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1 Introduction.

In this article we explore a variety of pleasing connections between analysis,
number theory, and operator theory, while revisiting a number of beautiful
inequalities originating with Hilbert, Hardy and others. We shall first the afore-
mentioned Hilbert inequality [14], [18] and then apply it to various multiple
zeta values. In consequence we obtain the norm of the classical Hilbert matrix,
in the process illustrating the interplay of numerical and symbolic computation
with classical mathematics.

2 Hilbert’s (easier) inequality.

The inequality in question is:

Theorem 1 (Hilbert Inequality) For nonnegative sequences (an) and (bn),
both not zero, and for p and q satisfying 1 < p, q <∞ and 1/p+ 1/q = 1

∞
∑

n=1

∞
∑

m=1

an bm
n+m

< π csc

(

π

p

)

‖an‖p ‖bn‖q (1)

whenever the right-hand side is finite.

Here and throughout, we write ‖an‖p := {
∑∞

n=1 ‖an‖
p}

1/p
for the p-norm of

the sequence (an). Thus, the right-hand side is finite exactly when (an) and
(bn) lie in the sequence spaces ℓp and ℓq respectively. A preparatory lemma is
needed.

Lemma 1 If 0 < a < 1 and n is a positive integer, then (a)

∞
∑

m=1

1

(n+m)(m/n)a
<

∫ ∞

0

1

(1 + x)xa
dx <

(1/n)1−a

1 − a
+

∞
∑

m=1

1

(n+m)(m/n)a
,
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Figure 1: Riemann sums for x−a/(1 + x).

and (b)
∫ ∞

0

1

(1 + x)xa
dx = π csc (a π) .

Proof. (a) The inequalities comes from using standard rectangular approxima-
tions to a monotonic-decreasing integrand, as in Figure 2, and overestimating

the integral from 0 to 1/n by
∫ 1/n

0
x−a dx to produce

0 <

∫ t

0

1

(1 + x)xa
dx ≤

t1−a

1 − a
.

(b) The integral is found in various tables such as Abromovitz and Stegun
[1] or Gradshteyn and Ryzhik [12] and is known to Maple or Mathematica. We
offer two other proofs.

(i) For the first we exploit the geometric series and the monotone convergence
theorem to compute

∫ ∞

0

1

(1 + x)xa
dx =

∫ 1

0

x−a + xa−1

1 + x
dx

=

∞
∑

n=0

(−1)n

{

1

n+ 1 − a
+

1

n+ a

}

=
∞
∑

n=1

(−1)n

{

1

n+ a
−

1

n− a

}

+
1

a

=
1

a
+

∞
∑

n=1

(−1)n 2a

a2 − n2
= π csc (aπ) ,

since the last equality is the classical partial fraction identity for π csc (aπ) (see
[19, p. 255]).
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(ii) Alternatively, we begin by letting 1 + x = 1/y,

∫ ∞

0

x−a

1 + x
dx =

∫ 1

0

ya−1 (1 − y)
−a
dy = B(a, 1 − a),

where B is the beta function, B(x, y) :=
∫ 1

0 t
x−1(1−t)y−1 dt, which is expressible

in terms of the gamma function Γ,

B(a, 1 − a) = Γ(a) Γ(1 − a) =
π

sin (aπ)
,

by using the product representation for Γ. 2

Remark 1 Combining the arguments in (i) and (ii) above actually derives the
identity

Γ(a) Γ(1 − a) =
π

sin (a π)
,

from the partial fraction expansion for cosecant

π csc (aπ) =
1

a
+ 2a

∞
∑

n=1

(−1)n

a2 − n2

or vice versa—especially if we appeal to the Bohr-Mollerup theorem [2], [19] to
establish B(a, 1 − a) = Γ(a) Γ(1 − a).

