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Abstract The mathematical community (appropriately defined) faces a great chal-
lenge to re-evaluate the role of proof in light of the power of current computer
systems, the sophistication of modern mathematical computing packages, and the
growing capacity to data-mine on the internet. Added to those are the enormous
complexity of many modern mathematical results such as the Poincaré conjecture,
Fermat’s last theorem, and the classification of finite simple groups. With great chal-
lenges come great opportunities. Here, I survey the current challenges and oppor-
tunities for the learning and doing of mathematics. As the prospects for inductive
mathematics blossom, the need to ensure that the role of proof is properly founded
remains undiminished. Much of this material was presented as a plenary talk in May
2009 at the National Taiwan Normal University Workshop for ICMI Study 19 “On
Proof and Proving in Mathematics Education.”

1 Digitally-assisted Discovery and Proof

“[I]ntuition comes to us much earlier and with much less outside influence than formal
arguments which we cannot really understand unless we have reached a relatively high
level of logical experience and sophistication.

Therefore, I think that in teaching high school age youngsters we should emphasize intuitive
insight more than, and long before, deductive reasoning.”—George Polya (1887-1985) [28,
(2) p. 128]
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1.1 Exploratory Experimentation

I share Polya’s view that intuition precedes deductive reasoning. Nonetheless, Polya
also goes on to say, proof should certainly be taught in school. I begin with some
observations many of which have been fleshed out in The Computer as Crucible
[12], Mathematics by Experiment [10], and Experimental Mathematics in Action
[6]. My musings here focus on the changing nature of mathematical knowledge and
in consequence asks the questions such as “How do we come to believe and trust
pieces of mathematics?”, “Why do we wish to prove things?” and “How do we teach
what and why to students?”

While I have described myself in [6] and elsewhere as a “computationally as-
sisted fallibilist”, I am far from a social-constructivist. Like Richard Brown, I be-
lieve that Science “at least attempts to faithfully represent reality” [13, p. 7]. I am,
though, persuaded by various notions of embodied cognition. As Smail writes:

“[T]he large human brain evolved over the past 1.7 million years to allow individuals to
negotiate the growing complexities posed by human social living.” [33, p. 113]

In consequence, humans find various modes of argument more palatable than others,
and are prone to make certain kinds of errors more than others. Likewise, Steve
Pinker’s observation about language as founded on

“. . . the ethereal notions of space, time, causation, possession, and goals that appear to make
up a language of thought” [27, p. 83]

remains equally potent within mathematics. The computer offers to provide scaf-
folding both to enhance mathematical reasoning and to restrain mathematical error.

To begin with let me briefly reprise what I mean by discovery and by proof in
mathematics. The following attractive definition of discovery has the satisfactory
consequence that a student can certainly discover results whether those results are
known to the teacher or not.

“In short, discovering a truth is coming to believe it in an independent, reliable, and rational
way.” [18, p. 50]

Nor is it necessary to demand that each dissertation be original (only independently
discovered).

A standard definition1 of proof follows.

PROOF, n. a sequence of statements, each of which is either validly derived from those
preceding it or is an axiom or assumption, and the final member of which, the conclusion,
is the statement of which the truth is thereby established.

As a working definition of mathematics itself, I offer the following, in which the
word “proof” does not enter. Nor should it; mathematics is much more than proof
alone:
1 All definitions below are taken from the Collin’s Dictionary of Mathematics which I co-
authored. It is available as software — with a version of Student Maple embedded in it — at
http://www.mathresources.com/products/mathresource/index.html.
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MATHEMATICS, n. a group of subjects, including algebra, geometry, trigonometry and
calculus, concerned with number, quantity, shape, and space, and their inter-relationships,
applications, generalizations and abstractions.
DEDUCTION, n. 1. the process of reasoning typical of mathematics and logic, in which
a conclusion follows necessarily from given premises so that it cannot be false when the
premises are true.
INDUCTION, n. 3. ( Logic) a process of reasoning in which a general conclusion is drawn
from a set of particular premises, often drawn from experience or from experimental evi-
dence. The conclusion goes beyond the information contained in the premises and does not
follow necessarily from them. Thus an inductive argument may be highly probable yet lead
to a false conclusion; for example, large numbers of sightings at widely varying times and
places provide very strong grounds for the falsehood that all swans are white.

It awaited the discovery of Australia to confound the seemingly compelling induc-
tive conclusion that all swans are white. Typically, mathematicians take for granted
the distinction between induction and deduction and rarely discuss their roles with
either colleagues or students. Despite the conventional identification of Mathemat-
ics with deductive reasoning, in his 1951 Gibbs Lecture Kurt Gödel (1906-1978)
said:

“If mathematics describes an objective world just like physics, there is no reason why in-
ductive methods should not be applied in mathematics just the same as in physics.”

He held this view until the end of his life, despite the epochal deductive achievement
of his incompleteness results. And this opinion has been echoed or amplified by lo-
gicians as different as Willard Quine and Greg Chaitin. More generally, one discov-
ers a substantial number of great mathematicians from Archimedes and Galileo —
who apparently said “All truths are easy to understand once they are discovered; the
point is to discover them.” — to Poincaré and Carleson who have emphasized how
much it helps to “know” the answer. Over two millennia ago Archimedes wrote to
Eratosthenes in the introduction to his long-lost and recently re-constituted Method
of Mechanical Theorems:

“I thought it might be appropriate to write down and set forth for you in this same book a
certain special method, by means of which you will be enabled to recognize certain math-
ematical questions with the aid of mechanics. I am convinced that this is no less useful for
finding proofs of these same theorems.
For some things, which first became clear to me by the mechanical method, were afterwards
proved geometrically, because their investigation by the said method does not furnish an ac-
tual demonstration. For it is easier to supply the proof when we have previously acquired,
by the method, some knowledge of the questions than it is to find it without any previous
knowledge.” [My emphasis] [25]

Think of the Method as an ur-precursor to today’s interactive geometry software
— with the caveat that, for example, Cinderella actually does provide certificates for
much Euclidean geometry. As 2006 Abel Prize winner Leonard Carleson described
in his 1966 ICM speech on his positive resolution of Luzin’s 1913 conjecture, about
the pointwise convergence of Fourier series for square-summable functions, after
many years of seeking a counter-example he decided none could exist. The impor-
tance of this confidence he expressed as follows:
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“The most important aspect in solving a mathematical problem is the conviction of what
is the true result. Then it took 2 or 3 years using the techniques that had been developed
during the past 20 years or so.”

