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Christopher Koch [34] accurately captures a great scientific distaste for philosophizing:

“Whether we scientists are inspired, bored, or infuriated by philosophy, all our
theorizing and experimentation depends on particular philosophical background
assumptions. This hidden influence is an acute embarrassment to many re-
searchers, and it is therefore not often acknowledged.” (Christopher Koch, 2004)

That acknowledged, I am of the opinion that mathematical philosophy matters more
now than it has in nearly a century. The power of modern computers matched with that
of modern mathematical software and the sophistication of current mathematics is changing
the way we do mathematics.

In my view it is now both necessary and possible to admit quasi-empirical inductive
methods fully into mathematical argument. In doing so carefully we will enrich mathematics
and yet preserve the mathematical literature’s deserved reputation for reliability—even as the
methods and criteria change. What do I mean by reliability? Well, research mathematicians
still consult Euler or Riemann to be informed, anatomists only consult Harvey3 for historical
reasons. Mathematicians happily quote old papers as core steps of arguments, physical
scientists expect to have to confirm results with another experiment.

1 Mathematical Knowledge as I View It

Somewhat unusually, I can exactly place the day at registration that I became a mathemati-
cian and I recall the reason why. I was about to deposit my punch cards in the ‘honours
history bin’. I remember thinking

“If I do study history, in ten years I shall have forgotten how to use the calculus
properly. If I take mathematics, I shall still be able to read competently about the
War of 1812 or the Papal schism.” (Jonathan Borwein, 1968)

The inescapable reality of objective mathematical knowledge is still with me. Nonetheless,
my view then of the edifice I was entering is not that close to my view of the one I inhabit
forty years later.

1The companion web site is at www.experimentalmath.info
2Canada Research Chair, Faculty of Computer Science, 6050 University Ave, Dalhousie University, Nova

Scotia, B3H 1W5 Canada. E-mail: jborwein@cs.dal.ca
3William Harvey published the first accurate description of circulation, “An Anatomical Study of the

Motion of the Heart and of the Blood in Animals,” in 1628.



I also know when I became a computer-assisted fallibilist. Reading Imre Lakatos’ Proofs
and Refutations, [37], a few years later while a very new faculty member, I was suddenly
absolved from the grave sin of error, as I began to understand that missteps, mistakes and
errors are the grist of all creative work.4 The book, his doctorate posthumously published
in 1976, is a student conversation about the Euler characteristic. The students are of var-
ious philosophical stripes and the discourse benefits from his early work on Hegel with the
Stalinist Lukács in Hungary and from later study with Karl Popper at the London School
of Economics. I had been prepared for this dispensation by the opportunity to learn a va-
riety of subjects from Michael Dummett. Dummett was at that time completing his study
rehabilitating Frege’s status, [23].

A decade later the appearance of the first ‘portable’ computers happily coincided with my
desire to decode Srinivasa Ramanujan’s (1887–1920) cryptic assertions about theta functions
and elliptic integrals, [13]. I realized that by coding his formulae and my own in the APL
programming language5, I was able to rapidly confirm and refute identities and conjectures
and to travel much more rapidly and fearlessly down potential blind alleys. I had become
a computer-assisted fallibilist; at first somewhat falteringly but twenty years have certainly
honed my abilities.

Today, while I appreciate fine proofs and aim to produce them when possible, I no longer
view proof as the royal road to secure mathematical knowledge.

2 Introduction

I first discuss my views, and those of others, on the nature of mathematics, and then illustrate
these views in a variety of mathematical contexts. A considerably more detailed treatment
of many of these topics is to be found in my book with Dave Bailey entitled Mathematics
by Experiment: Plausible Reasoning in the 21st Century—especially in Chapters One, Two
and Seven, [9]. Additionally, [2] contains several pertinent case studies as well as a version
of this current chapter.

Kurt Gödel may well have overturned the mathematical apple cart entirely deductively,
but nonetheless he could hold quite different ideas about legitimate forms of mathematical
reasoning, [27]:

“If mathematics describes an objective world just like physics, there is no reason
why inductive methods should not be applied in mathematics just the same as in
physics.” (Kurt Gödel6, 1951)

4Gila Hanna [29] takes a more critical view placing more emphasis on the role of proof and certainty in
mathematics; I do not disagree, so much as I place more value on the role of computer-assisted refutation.
Also ’certainty’ usually arrives late in the development of a proof.

5Known as a ‘write only’ very high level language, APL was a fine tool; albeit with a steep learning curve
whose code is almost impossible to read later.

6Taken from a previously unpublished work, [27].
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While we mathematicians have often separated ourselves from the sciences, they have
tended to be more ecumenical. For example, a recent review of Models. The Third Dimension
of Science, [17], chose a mathematical plaster model of a Clebsch diagonal surface as its only
illustration. Similarly, authors seeking examples of the aesthetic in science often choose
iconic mathematics formulae such as E = MC2.