Proof of Theorem 1. We may assume the right-hand side is finite. We apply
Hölder’s inequality with what Hardy calls “compensating difficulties” (inserting
a term and its reciprocal) to obtain

∞
∑

n=1

∞
∑

m=1

an bm
n+m

=

∞
∑

n=1

∞
∑

m=1

an

(n+m)1/p(m/n)1/(pq)

bm
(n+m)1/q(n/m)1/(pq)

(2)

≤

(

∞
∑

n=1

|an|
p

∞
∑

m=1

1

(n+m)(m/n)1/q

)1/p( ∞
∑

m=1

|bm|q
∞
∑

n=1

1

(n+m)(n/m)1/p

)1/q

< π csc (π/q)
1/p

csc (π/p)
1/q

‖an‖p ‖bm‖q,

where the strict inequality follows from Lemma 1(a). We conclude by observing
that, since 1/p + 1/q = 1, the two cosecants are equal and the final estimate
reduces to π csc (π/p) ‖an‖p ‖bn‖q. 2

The integral analogue of (1) may likewise be established. There are numerous
extensions. One of interest for us later is

∞
∑

n=1

∞
∑

m=1

an bm
(n+m)σ

<

{

π csc

(

π(q − 1)

σq

)}τ

‖an‖p ‖bn‖q, (3)
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true when p, q > 1, σ > 0, 1/p + 1/q ≥ 1, and σ + 1/p + 1/q = 2. The best
constant C(p, q, τ) ≤ {π csc (π(q − 1)/(σq))}

τ
in (3) is called a Hilbert constant

[11, sec.3.4].
For p = 2, (1) yields Hilbert’s original inequality:

∞
∑

n=1

∞
∑

m=1

an bm
n+m

≤ π

√

√

√

√

∞
∑

n=1

|an|2

√

√

√

√

∞
∑

n=1

|bn|2, (4)

though Hilbert only obtained the constant 2π [13].
A fine direct Fourier analytic proof of (4) due to Toeplitz in 1912 starts from

the observation that
1

2π i

∫ 2 π

0

(π − t) eint dt =
1

n

for n = 1, 2 . . ., and deduces that

N
∑

n=1

N
∑

m=1

an bm
n+m

=
1

2π i

∫ 2 π

0

(π − t)
N
∑

k=1

ak e
ikt

N
∑

k=1

bk e
ikt dt. (5)

We recover (4) by applying the integral form of the Cauchy-Schwarz inequality
to the integral side of the representation in (5).

Example 1 Identity (5) has a quadratic counterpart:

N
∑

n=1

N
∑

m=1

an bm
(n+m)2

=
1

2π

∫ 2π

0

(

ζ(2) −
πt

2
+

1

4

) N
∑

k=1

ak e
ikt

N
∑

k=1

bk e
ikt dt,

where ζ signifies the Riemann zeta-function. Moreover, for larger integral σ, on
setting

ψ2n(x) :=

∞
∑

k=1

cos(2kπx)

k2n
, ψ2n+1(x) :=

∞
∑

k=1

sin(2kπx)

k2n+1
,

we have

N
∑

n=1

N
∑

m=1

an bm
(n+m)σ

=
1

2π iσ

∫ 2π

0

ψσ

(

t

2π

) N
∑

k=1

ak e
ikt

N
∑

k=1

bk e
ikt dt

where ψσ(x) are related to the Bernoulli polynomials [1], [19] by

ψσ(x) = (−1)⌊(1+σ)/2⌋Bσ(x)
(2π)σ

2 σ!
, (0 < x < 1).

It follows that

∞
∑

n=1

∞
∑

m=1

an bm
(n+m)σ

≤ ‖ψσ‖[0,1] ‖a‖2 ‖b‖2,
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where ‖ψσ‖[0,1] denotes the supremum norm. Finally, when n > 0 we can
compute

‖ψ2n‖[0,1] = ψ2n(0) = ζ(2n), ‖ψ2n+1‖[0,1] = ψ2n+1(1/4) = β(2n+ 1),

in terms of the classical zeta-functions ζ(2n) :=
∑

k>0 1/k2n and β(2n+ 1) :=
∑

k>0(−1)k/k2n+1. We should note that most of these upper bounds are not
optimal. 2