1.2 Digitally Mediated Mathematics

I shall now assume that all proofs discussed are “non-trivial” in some fashion appro-
priate to the level of the material since the issue of using inductive methods is really
only of interest with this caveat. Armed with these terms, it remains to say that by
digital assistance I intend the use of such artefacts as

• Modern Mathematical Computer Packages — be they Symbolic, Numeric, Ge-
ometric, or Graphical. I would capture all as “modern hybrid workspaces”. One
should also envisage much more use of stereo visualization, haptics2, and audi-
tory devices.

• More Specialist Packages or General Purpose Languages, such as Fortran, C++,
CPLEX, GAP, PARI, SnapPea, Graffiti, and MAGMA. The story of the SIAM
100-Digits Challenge [9] illustrates the degree to which mathematicians now
start computational work within a hybrid platform such as Maple, Mathematica
or MATLAB and make only sparing recourse to more specialist packages when
the hybrid work spaces prove too limited.

• Web Applications, such as Sloane’s Online Encyclopedia of Integer Sequences,
the Inverse Symbolic Calculator, Fractal Explorer, Jeff Weeks’ Topological Games,
or Euclid in Java.3

• Web Databases, including Google, MathSciNet, ArXiv, JSTOR, Wikipedia, Math-
World, Planet Math, Digital Library of Mathematical Functions (DLMF), Mac-
Tutor, Amazon, and many more sources that are not always viewed as part of
the palette. Nor is necessary that one approve unreservedly, say of the historical
reliability of MacTutor, to acknowledge that with appropriate discrimination in
its use it is a very fine resource.

All the above entail data-mining in various forms. Franklin [17] argues that what
Steinle has termed “exploratory experimentation” facilitated by “widening technol-
ogy” as in pharmacology, astrophysics, and biotechnology, is leading to a reassess-
ment of what is viewed as a legitimate experiment, in that a “local model” is not a
prerequisite for a legitimate experiment. Hendrik Sørenson [34] cogently makes the
case that experimental mathematics — as “defined” below — is following similar
tracks:

“These aspects of exploratory experimentation and wide instrumentation originate from the
philosophy of (natural) science and have not been much developed in the context of ex-
perimental mathematics. However, I claim that e.g. the importance of wide instrumentation

2 With the growing realization of the importance of gesture in mathematics “as the very texture of
thinking,” [32, p. 92] it is time to seriously explore tactile devices.
3 A cross-section of such resources is available through http://ddrive.cs.dal.ca/∼isc/portal/.



Exploratory Experimentation: Digitally-Assisted Discovery and Proof 5

for an exploratory approach to experiments that includes concept formation also pertain to
mathematics.”

Danny Hillis is quoted as saying recently that:

“Knowing things is very 20th century. You just need to be able to find things.”4

about how Google has already changed how we think. This is clearly not yet true and
will never be, yet it catches something of the changing nature of cognitive style in
the 21st century. Likewise, in a provocative article [1], Chris Anderson, the Editor-
in-Chief of Wired, recently wrote

“There’s no reason to cling to our old ways. It’s time to ask: What can science learn from
Google?”

In consequence, the boundaries between mathematics and the natural sciences
and between inductive and deductive reasoning are blurred and getting blurrier. This
is discussed at some length by Jeremy Avigad [2]. A very useful discussion of simi-
lar issues from a more explicitly pedagogical perspective is given by de Villiers [14]
who also provides a quite extensive bibliography.

1.3 Experimental Mathodology

We started The Computer as Crucible [12] with then United States Supreme court
Justice Potter Stewart’s famous, if somewhat dangerous, 1964 Supreme Court judge-
ment on pornography:

“I know it when I see it.” [12, p. 1]

I complete this subsection by reprising from [10] what somewhat less informally
we mean by experimental mathematics. I say ‘somewhat’, since I do not take up the
perhaps vexing philosophical question of whether a true experiment in mathematics
is even possible — without adopting a fully realist philosophy of mathematics —
or if we should rather refer to ‘quasi-experiments’? Some of this is discussed in [6,
Chapter 1] and [10, Chapters 1,2, and 8], wherein we further limn the various ways
in which the term ‘experiment’ is used and underline the need for mathematical
experiments with predictive power.

What is experimental mathematics?

1. Gaining insight and intuition.
Despite my agreement with Polya, I firmly believe that — in most important
senses — intuition, far from being “knowledge or belief obtained neither by rea-
son nor by perception,” as the Collin’s English Dictionary and Kant would have

4 In Achenblog http://blog.washingtonpost.com/achenblog/ of July 1 2008.
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it, is acquired not innate. This is well captured by Lewis Wolpert’s 2000 title The
Unnatural Nature of Science, see also [19].

2. Discovering new relationships
I use “discover” in Giaquinto’s terms as quoted above.

3. Visualizing math principles.
I intend the fourth Random House sense of “to make perceptible to the mind or
imagination” not just Giaquinto’s more direct meaning.

4. Testing and especially falsifying conjectures.
Karl Popper’s “critical rationalism” asserts that induction can never lead to truth
and hence that one can only falsify theories [13]. Whether one believes this is
the slippery slope to Post modernist interpretations of science (Brown’s term
abbreviated PIS) or not is open to debate, but Mathematics, being based largely
on deductive science, has little to fear and much to gain from more aggressive
use of falsification.