Let me begin by fixing a few concepts before starting work in earnest. Above all, I hope
to persuade you of the power of mathematical experimentation—it is also fun—and that
the traditional accounting of mathematical learning and research is largely an ahistorical
caricature. I recall three terms.
mathematics, n. a group of related subjects, including algebra, geometry, trigonometry
and calculus, concerned with the study of number, quantity, shape, and space, and their
inter-relationships, applications, generalizations and abstractions.

This definition–taken from my Collins Dictionary [6]—makes no immediate mention of
proof, nor of the means of reasoning to be allowed. The Webster’s Dictionary [53] contrasts:
induction, n. any form of reasoning in which the conclusion, though supported by the
premises, does not follow from them necessarily.; and
deduction, n. a process of reasoning in which a conclusion follows necessarily from the
premises presented, so that the conclusion cannot be false if the premises are true.
b. a conclusion reached by this process.

Like Gödel, I suggest that both should be entertained in mathematics. This is certainly
compatible with the general view of mathematicians that in some sense “mathematical stuff
is out there” to be discovered. In this paper, I shall talk broadly about experimental and
heuristic mathematics, giving accessible, primarily visual and symbolic, examples.

3 Philosophy of Experimental Mathematics

“The computer has in turn changed the very nature of mathematical experience,
suggesting for the first time that mathematics, like physics, may yet become an
empirical discipline, a place where things are discovered because they are seen.”
(David Berlinski, [4])

The shift from typographic to digital culture is vexing for mathematicians. For example,
there is still no truly satisfactory way of displaying mathematics on the web–and certainly
not of asking mathematical questions. Also, we respect authority, [28], but value authorship
deeply—however much the two values are in conflict, [16]. For example, the more I recast
someone else’s ideas in my own words, the more I enhance my authorship while undermining
the original authority of the notions. Medieval scribes had the opposite concern and so took
care to attribute their ideas to such as Aristotle or Plato.

And we care more about the reliability of our literature than does any other science,
Indeed I would argue that we have over-subscribed to this notion and often pay lip-service
not real attention to our older literature. How often does one see original sources sprinkled
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like holy water in papers that make no real use of them–the references offering a false sense
of scholarship?

The traditional central role of proof in mathematics is arguably and perhaps appropriately
under siege. Via examples, I intend to pose and answer various questions. I shall conclude
with a variety of quotations from our progenitors and even contemporaries:
My Questions. What constitutes secure mathematical knowledge? When is computation
convincing? Are humans less fallible? What tools are available? What methodologies?
What of the ‘law of the small numbers’? Who cares for certainty? What is the role of
proof? How is mathematics actually done? How should it be? I mean these questions both
about the apprehension (discovery) and the establishment (proving) of mathematics. This
is presumably more controversial in the formal proof phase.
My Answers. To misquote D’Arcy Thompson (1860–1948) ‘form follows function’, [51]:
rigour (proof) follows reason (discovery); indeed, excessive focus on rigour has driven us
away from our wellsprings. Many good ideas are wrong. Not all truths are provable, and
not all provable truths are worth proving. Gödel’s incompleteness results certainly showed
us the first two of these assertions while the third is the bane of editors who are frequently
presented with correct but unexceptional and unmotivated generalizations of results in the
literature. Moreover, near certainty is often as good as it gets—intellectual context (com-
munity) matters. Recent complex human proofs are often very long, extraordinarily subtle
and fraught with error—consider, Fermat’s last theorem, the Poincaré conjecture, the clas-
sification of finite simple groups, presumably any proof of the Riemann hypothesis, [25]. So
while we mathematicians publicly talk of certainty we really settle for security.

In all these settings, modern computational tools dramatically change the nature and
scale of available evidence. Given an interesting identity buried in a long and complicated
paper on an unfamiliar subject, which would give you more confidence in its correctness:
staring at the proof, or confirming computationally that it is correct to 10,000 decimal
places?

Here is such a formula, [3, p. 20]:
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This identity links a volume (the integral) to an arithmetic quantity (the sum). It arose out
of some studies in quantum field theory, in analysis of the volumes of ideal tetrahedra in
hyperbolic space. The question mark is used because, while no hint of a path to a formal
proof is yet known, it has been verified numerically to 20,000 digit precision–using 45 minutes
on 1024 processors at Virginia Tech.

A more inductive approach can have significant benefits. For example, as there is still
some doubt about the proof of the classification of finite simple groups it is important to
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ask whether the result is true but the proof flawed, or rather if there is still perhaps an
‘ogre’ sporadic group even larger than the ‘monster’? What heuristic, probabilistic or com-
putational tools can increase our confidence that the ogre does or does not exist? Likewise,
there are experts who still believe the Riemann hypothesis7 (RH) may be false and that the
billions of zeroes found so far are much too small to be representative.8 In any event, our
understanding of the complexity of various crypto-systems relies on (RH) and we should like
secure knowledge that any counter-example is enormous.