3 A bright and amusing subject.

Hilbert’s inequality and much more of the early twentieth-century history—and
philosophy—of the “ ‘bright’ and amusing” subject of inequalities is charmingly
discussed in Hardy’s retirement lecture as London Mathematical Society Secre-
tary [13]. There is much in this article to reward close reading, especially on the
nature of appropriateness of proof methods—that the tools of the proof should
fit the soil of the assertion—and the like. Hardy comments [13, p. 474] that

Harald Bohr is reported to have remarked “Most analysts spend half their
time hunting through the literature for inequalities they want to use, but
cannot prove.”

This remains true, though more recent inequalities often involve less-symmetric
and less-linear objects such as entropies, divergences, and log-barrier functions
[2], [6] such as in the following divergence estimate [5, p. 63] for two discrete
distributions:

Theorem 2 (Kullback-Leibler) For two strictly positive sequences (pi)
N
i=1

and (qi)
N
i=1 with

∑N
i=1 pi =

∑N
i=1 qi = 1 one has

N
∑

i=1

pi log

(

pi

qi

)

≥
1

2

(

N
∑

i=1

|pi − qi|

)2

, (6)

Proof. Inequality (6) follows from establishing that the function φ : (0,∞) → IR,

φ(t) := 2 (2 + t) {1 + t log t− t} − 3(t− 1)2,

is convex and is minimized at t = 1. One now lets ti = pi/qi, homogenizes and
sums. An application of the Cauchy-Schwarz inequality yields

(

N
∑

i=1

|pi − qi|

)2

≤ 3
N
∑

i=1

(pi − qi)
2

pi + 2qi
≤ 2

N
∑

i=1

pi log

(

pi

qi

)

.

2
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Two other high spots in Hardy’s essay are Carleman’s inequality which states
that for ai ≥ 0 and not all zero

∞
∑

n=1

(a1 a2 · · ·an)
1/n

< e

∞
∑

n=1

an

(see the recent survey [9] or [19, p. 63] for a proof, and also [3, p. 284] for
an indication of why the constant e is best possible), and one of Hardy’s own
discoveries:

Theorem 3 (Hardy) For a positive sequence (ak) and p > 1

∞
∑

n=1

(

a1 + a2 + · · · + an

n

)p

≤

(

p

p− 1

)p ∞
∑

n=1

ap
n. (7)

Hardy remarks [13, p. 485]:

[My] own theorem was discovered as a by-product of my own attempt to
find a really simple and elementary proof of Hilbert’s.

Remark 2 For p = 2, Hardy reproduces Elliott’s proof of (7), writing “it can
hardly be possible to find a proof more concise or elegant.”

Proof. This proof runs as follows. Set An = a1 + a2 + · · · + an (with A0 := 0)
and write

2anAn

n
−

(

An

n

)2

=
A2

n

n
−
A2

n−1

n− 1
+ (n− 1)

(

An

n
−
An−1

n− 1

)2

≥
A2

n

n
−
A2

n−1

n− 1
. (8)

Today, this is something easy to check symbolically. Now sum to obtain

∑

n

(

An

n

)2

≤ 2
∑

n

anAn

n
≤ 2

√

∑

n

a2
n

√

√

√

√

∑

n

(

An

n

)2

, (9)

which proves (7) for p = 2. Indeed, this argument easily adapts to the general
case. 2

A pre-history of Hardy’s inequality may be found in a very recent issue of this
Monthly [16].

Finally we record the (harder) bilateral Hilbert inequality is

∣

∣

∣

∣

∣

∣

∑

n6=m∈Z

an bm
n−m

∣

∣

∣

∣

∣

∣

< π

√

√

√

√

∞
∑

n=1

|an|2

√

√

√

√

∞
∑

n=1

|bn|2, (10)

the best constant π being due to Schur in (1911) (see [17]). There are many
extensions—with applications to prime number theory [17].
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4 Witten ζ-functions.