5. Exploring a possible result to see if it merits formal proof.
“Merit” is context dependent. It may mean one thing in a classroom and quite
another for a research mathematician.

6. Suggesting approaches for formal proof.
I refer to computer-assisted or computer-directed proof which is quite far from
completely Formal Proof — the topic of a special issue of the Notices of the AMS
in December 2008.

7. Computing replacing lengthy hand derivations.
Hales’ recent solution of the Kepler problem, described in the 2008 Notices arti-
cle, pushes the boundary on when “replacement” becomes qualitatively different
from, say, factoring a very large prime. In the case of factorization, we may well
feel we understand the entire sequence of steps undertaken by the computer.

8. Confirming analytically derived results.
The a posteriori value of confirmation is huge, whether this be in checking an-
swers while preparing a calculus class, or in confirming one’s apprehension of a
newly acquired fact.

Of these, the first five play a central role in the current context, and the sixth plays
a significant one.

1.4 Cognitive Challenges

Let me touch upon the Stroop effect5 illustrating directed attention or interference.
This classic cognitive psychology test, discovered by John Ridley Stroop in 1935,
is as follows.

Consider the picture in Figure 1, in which various coloured words are colored in
one of the colors mentioned, but not necessarily in the same one to which the word
refers.
5 http://www.snre.umich.edu/eplab/demos/st0/stroopdesc.html has a fine overview.
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Fig. 1 An Illustration of the Stroop test.

First, say the color which the given
word mentions.

Second, say the color in which the
word is written.

Most people find the second task harder. You may find yourself taking more time
for each word, and may frequently say the word, rather than the color in which the
word appears. Proficient (young) multitaskers find it easy to suppress information
and so perform the second task faster than traditionally. Indeed, Cliff Nass’ work
in the CHIME lab at Stanford suggests that neurological changes are taking place
amongst the ‘born-digital.’6 If such cognitive changes are taking place there is even
more reason to ensure that epistemology, pedagogy, and cognitive science are in
concert.

1.5 Paradigm Shifts

“Old ideas give way slowly; for they are more than abstract logical forms and categories.
They are habits, predispositions, deeply engrained attitudes of aversion and preference.
Moreover, the conviction persists-though history shows it to be a hallucination that all the
questions that the human mind has asked are questions that can be answered in terms of the
alternatives that the questions themselves present. But in fact intellectual progress usually
occurs through sheer abandonment of questions together with both of the alternatives they
assume an abandonment that results from their decreasing vitality and a change of urgent
interest. We do not solve them: we get over them.
Old questions are solved by disappearing, evaporating, while new questions corresponding
to the changed attitude of endeavor and preference take their place. Doubtless the greatest
dissolvent in contemporary thought of old questions, the greatest precipitant of new meth-
ods, new intentions, new problems, is the one effected by the scientific revolution that found
its climax in the “Origin of Species”.”—John Dewey (1859-1952)7

6 See http://www.snre.umich.edu/eplab/demos/st0/stroop program/stroopgraphicnonshockwave.gif.
7 In Dewey’s introduction to his book [15]. Dewey, a leading pragmatist (or instrumentalist)
philosopher and educational thinker of his period, is also largely responsible for the Trotsky
archives being at Harvard, through his activities on the Dewey Commission.
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Thomas Kuhn (1922-1996) has noted that a true paradigm shift — as opposed to
the cliché — is “a conversion experience.”8 You (and enough others) either have one
or you don’t. Oliver Heaviside (1850-1925) said in defending his operator calculus
before it could be properly justified: “Why should I refuse a good dinner simply
because I don’t understand the digestive processes involved?”

But please always remember as Arturo Rosenblueth and Norbert Wiener wrote:
“The price of metaphor is eternal vigilance.”9 I may not convince you to reevaluate
your view of Mathematics as an entirely deductive science — if so indeed you view
it — but in the next section I will give it my best shot.

2 Mathematical Examples

I continue with various explicit examples. I leave it to the reader to decide how much
or how frequently he or she wishes to exploit the processes I advertise. Nonetheless
they all controvert Picasso’s “Computers are useless they can only give answers.”10

and confirm Hamming’s “The purpose of computing is insight not numbers.”11 As
a warm-up illustration, consider Figure 2. The lower function in both graphs is
x 7→ −x2 logx The left-hand graph compares x 7→ x− x2 while the right-hand graph
compares x 7→ x2− x4 each on 0≤ x≤ 1.

Before the advent of plotting calculators if asked a question like “Is −x2 logx
less than x− x2 on the open interval between zero and one?” one immediately had
recourse to the calculus. Now that would be silly, clearly they cross. In the other
case, if there is a problem it is at the right-hand end point. ‘Zooming’ will probably
persuade you that −x2 logx ≤ x2− x4 on 0 ≤ x ≤ 1 and may even guide a calculus
proof if a proof is needed.

The examples below contain material on sequences, generating functions, spe-
cial functions, continued fractions, partial fractions, definite and indefinite integrals,
finite and infinite sums, combinatorics and algebra, matrix theory, dynamic geome-
try and recursions, differential equations, and mathematical physics, among other
things. So they capture the three main divisions of pure mathematical thinking:
algebraic-symbolic, analytic, and topologic-geometric, while making contact with
more applied issues in computation, numerical analysis and the like.

8 This was said in an interview in [30], not only in Kuhn’s 1962 The Structure of Scientific Rev-
olutions, which Brown notes is “the single most influential work in the history of science in the
twentieth century.” In Brown’s accounting [13] Kuhn bears more responsibility for the slide into
PIS than either Dewey or Popper. An unpremeditated example of digitally assisted research is that
— as I type — I am listening to The Structure of Scientific Revolutions, having last read it 35 years
ago.
9 Quoted by R. C. Leowontin, in Science p. 1264, Feb 16, 2001 (the Human Genome Issue).
10 Michael Moncur’s (Cynical) Quotations #255 http://www.quotationspage.com/collections.html
11 Richard Hamming’s philosophy of scientific computing appears as preface to his influential
1962 book [21].
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Fig. 2 Try Visualization or Calculus First?

