discrete Algorithms, SIAM, Philadelphia, 1997, 1–10.

[64] J. S. W. Lamb, “Reversing symmetries in dynamical systems,” J. Phys. A: Math. Gen.,
vol. 25 (1992), 925–937.

[65] S. K. Lucas and H. A. Stone, “Evaluating infinite integrals involving Bessel functions of
arbitrary order,” Journal of Computational and Applied Mathematics, vol. 64 (1995),
217–231.

[66] V. F. Lazutkin, “Splitting of separatrices for the Chirikov standard map,” J. Math. Sci.,
vol. 128 (2005), 2687–2705.

[67] E. Lorenz, “Deterministic nonperiodic flow,” J. Atmospheric Sci., vol. 20 (1963), 130–141.

27

[68] T. Ogita, S.M. Rump, and S. Oishi, “Accurate sum and dot product,” SIAM J. Sci.
Comput., vol. 26 (2005), 1955–1988.

[69] G. Ossola, C. G. Papadopoulos and R. Pittau, “CutTools: A program implementing the
OPP reduction method to compute one-loop amplitudes,” J. High-Energy Phys., vol. 0803
(2008), 042, http://arxiv.org/abs/0711.3596.

[70] W. H. Press, S. A. Eukolsky, W. T. Vetterling and B. P. Flannery, Numerical Recipes:
The Art of Scientific Computing, 3rd edition, Cambridge University Press, 2007.

[71] R. W. Robey, J. M. Robey and R. Aulwes, “In search of numerical consistency in parallel
programming,” Parallel Computing, vol. 37 (2011), 217–219.

[72] S. M. Rump, “Verification methods: rigorous results using floating-point arithmetic,”
Acta Numer., vol. 19 (2010), 287–449.

[73] A. Sidi, “The numerical evaluation of very oscillatory infinite integrals by extrapolation,”
Mathematics of Computation, vol. 38 (1982), 517–529.

[74] A. Sidi, “A user-friendly extrapolation method for oscillatory infinite integrals,”
Mathematics of Computation, vol. 51 (1988), 249–266.

[75] A. Sidi, “A user-friendly extrapolation method for computing infinite-range integrals of
products of oscillatory functions,” IMA Journal of Numerical Analysis, to appear (2011)
doi:10.1093/imanum/drr022.

[76] C. Simó, “Global dynamics and fast indicators,” in Global Analysis of Dynamical Systems,
373–389, Inst. Phys., Bristol, 2001.

[77] H. Takahasi and M. Mori, “Double exponential formulas for numerical integration,” Pub.
RIMS, Kyoto University, vol. 9 (1974), 721–741.

[78] Tse-Wo Zse, personal communication to the authors, July 2010.

[79] D. Viswanath, “The Lindstedt-Poincaré technique as an algorithm for computing periodic
orbits,” SIAM Review, vol. 43 (2001), 478–495.

[80] D. Viswanath, “The fractal property of the Lorenz attractor,” Phys. D, vol. 190 (2004),
115–128.

[81] D. Viswanath and S. Şahutǒglu, “Complex singularities and the Lorenz attractor,” SIAM
Rev., vol. 52 (2010), 294–314.

[82] J. Wan, “Moments of products of elliptic integrals,” preprint, October 2010.

[83] Z.-C. Yan and G. W. F. Drake, “Bethe logarithm and QED shift for Lithium,” Phys. Rev.
Letters, vol. 81 (2003), 774–777.

28

[84] T. Zhang, Z.-C. Yan and G. W. F. Drake, “QED corrections of O(mc2α7 lnα) to the fine
structure splittings of Helium and He-Like ions,” Phys. Rev. Letters, vol. 77 (1994),
1715–1718.

29