We turn to a seemingly unrelated topic that, in the next section, will allow us
to take a new perspective regarding the Hilbert constants. The sum

W(r, s, t) :=

∞
∑

n=1

∞
∑

m=1

1

nr ms (n+m)t
(r, s, t > 0)

is called a Witten ζ-function [21], [10], [8]. The double sum clearly converges for
r > 1 and s > 1. We refer to [21] for a description of the uses of more general
Witten ζ-functions. Ours are also called Tornheim double sums [10], in honour
of Tornheim who first carefully studied this specific case [20]. Correspondingly-

ζ(t, s) :=

∞
∑

n=1

∞
∑

m=1

1

ms (n+m)t
=

∑

n>m>0

1

ntms

is an Euler double sum. A sizable online set of references on multiple zeta values
and Euler sums is found at www.usna.edu/Users/math/meh/biblio.html. For
many illustrative proofs of the basic identity ζ(2, 1) = ζ(3) due to Euler, and of
its generalizations, we refer to [4].

There is a simple algebraic relation

W(r, s, t) = W(r − 1, s, t+ 1) + W(r, s− 1, t+ 1). (11)

This is based on writing

m+ n

(m+ n)t+1
=

m

(m+ n)t+1
+

n

(m+ n)t+1
.

Clearly

W(r, s, t) = W(s, r, t), (12)

and it is straight-forward to check that

W(r, s, 0) = ζ(r) ζ(s), W(r, 0, t) = ζ(t, r). (13)

Hence, W(s, s, t) = 2W(s, s− 1, t+ 1), so

W(1, 1, 1) = 2W(1, 0, 2) = 2 ζ(2, 1) = 2 ζ(3).

We note that the analogue to (11), ζ(s, t) + ζ(t, s) = ζ(s) ζ(t) − ζ(s+ t), shows
that

W(s, 0, s) = 2 ζ(s, s) = ζ2(s) − ζ(2s).

In particular, W(2, 0, 2) = 2 ζ(2, 2) = π4/36 − π4/90 = π4/72.
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Example 2 Let an := 1/nr and bn := 1/ns. Then inequality (4) becomes

W(r, s, 1) ≤ π
√

ζ(2r)
√

ζ(2s). (14)

Similarly, inequality (1) translates into

W(r, s, 1) ≤ π csc

(

π

p

)

p

√

ζ(pr) q

√

ζ(qs). (15)

Indeed, (3) can be used to estimate W(r, s, τ) for somewhat broader τ(6= 1).
Thence, (14) implies the crude inequality that ζ(3) ≤ π3/12, on appealing to
equation (18). 2

More generally, recursive use of (11) and (12), along with the initial con-
ditions (13), shows that all integer W(s, r, t) values are expressible in terms of
double (and single) Euler sums. As we shall see in (20) the representations are
necessarily homogeneous polynomials of weight r + s + t. All double sums of
weights less than eight and all those of odd weights reduce to sums of products
of single variable zeta-values, [3]. The first impediments arise because ζ(6, 2),
and ζ(5, 3) are not so reducible.

We next observe that in terms of the polylogarithm defined by Lis(t) =
∑

n>0 t
n/ns for real s, the representation (5) yields

W(r, s, 1) =
1

2π i

∫ π

−π

σ Lir(−e
iσ) Lis(−e

iσ) dσ. (16)

This representation is not numerically effective. It is better to start with

Γ(s)

(m+ n)t
=

∫ 1

0

(− log σ)t−1 σm+n−1 dσ

and so to obtain

W(r, s, t) =
1

Γ(t)

∫ 1

0

Lir(σ) Lis(σ)
(− logσ)

t−1

σ
dσ. (17)

This real-variable analogue of (16) is somewhat more satisfactory computation-
ally. For example, we recover from it an analytic proof of

2 ζ(2, 1) = W(1, 1, 1) =

∫ 1

0

ln2(1 − σ)

σ
dσ = 2 ζ(3). (18)