Example I: What Did the Computer Do?

“This computer, although assigned to me, was being used on board the International Space
Station. I was informed that it was tossed overboard to be burned up in the atmosphere when
it failed.”—anonymous NASA employee12

In my own work, computer experimentation and digitally-mediated research now
invariably play a crucial part. Even in many seemingly non-computational areas
of functional analysis and the like, there is frequently a computable consequence
whose verification provides confidence in the result under development. Moreover,
the process of specifying my questions enough to program with them invariably
enhances my understanding and sometimes renders the actual computer nearly su-
perfluous. For example, in a recent study of expectation or “box integrals” [7] we
were able to evaluate a quantity which had defeated us for years, namely

K1 :=
∫ 4

3

arcsec(x)√
x2−4x+3

dx

in closed-form as

K1 = Cl2 (θ)−Cl2
(

θ +
π

3

)
−Cl2

(
θ − π

2

)
+Cl2

(
θ − π

6

)
− Cl2

(
3θ +

π

3

)
+Cl2

(
3θ +

2π

3

)
−Cl2

(
3θ − 5π

6

)
+Cl2

(
3θ +

5π

6

)
+

(
6θ − 5π

2

)
log
(

2−
√

3
)
. (1)

where Cl2(θ) := ∑
∞
n=1 sin(nθ)/n2 is the Clausen function, and

3θ := arctan

(
16−3

√
15

11

)
+π.

12 Science, August 3, 2007, p. 579: “documenting equipment losses of more than $94 million over
the past 10 years by the agency.”
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Along the way to the evaluation above, after exploiting some insightful work by
George Lamb, there were several stages of symbolic computation, at times involving
an expression for K1 with over 28,000 characters (perhaps 25 standard book pages).
It may well be that the closed form in (1) can be further simplified. In any event,
the very satisfying process of distilling the computer’s 28,000 character discovery,
required a mixture of art and technology and I would be hard pressed to assert
categorically whether it constituted a conventional proof. Nonetheless, it is correct
and has been checked numerically to over a thousand-digit decimal precision. �

I turn next to a mathematical example which I hope will reinforce my assertion
that there is already an enormous amount to be mined mathematically on the inter-
net. And this is before any mathematical character recognition tools have been made
generally available and when it is still very hard to search mathematics on the web.

Example II: What is That Number?

“The dictum that everything that people do is ‘cultural’ . . . licenses the idea that every cul-
tural critic can meaningfully analyze even the most intricate accomplishments of art and
science. . . . It is distinctly weird to listen to pronouncements on the nature of mathemat-
ics from the lips of someone who cannot tell you what a complex number is!”—Norman
Levitt13

In 1995 or so Andrew Granville emailed me the number

α := 1.4331274267223 . . . (2)

and challenged me to identify it; I think this was a test I could have failed. I asked
Maple for its continued fraction. In the conventional concise notation I was rewarded
with

α = [1,2,3,4,5,6,7,8,9,10,11, ...]. (3)

Even if you are unfamiliar with continued fractions, you will agree that the changed
representation in (3) has exposed structure not apparent from (2)! I reached for a
good book on continued fractions and found the answer

α =
I1(2)
I0(2)

(4)

where I0 and I1 are Bessel functions of the first kind. Actually I remembered that
all arithmetic continued fractions arise in such fashion, but as we shall see one now
does not need to.

In 2009 there are at least three “zero-knowledge” strategies:

1. Given (3), type “arithmetic progression”, “continued fraction” into Google.

13 In The flight From Science and Reason. See Science, Oct. 11, 1996, p. 183.



Exploratory Experimentation: Digitally-Assisted Discovery and Proof 11

2. Type “1,4,3,3,1,2,7,4,2” into Sloane’s Encyclopedia of Integer Sequences.14

3. Type the decimal digits of α into the Inverse Symbolic Calculator.15

I illustrate the results of each strategy.
1. On October 15, 2008, on typing “arithmetic progression”, “continued fraction”
into Google, the first three hits were those shown in Figure 3. Moreover, the Math-
World entry tells us that any arithmetic continued fraction is of a ratio of Bessel
functions, as shown in the inset to Figure 3, which also refers to the second hit in
Figure 3. The reader may wish to see what other natural search terms uncover (4)
— perhaps in the newly unveiled Wolfram Alpha.

Fig. 3 What Google and MathWorld offer.

2. Typing the first few digits into Sloane’s interface results in the response shown in
Figure 4. In this case we are even told what the series representations of the requisite
Bessel functions are, we are given sample code (in this case in Mathematica), and
we are lead to many links and references. Moreover, the site is carefully moderated

14 See http://www.research.att.com/ njas/sequences/.
15 The online Inverse Symbolic Calculator http://ddrive.cs.dal.ca/∼isc was newly web-accessible
in the same year, 1995.



12 Jonathan Michael Borwein

and continues to grow. Note also that this strategy only became viable after May
14th 2001 when the sequence was added to the database which now contains in
excess of 158,000 entries.

Fig. 4 What Sloane’s Encyclopedia offers.

3. If one types the decimal representation of α into the Inverse Symbolic Calculator
(ISC) it returns

Best guess: BesI(0,2)/BesI(1,2)

Most of the functionality of the ISC is built into the “identify” function in versions of
Maple starting with version 9.5. For example, identify(4.45033263602792)
returns

√
3+ e. As always, the experienced user will be able to extract more from

this tool than the novice for whom the ISC will often produce more. �
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Example III: From Discovery to Proof

“Besides it is an error to believe that rigor in the proof is the enemy of simplicity.”—David
Hilbert16

The following integral was made popular in a 1971 Eureka17 article

0 <
∫ 1

0

(1− x)4x4

1+ x2 dx =
22
7
−π (5)

as described in [10]. As the integrand is positive on (0,1) the integral yields an area
and hence π < 22/7. This problem was set on a 1960 Sydney honours mathematics
final exam (5) and perhaps originated in 1941 with the author of the 1971 article —
Dalzeil who chose not reference his earlier self! Why should we trust this discovery?
Well Maple and Mathematica both ‘do it’. But this is proof by appeal to authority
less imposing than, say, von Neumann [24] and a better answer is to ask Maple for
the indefinite integral ∫ t

0

(1− x)4x4

1+ x2 dx = ?

The computer algebra system (CAS) will return

∫ t

0

x4 (1− x)4

1+ x2 dx =
1
7

t7− 2
3

t6 + t5− 4
3

t3 +4 t−4 arctan(t) , (6)

and now differentiation and the Fundamental theorem of calculus proves the result.
This is probably not the proof one would find by hand, but it is a totally rigorous

one, and represents an “instrumental use” of the computer. The fact that a CAS will
quite possibly be able to evaluate an indefinite integral or a finite sum whenever
it can evaluate the corresponding definite integral or infinite sum frequently allows
one to provide a certificate for such a discovery. In the case of a sum, the certificate
often takes the form of a mathematical induction (deductive version). Another inter-
esting feature of this example is that it appears to be quite irrelevant that 22/7 is an
early, and the most famous, continued-fraction approximation to π [26]. Not every
discovery is part of a hoped-for pattern. �

Example IV: From Concrete to Abstract

“The plural of ‘anecdote’ is not ‘evidence’.”—Alan L. Leshner18

We take heed of Leshner’s caution but still celebrate accidental discovery.

16 In his 23 Mathematische Probleme lecture to the Paris International Congress, 1900 [35].
17 Eureka was an undergraduate Cambridge University journal.
18 Leshner, the publisher of Science, was speaking at the Canadian Federal Science & Technology
Forum, October 2, 2002.
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1. In April 1993, Enrico Au-Yeung, then an undergraduate at the University of
Waterloo, brought to my attention the result

∞

∑
k=1

(
1+

1
2
+ · · ·+ 1

k

)2

k−2 = 4.59987 . . . ≈ 17
4

ζ (4) =
17π4

360

He had spotted from six place accuracy that 0.047222 . . . = 17/360. I was very
skeptical, but Parsevals identity computations affirmed this to high precision. This
is effectively a special case of the following class

ζ (s1,s2, · · · ,sk) = ∑
n1>n2>···>nk>0

k

∏
j=1

n
−|s j |
j σ

−n j
j ,

where s j are integers and σ j = signums j. These can be rapidly computed as imple-
mented at www.cecm.sfu.ca/projects/ezface+. [11]. In the past 20 years they have
become of more and more interest in number theory, combinatorics, knot theory and
mathematical physics. A marvellous example is Zagier’s conjecture, found experi-
mentally and now proven in [11], viz;

ζ

 n︷ ︸︸ ︷
3,1,3,1, · · · ,3,1

=
2π4n

(4n+2)!
. (7)

Along the way to finding the proof we convinced ourselves that (7) held for
many values including n = 163 which required summing a slowly convergent 326-
dimensional sum to 1,000 places with our fast summation method. Equation (7) is
a remarkable non-commutative counterpart of the classical formula for ζ (2n) [11,
Ch. 3].

2. In the course of proving empirically-discovered conjectures about such mul-
tiple zeta values [10] we needed to obtain the coefficients in the partial fraction
expansion for

1
xs(1− x)t = ∑

j≥0

as,t
j

x j + ∑
j≥0

bs,t
j

(1− x) j . (8)

It transpires that

as,t
j =

(
s+ t− j−1

s− j

)
with a symmetric expression for bs,t

j . This was known to Euler and once known is
fairly easily proved by induction. But it can certainly be discovered in a CAS by
considering various rows or diagonals in the matrix of coefficients — and either
spotting the pattern or failing that by asking Sloane’s Encyclopedia. Partial frac-
tions like continued fractions and Gaussian elimination are the sort of task that once
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mastered are much better performed by computer while one focusses on the more
conceptual issues they expose.

3. We also needed to show that M := A+B−C was invertible where the n× n
matrices A,B,C respectively had entries

(−1)k+1
(

2n− j
2n− k

)
, (−1)k+1

(
2n− j
k−1

)
, (−1)k+1

(
j−1
k−1

)
. (9)

Thus, A and C are triangular while B is full. For example, in nine dimensions M is
displayed below

1 −34 272 −1360 4760 −12376 24752 −38896 48620

0 −16 136 −680 2380 −6188 12376 −19448 24310

0 −13 105 −470 1470 −3458 6370 −9438 11440

0 −11 88 −364 1015 −2093 3367 −4433 5005

0 −9 72 −282 715 −1300 1794 −2002 2002

0 −7 56 −210 490 −792 936 −858 715

0 −5 40 −145 315 −456 462 −341 220

0 −3 24 −85 175 −231 203 −120 55

0 −1 8 −28 56 −70 56 −28 9


After messing around futilely with lots of cases in an attempt to spot a pattern, it
occurred to me to ask Maple for the minimal polynomial of M.