Moreover, we can now discover analytic as opposed to algebraic relations. Inte-
gration by parts yields

W(r, s+ 1, 1) + W(r + 1, s, 1) = Lir+1(1) Lis+1(1) = ζ(r + 1) ζ(s+ 1). (19)

In particular, W(s+ 1, s, 1) = ζ2(s+ 1)/2.
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Example 3 Symbolically, Maple immediately evaluates W(2, 1, 1) = π4/72,
and while it fails directly with W(1, 1, 2), we know that W(1, 1, 2) must be a
rational multiple of π4 or equivalently ζ(4). Numerically (working to twenty
places) we obtain

W(1, 1, 2)/ζ(4) = .49999999999999999998 . . . .

Continuing, for r+s+t = 5 the only terms to consider are ζ(5) and ζ(2)ζ(3).
The integer relation method PSLQ as implemented in Maple yields the weight
five relations:

W(2, 2, 1) =

∫ 1

0

Li2 (x)
2

x
dx = 2 ζ (3) ζ(2) − 3 ζ (5) ,

W(2, 1, 2) =

∫ 1

0

Li2 (x) log(1 − x) log(x)

x
dx = ζ (3) ζ(2) −

3

2
ζ (5) ,

W(1, 1, 3) =

∫ 1

0

log2(x) log2(1 − x)

2 x
dx = −2 ζ (3) ζ(2) + 4 ζ (5) ,

W(3, 1, 1) =

∫ 1

0

Li3 (x) log(1 − x)

x
dx = −ζ (3) ζ(2) + 3 ζ (5) ,

as predicted.
Likewise, for r + s+ t = 6 the only terms we need to consider are ζ(6) and

ζ2(3) since ζ(6), ζ(4) ζ(2), and ζ3(2) are all rational multiples of π6. We recover
identities like

W(3, 2, 1) =

∫ 1

0

Li3 (x) Li2 (x)

x
dx =

1

2
ζ2 (3) ,

consistent with equation (19). 2

The general form of the reduction for integers r, s, and t is due to Tornheim,
and expresses W(r, s, t) in terms of ζ(a, b) with weight a + b = N := r + s + t
[20], [10]:

Theorem 4 For positive integers r, s, and t

W(r, s, t) =
r∨s
∑

i=1

{(

r + s− i− 1

s− 1

)

+

(

r + s− i− 1

r − 1

)}

ζ (i, N − i) . (20)

Various other general formulas are given in [10] for classes of sums such as
W(2n+ 1, 2n+ 1, 2n+ 1) and W(2n, 2n, 2n).
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5 The best Hilbert constant.

It transpires that the constant π used in Theorem 1 is best possible [14].

Example 4 Let us numerically explore the ratio

R(s) :=
W(s, s, 1)

π ζ(2s)

as s → 1/2. (If we wish we can restrict matters to s > 1/2.) Note that
R(1) = 12 ζ(3)/π3 ∼ 0.4652181552 . . ..

Further numerical explorations seem to be in order. Unfortunately, when
0 < s < 1, (17) is very hard to exploit numerically. This fact led us to look
for a more sophisticated attack along the line of the Hurwitz zeta and Bernoulli
polynomial integrals used in [10], or the expansions in [8]. Namely, we appeal
to the identity

W(r, s, t) =

∫ 1

0

E(r, x)E(s, x)E(t, x) dx (21)

where E(s, x) :=
∑∞

n=1 e
2πinx n−s = Lis

(

e2πix
)

, using the formulae

E(s, x) =
∞
∑

m=0

ζ(s−m)
(2πi x)m

m!
+ Γ(1 − s) (−2πi x)s−1 (|x| < 1)

and

E(s, x) = −

∞
∑

m=0

η(s−m)
(2x− 1)

m
(πi)

m

m!
(0 < x < 1)

with η(s) := (1 − 21−s) ζ(s), as given in [8, (2.6)(2.9)]. 2

Ultimately, carefully expanding (21) with a free parameter θ in (0, 1) led
Crandall to the following efficient formula, in terms of the incomplete Gamma-
function, which is given by Γ(a, z) :=

∫∞

z
exp(−t) ta−1 dt when Re a > 0 [1]. Of

course Γ(a, 0) = Γ(a).