> linalg[minpoly](M(12),t);

returns −2+ t + t2. Emboldened I tried

> linalg[minpoly](B(20),t);
> linalg[minpoly](A(20),t);
> linalg[minpoly](C(20),t);

and was rewarded with −1+ t3,−1+ t2,−1+ t2. Since a typical matrix has a full
degree minimal polynomial, we are quite assured that A,B,C really are roots of
unity. Armed with this discovery we are lead to try to prove

A2 = I, BC = A, C2 = I, CA = B2 (10)

which is a nice combinatorial exercise (by hand or computer). Clearly then we ob-
tain also

B3 = B ·B2 = B(CA) = (BC)A = A2 = I (11)

and the requisite formula
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M−1 =
M+ I

2

is again a fun exercise in formal algebra; in fact, we have

M2 = AA+AB−AC+BA+BB−BC−CA−CB+CC

= I +C−B−A+ I

= 2I−M.

It is also worth confirming that we have discovered an amusing presentation of
the symmetric group S3. �

Characteristic or minimal polynomials, entirely abstract for me as a student, now
become members of a rapidly growing box of concrete symbolic tools, as do many
matrix decomposition results, the use of Groebner bases, Robert Risch’s 1968 deci-
sion algorithm for when an elementary function has an elementary indefinite inte-
gral, and so on.

Example V: A Dynamic Discovery and Partial Proof

“Considerable obstacles generally present themselves to the beginner, in studying the ele-
ments of Solid Geometry, from the practice which has hitherto uniformly prevailed in this
country, of never submitting to the eye of the student, the figures on whose properties he is
reasoning, but of drawing perspective representations of them upon a plane. . . . I hope that
I shall never be obliged to have recourse to a perspective drawing of any figure whose parts
are not in the same plane.”—Augustus De Morgan (1806–1871) [31, p. 540]

In a wide variety of problems (protein folding, 3SAT, spin glasses, giant Sudoku,
etc.) we wish to find a point in the intersection of two sets A and B where B is non-
convex but “divide and concur” works better than theory can explain. Let PA(x) and
RA(x) := 2PA(x)− x denote respectively the projector and reflector on a set A, as
shown in Figure 5, where A is the boundary of the shaded ellipse. Then “divide and
concur” is the natural geometric iteration “reflect-reflect-average”:

xn+1 =→
xn +RA (RB(xn))

2
. (12)

Consider the simplest case of a line A of height α (all lines may be assumed
horizontal) and the unit circle B. With zn := (xn,yn) we obtain the explicit iteration

xn+1 := cosθn,yn+1 := yn +α− sinθn, (θn := argzn). (13)

For the infeasible case with α > 1 it is easy to see the iterates go to infinity
vertically. For the tangent α = 1 we provably converge to an infeasible point. For 0<
α < 1 the pictures are lovely but proofs escape me and my collaborators. Spiraling is
ubiquitous in this case. The iteration is illustrated in Figure 6 starting at (4.2,−0.51)
with α = 0.94. Two representative Maple pictures follow in Figure 7.
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Fig. 5 Reflector (interior) and Projector (boundary) of a point external to an ellipse.

Fig. 6 The first three iterates of (13) in Cinderella.

For α = 0 we can prove convergence to one of the two points in A∩B if and only
if we do not start on the vertical axis, where we provably have chaos.

Let me sketch how the interactive geometry Cinderella19 leads one both to dis-
covery and a proof in this equatorial case. Interactive applets are easily made and
the next two figures come from ones that are stored on line at

A1. http://users.cs.dal.ca/∼jborwein/reflection.html; and
A2. http://users.cs.dal.ca/∼jborwein/expansion.html respectively.

Figure 8 illustrates the applet A1. at work: by dragging the trajectory (with N =
28) one quickly discovers that

(i) as long as the iterate is outside the unit circle the next point is always closer to
the origin;

19 Available at http://www.cinderella.de.
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Fig. 7 The behaviour of (13) for α = 0.95 (L) and α = 1 (R).

Fig. 8 Discovery of the proof with α = 0.

(ii) once inside the circle the iterate never leaves;
(iii) the angle now oscillates to zero and the trajectory hence converges to (1,0).

All of this is quite easily made algebraic in the language of (13).
Figure 9 illustrates the applet A2. which takes up to 10,000 starting points in the

rectangle {(x,y) : 0≤ x≤ 1, |y−α‖≤ 1} coloured by distance from the vertical axis
with red on the axis and violet at x = 1, and produces the first hundred iterations in
gestalt. Thus, we see clearly but I cannot yet prove, that all points not on the y-axis
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are swept into the feasible point (
√

1−α2,α). It also shows that to accurately record
the behaviour Cinderella’s double precision is inadequate and hence provides a fine
if unexpected starting point for a discussion of numerical analysis and instability.

Fig. 9 Gestalt of 400 third steps in Cinderella without (L) and with Maple data (R).

Here we have a fine counter-example to an old mathematical bugaboo:

“A heavy warning used to be given [by lecturers] that pictures are not rigorous; this has
never had its bluff called and has permanently frightened its victims into playing for safety.
Some pictures, of course, are not rigorous, but I should say most are (and I use them when-
ever possible myself).”—J. E. Littlewood, (1885-1977)20

Á la Littlewood, I find it hard to persuade myself that the applet A2. does not
constitute a generic proof of what it displays in Figure 10. Cinderella’s numerical
instability is washed away in this profusion of accurate data. For all intents and
purposes, we have now run the algorithm from all relevant starting points.

We have also considered the analogous differential equation since asymptotic
techniques for such differential equations are better developed. We decided

x′(t) =
x(t)
r(t)
− x(t)r(t) :=

√
x(t)2 + y(t)2 ] (14)

y′(t) = α− y(t)
r(t)

20 From p. 53 of the 1953 edition of Littlewood’s Miscellany and so said long before the current
fine graphic, geometric, and other visualization tools were available; also quoted in [24].
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Fig. 10 Snapshots of 10,000 points after 0,2,7,13,16,21, and 27 steps in Cinderella.

Fig. 11 ODE solution and vector field for (14) with α = 0.97 in Cinderella.

was a reasonable counterpart to the Cartesian formulation of (13) — we have re-
placed the difference xn+1− xn by x′(t), etc. — as shown in Figure 11. Now we
have a whole other class of discoveries without proofs. For example, the differential
equation solution clearly performs like the discrete iteration solution.
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This is also an ideal problem to introduce early under-graduates to research as it
involves only school geometry notions and has many accessible extensions in two
or three dimensions. Much can be discovered and most of it will be both original
and unproven. Consider what happens when B is a line segment or a finite set rather
than a line or when A is a more general conic section.

Corresponding algorithms, like “project-project-average”, are representative of
what was used to correct the Hubble telescope’s early optical abberation problems.
�

Example VI: Knowledge without Proof

“All physicists and a good many quite respectable mathematicians are contemptuous about
proof.”—G. H. Hardy (1877-1947)21

A few years ago Guillera found various Ramanujan-like identities for π , includ-
ing three most basic ones:

128
π2 =

∞

∑
n=0

(−1)nr(n)5(13+180n+820n2)

(
1

32

)2n

(15)

8
π2 =

∞

∑
n=0

(−1)nr(n)5(1+8n+20n2)

(
1
2

)2n

(16)

32
π3

?
=

∞

∑
n=0

r(n)7(1+14n+76n2 +168n3)

(
1
8

)2n

. (17)

where

r(n) =
(1/2)n

n!
=

1/2 ·3/2 · · · · · (2n−1)/2
n!

=
Γ (n+1/2)√

π Γ (n+1)
.

As far as we can tell there are no analogous formulae for 1/πN with N ≥ 4. There
are, however, many variants based on other Pochhammer symbols.

Guillera proved (15) and (16) in tandem, by using very ingeniously the Wilf–
Zeilberger algorithm for formally proving hypergeometric-like identities [10, 6]. He
ascribed the third to Gourevich, who found it using integer relation methods [10, 6].
Formula (17) has been checked to extreme precision. It is certainly true but has no
proof, nor does anyone have an inkling of how to prove it, especially as experiment
suggests that it has no mate, unlike (15) and (16).

My by-now-sophisticated intuition on the matter tells me that if a proof exists
it is most probably more a verification than an explication and so I for one have
stopped looking. I am happy just to know the beautiful identity is true. It may be

21 In his famous Mathematician’s Apology of 1940. I can not resist noting that modern digital
assistance often makes more careful referencing unnecessary and sometimes even unhelpful!
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so for no good reason. It might conceivably have no proof and be a very concrete
Gödel statement. �

Example VII. A Mathematical Physics Limit

“Anyone who is not shocked by quantum theory has not understood a single word.”—Niels
Bohr22

The following N-dimensional integrals arise independently in mathematical physics,
indirectly in statistical mechanics of the Ising Model and as we discovered later more
directly in Quantum Field Theory:

CN =
4

N!

∫
∞

0
· · ·
∫

∞

0

1(
∑ .Nj=1(u j +1/u j)

)2
du1

u1
· · · duN

uN
. (18)

We first showed that CN can be transformed to a 1-D integral:

CN =
2N

N!

∫
∞

0
tKN

0 (t) dt (19)

where K0 is a modified Bessel function — Bessel functions which we met in Exam-
ple I are pervasive in analysis.

We then computed 400-digit numerical values. This is impossible for n≥ 4 from
(18) but accessible from (19) and a good algorithm for K0. Thence, we found the
following, now proven, results [4]:

C3 = L−3(2) := ∑
n≥0

{
1

(3n+1)2 −
1

(3n+2)2

}
C4 = 14ζ (3).

We also observed that

C1024 = 0.630473503374386796122040192710878904354587 . . .

and that the limit as N→ ∞ was the same to many digits. We then used the Inverse
Symbolic Calculator, the aforementioned online numerical constant recognition fa-
cility, at http://ddrive.cs.dal.ca/ isc/portal which returned

Output: Mixed constants, 2 with elementary transforms.
.6304735033743867 = sr(2)ˆ2/exp(gamma)ˆ2

from which we discovered that
22 As quoted in [8, p. 54] with a footnote citing The Philosophical Writings of Niels Bohr (1998).
(1885–1962).
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C1024 ≈ lim
n→∞

Cn = 2e−2γ .

Here γ = 0.57721566490153 . . . is Euler’s constant and is perhaps the most basic
constant which is not yet proven irrational [20]. The limit discovery showed the
Bessel function representation to be fundamental. Likewise ζ (3) = ∑

∞
n=1 1/n3 the

value of the Riemann zeta-function at 3, also called Apéry’s constant, was only
proven irrational in 1978 and the irrationality of ζ (5) remains unproven.

The discovery of the limit value, and its appearance in the literature of Bessel
functions, persuaded us the Bessel function representation (19) was fundamental —
not just technically useful — and indeed this is the form in which CN , for odd N
appears in quantum field theory [4]. �

Example VIII: Apéry’s formula

“Another thing I must point out is that you cannot prove a vague theory wrong. . . . Also,
if the process of computing the consequences is indefinite, then with a little skill any ex-
perimental result can be made to look like the expected consequences.”—Richard Feynman
(1918–1988)

Margo Kondratieva found the following identity in the 1890 papers of Markov [6]:

∞

∑
n=0

1

(n+a)3 =
1
4

∞

∑
n=0

(−1)n (n!)6

(2n+1)!

(
5 (n+1)2 +6 (a−1)(n+1)+2 (a−1)2

)
∏

n
k=0 (a+ k)4 .

(20)

Apéry’s 1978 formula

ζ (3) =
5
2

∞

∑
k=1

(−1)k+1

k3
(2k

k

) , (21)

which played a key role in his celebrated proof of the irrationality of ζ (3), is the
case with a = 0.

Luckily, by adopting Giaquinto’s accounting of discovery we are still entitled to
say that Apéry discovered the formula (21) which now bears his name.