Proposition 1 If neither r nor s is an integer, then

Γ(t)W(r, s, t) =
∑

m,n≥1

Γ(t, (m+ n)θ)

mrns(m+ n)t

+
∑

u,v≥0

(−1)u+v ζ(r − u)ζ(s− v)θu+v+t

u!v!(u+ v + t)

+ Γ(1 − r)
∑

v≥0

(−1)v ζ(s− v)θr+v+t−1

v!(r + v + t− 1)
(22)

+ Γ(1 − s)
∑

u≥0

(−1)u ζ(r − u)θs+u+t−1

u!(s+ u+ t− 1)

+ Γ(1 − r)Γ(1 − s)
θr+s+t−2

r + s+ t− 2
.
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When at least one of r, s is an integer, a limit formula with a few more terms
results. As is often the case, the analytically attractive and the computationally
effective representations are quite different.

We can now use (22) to give an accurate plot of R on [1/3, 2/3], as shown
in Figure 2. Note that Figure 2 shows that, while the functions R and I :=

2/π
∫ 1

0 x−s/(1 + x) dx do agree at 1/2, the one is increasing but the other is
decreasing. In various ways we are thus led to the following conjecture; and in
turn to a proof thereof.

Conjecture 1 lims→1/2 R(s) = 1.

Proof of Conjecture 1. (a) To establish this, we introduce σn(s) :=
∑∞

m=1 n
sm−s/(n+

m) and invoke Lemma 1 to write

L : = lim
s→1/2

(2s− 1)

∞
∑

n=1

∞
∑

m=1

n−sm−s

n+m
= lim

s→1/2
(2s− 1)

∞
∑

n=1

1

n2s
σn(s)

= lim
s→1/2

(2s− 1)

∞
∑

n=1

{σn(s) − π csc (πs)}

n2s

+ lim
s→1/2

π (2s− 1)ζ(2s) csc (π s)

= 0 + π = π.

Here, by another appeal to Lemma 1, the bracketed term in the series is O(ns−1)
while ζ(2s) ∼ 1/(2s− 1) as s → 1/2, using the standard asymptotic for ζ [2].
In consequence, we see that L/π = lims→1/2 R(s) = 1, and—at least to first-
order—inequality (4) is best possible (see also [15]).

(b) Alternatively, we can sum directly as follows:

W(s, s, 1) =

∞
∑

n=1

∞
∑

m=1

m−sn−s

m+ n
= 2

∞
∑

n=1

1

n2s

n−1
∑

m=1

1/n

(m/n)s(m/n+ 1)
+
ζ(2s+ 1)

2

≤ 2 ζ(2s)

∫ 1

0

x−s

1 + x
dx+

ζ(2s+ 1)

2

≤ 2
∞
∑

n=1

1

n2s

n
∑

m=1

1/n

(m/n)s(m/n+ 1)
+
ζ(2s+ 1)

2

= 2
∞
∑

n=1

1

n2s

n−1
∑

m=1

1/n

(m/n)s(m/n+ 1)
+

3ζ(2s+ 1)

2

=

∞
∑

n=1

∞
∑

m=1

m−sn−s

m+ n
+ ζ(2s+ 1).

We deduce that
R(s) ∼ I(s)

as s→ 1/2. Also I(1/2) = 1. 2
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Figure 2: R (left) and I (right) on [1/3, 2/3].

Likewise, the constant in (1) is best possible.