We observe that Maple ‘establishes’ identity (20) in the hypergeometric formula

−1
2

Ψ (2,a) =−1
2

Ψ (2,a)−ζ (3)+
5
4 4F3

(
1,1,1,1
2,2, 3

2

∣∣∣∣− 1
4

)
,

that is, it has reduced it to a form of (21). �

Like much of mathematics, this last example leads to something whose compu-
tational consequences are very far from indefinite. Indeed, it is the rigidity of much
algorithmic mathematics that makes it so frequently the way hardware or software
errors, such as the ‘Pentium Bug’, are first uncovered.
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Example IX: When is easy bad?

Many algorithmic components of CAS are today extraordinarily effective when two
decades ago they were more like ‘toys’. This is equally true of extreme-precision
calculation — a prerequisite for much of my own work [3, 7] and others [9] — or
in combinatorics.

Consider the generating function of the number of additive partitions, p(n) of a
natural number where we ignore order and zeroes. Thus,

5 = 4+1 = 3+2 = 3+1+1 = 2+2+1 = 2+1+1+1 = 1+1+1+1+1

and so p(5) = 7. The ordinary generating function (22) discovered by Euler is

∞

∑
n=0

p(n)qn =
1

∏
∞
k=1 (1−qk)

. (22)

This is easily obtained by using the geometric formula for each 1/(1− qk) and
observing how many powers of qn are obtained. The famous and laborious compu-
tation by MacMahon of p(200) = 3972999029388 early last century, if done sym-
bolically and entirely naively from (22) on a reasonable laptop took 20 minutes in
1991, and about 0.17 seconds today, while

p(2000) = 4720819175619413888601432406799959512200344166

took about two minutes in 2009.
Moreover, Richard Crandall was able, in December 2008, to calculate p(109) in

3 seconds on his laptop, using Hardy-Ramanujan and Rademacher’s ‘finite’ series
along with FFT methods. The current ease of computation of p(500) directly from
(22) raises the question of what interesting mathematical discoveries does easy com-
putation obviate? �.

Likewise, the record for computation of π has gone from under 30 million deci-
mal digits in 1986 to over 5 trillion places this year [10].

3 Concluding Remarks

“We [Kaplansky and Halmos] share a philosophy about linear algebra: we think basis-free,
we write basis-free, but when the chips are down we close the office door and compute with
matrices like fury.”—Paul Halmos (1916–2006) [16]

Theory and practice should be better comported!
The students of today live, as we do, in an information-rich, judgement-poor

world in which the explosion of information, and of tools, is not going to diminish.
So we have to teach judgement (not just concern with plagiarism) when it comes
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to using what is already possible digitally. This means mastering the sorts of tools
I have illustrated. Additionally, it seems to me critical that we mesh our software
design — and our teaching style more generally — with our growing understanding
of our cognitive strengths and limitations as a species (as touched upon in Section
1). Judith Grabner, in her contribution to this volume, has noted that a large impetus
for the development of modern rigor in mathematics came with the Napoleonic
introduction of regular courses: Lectures and text books force a precision and a
codification that apprenticeship obviates.

As Dave Bailey noted to me recently in email:

“Moreover, there is a growing consensus that human minds are fundamentally not very good
at mathematics, and must be trained as Ifrah points out [23]. Given this fact, the computer
can be seen as a perfect complement to humans — we can intuit but not reliably calculate
or manipulate; computers are not yet very good at intuition, but are great at calculations and
manipulations.”

We also have to acknowledge that most of our classes will contain students with
a very broad variety of skills and interests (and relatively few future mathemati-
cians). Properly balanced, discovery and proof, assisted by good software, can live
side-by-side and allow for the ordinary and the talented to flourish in their own fash-
ion. Impediments to the assimilation of the tools I have illustrated are myriad as I
am only too aware from my own recent teaching experiences. These impediments
include our own inertia and organizational and technical bottlenecks (this is often
from poor IT design - not so much from too few dollars). The impediments certainly
include under-prepared or mis-prepared colleagues and the dearth of good material
from which to teach a modern syllabus.

Finally, it will never be the case that quasi-inductive mathematics supplants
proof. We need to find a new equilibrium. Consider the following empirically-
discovered identity

∞

∑
n=−∞

sinc(n)sinc(n/3)sinc(n/5) · · ·sinc(n/23)sinc(n/29) (23)

=
∫

∞

−∞

sinc(x)sinc(x/3)sinc(x/5) · · ·sinc(x/23)sinc(x/29)dx

where the denumerators range over the primes.
Provably, the following is true: The analogous “sum equals integral” identity

remains valid for more than the first 10,176 primes but stops holding after some
larger prime, and thereafter the ‘sum minus integral” is positive but much less than
one part in a googolplex [3]. It is hard to imagine that inductive mathematics alone
will ever be able to handle such behaviour . Nor, for that matter, is it clear to me what
it means psychologically to digest equations which are false by a near infinitesimal
amount.

That said, we are only beginning to scratch the surface of a very exciting set of
tools for the enrichment of mathematics, not to mention the growing power of formal
proof engines. I conclude with one of my favourite quotes from George Polya and
Jacques Hadamard:
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This “quasi-experimental” approach to proof can help to de-emphasise a focus on rigor and
formality for its own sake, and to instead support the view expressed by Hadamard when
he stated “The object of mathematical rigor is to sanction and legitimize the conquests of
intuition, and there was never any other object for it.” [28, (2) p. 127]

Unlike Frank Quinn [29] perhaps, I believe that in the most complex modern
cases certainty, in any reasonable sense, is unattainable through proof. I do believe
that even then quasi-inductive methods and experimentation can help us improve
our level of certainty. Like Reuben Hersh [22], I am happy to at least entertain some
“non-traditional forms of proof.” Never before have we had such a cornucopia of
fine tools to help us develop and improve our intuition. The challenge is to learn
how to harness them, how to develop and how to transmit the necessary theory and
practice.
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