Proof. Motivated by the foregoing argument we consider

Rp(s) :=
W((p− 1)s, s, 1)

π ζ(ps)
,

and observe that with σp
n(s) :=

∑∞
m=1(n/m)−(p−1)s/(n + m)—which satisfies

σp
n(s) → π csc (π/q) (1/q + 1/p = 1) as n→ ∞ and s→ 1/p—we have

Lp : = lim
s→1/p

(ps− 1)

∞
∑

n=1

∞
∑

m=1

n−sm−(p−1)s

n+m
= lim

s→1/p
(ps− 1)

∞
∑

n=1

1

nps
σp

n(s)

= lim
s→1/p

(ps− 1)

∞
∑

n=1

{σp
n(s) − π csc (π/q))}

nps

+ lim
s→1/p

(2s− 1)ζ(ps)π csc

(

π

q

)

= 0 + π csc

(

π

q

)

.

Setting r = (p − 1)s, for s near 1/p we check that ζ(ps)1/p ζ(qr)1/q = ζ(ps),
whence the best constant possible in (15) is the one given. 2

To recapitulate our narrative, in terms of the celebrated infinite Hilbert ma-
trices [3, pp. 250–252],

H0 :=

{

1

m+ n

}∞

m,n=1

and

H1 :=

{

1

m+ n− 1

}∞

m,n=1

,

we have actually proven:

Theorem 5 If 1 < p, q < ∞ and 1/p+ 1/q = 1, then the Hilbert matrices H0

and H1 determine bounded linear mappings from the sequence space ℓp to itself

12



such that

‖H1‖p,p = ‖H0‖p,p = lim
s→1/p

W(s, (p− 1)s, 1)

ζ(ps)
= π csc

(

π

p

)

.

Proof. Appealing to the isometry between (ℓp)∗ and ℓq, and given our earlier
evaluation of Lp, we directly compute the operator norm of H0 as follows:

‖H0‖p,p : = sup
‖x‖p=1

‖H0x‖p

= sup
‖y‖q=1

sup
‖x‖p=1

〈H0x, y〉 = π csc

(

π

p

)

.

Now clearly ‖H0‖p,p ≤ ‖H1‖p,p. For n ≥ 2 we have

∞
∑

m=1

1

(n+m− 1)(m/n)a
≤

∞
∑

m=1

1

(n− 1 +m)(m/(n− 1))a
≤ π csc (πa) ,

and so Lemma 1 and Theorem 1 in tandem show that ‖H0‖p,p ≥ ‖H1‖p,p. 2

A delightful operator-theoretic introduction to the Hilbert matrix H0 is given
by Choi in his Chauvenet prize-winning article [7] while a recent set of notes by
G. J. O. Jameson (see [15]) is also well worth accessing.

In the case of (3), Finch [11, §4.3] comments that the issue of best constants
is unclear in the literature. He remarks that even the case p = q = 4/3 and
σ = 1/2 appears to be open. It seems improbable that the techniques of this
article can be used to resolve the question. Indeed, consider

R1/2(s, α) :=
W(s, s, 1/2)

ζ(4s/3)α
,

with the critical point in this case being s = 3/4. Numerically, using (22),
we discover that log(W(s, s, 1/2))/ log(ζ(4s/3)) → 0. Hence, for any positive
α, the requisite limit is given by lims→3/4 R1/2(s, α) = 0, which is certainly
not the desired norm. What we are exhibiting is that the subset of sequences
(an) = (n−s) for s > 0 is norming in ℓp for σ = 1 but not apparently for general
σ > 0.

Example 5 One may also study the corresponding behaviour of Hardy’s in-
equality (7). For example, setting an = 1/n and writing Hn =

∑n
k=1 1/k in (7)

yields
∞
∑

n=1

(

Hn

n

)p

≤

(

p

p− 1

)p

ζ(p).

Application of the integral test shows that

∞
∑

n=1

(

Hn

n

)p

∼

∫ ∞

1

(

log x

x

)p

dx =
Γ (1 + p)

(p− 1)
p+1 ,

13



when p > 1. Also

lim
p→1+

(

p

p− 1

)p

ζ (p)
(p− 1)

1+p

Γ (1 + p)
= 1.

(This is a limit that both Maple and Mathematica will compute.) This shows
the constant is again best possible. 2
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