Peter Medawar (1915–87)—a Nobel prize winning oncologist and a great expositor of
science—writing in Advice to a Young Scientist, [43], identifies four forms of scientific exper-
iment:

1. The Kantian experiment: generating “the classical non-Euclidean geometries (hyper-
bolic, elliptic) by replacing Euclid’s axiom of parallels (or something equivalent to it) with
alternative forms.” All mathematicians perform such experiments while the majority of
computer explorations are of the following Baconian form.

2. The Baconian experiment is a contrived as opposed to a natural happening, it “is the
consequence of ‘trying things out’ or even of merely messing about.” Baconian experiments
are the explorations of a happy if disorganized beachcomber and carry little predictive power.

3. Aristotelian demonstrations: “apply electrodes to a frog’s sciatic nerve, and lo, the leg
kicks; always precede the presentation of the dog’s dinner with the ringing of a bell, and lo,
the bell alone will soon make the dog dribble.” Arguably our ‘Corollaries’ and ’Examples’
are Aristotelian, they reinforce but do not predict. Medawar then says the most important
form of experiment is:

4. The Galilean experiment is “a critical experiment – one that discriminates between
possibilities and, in doing so, either gives us confidence in the view we are taking or makes
us think it in need of correction.” The Galilean the only form of experiment which stands to
make Experimental Mathematics a serious enterprise. Performing careful, replicable Galilean
experiments requires work and care.

Reuben Hersh’s arguments for a humanist philosophy of mathematics, especially [30, pp.
590–591] and [31, p. 22], as paraphrased below, become even more convincing in our highly
computational setting.

1. Mathematics is human. It is part of and fits into human culture. It does not match
Frege’s concept of an abstract, timeless, tenseless, objective reality.9

2. Mathematical knowledge is fallible. As in science, mathematics can advance by making
mistakes and then correcting or even re-correcting them. The “fallibilism” of mathematics
is brilliantly argued in Lakatos’ Proofs and Refutations.

3. There are different versions of proof or rigor. Standards of rigor can vary depending
on time, place, and other things. The use of computers in formal proofs, exemplified by

7All non-trivial zeroes—not negative even integers—of the zeta function lie on the line with real part 1/2.
8See [44] and various of Andrew Odlyzko’s unpublished but widely circulated works.
9That Frege’s view of mathematics is wrong, for Hersh as for me, does not diminish its historical impor-

tance.
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the computer-assisted proof of the four color theorem in 1977,10 is just one example of an
emerging nontraditional standard of rigor.

4. Empirical evidence, numerical experimentation and probabilistic proof all can help us
decide what to believe in mathematics. Aristotelian logic isn’t necessarily always the best
way of deciding.

5. Mathematical objects are a special variety of a social-cultural-historical object. Con-
trary to the assertions of certain post-modern detractors, mathematics cannot be dismissed as
merely a new form of literature or religion. Nevertheless, many mathematical objects can be
seen as shared ideas, like Moby Dick in literature, or the Immaculate Conception in religion.

I entirely subscribe to points 2., 3., 4., and with certain caveats about objective knowl-
edge11 to points 1. and 5. In any event mathematics is and will remain a uniquely human
undertaking.

This version of humanism sits fairly comfortably along-side current versions of social-
constructivism as described next.

“The social constructivist thesis is that mathematics is a social construction, a
cultural product, fallible like any other branch of knowledge.” (Paul Ernest, [26])

But only if I qualify this with “Yes, but much-much less fallible than most branches of
knowledge.” Associated most notably with the writings of Paul Ernest—an English Math-
ematician and Professor in the Philosophy of Mathematics Education who traces the in-
tellectual pedigree for his thesis, a pedigree that encompasses the writings of Wittgenstein,
Lakatos, Davis, and Hersh among others—social constructivism seeks to define mathematical
knowledge and epistemology through the social structure and interactions of the mathemat-
ical community and society as a whole.

This interaction often takes place over very long periods. Many of the ideas our students—
and some colleagues—take for granted took a great deal of time to gel. The Greeks suspected
the impossibility of the three classical construction problems 12 and the irrationality of the
golden mean was well known to the Pythagoreans.

While concerns about potential and completed infinities are very old, until the advent
of the calculus with Newton and Leibnitz and the need to handle fluxions or infinitesimals,
the level of need for rigour remained modest. Certainly Euclid is in its geometric domain
generally a model of rigour, while also Archimedes’ numerical analysis was not equalled until
the 19th century.

10Especially, since a new implementation by Seymour, Robertson and Thomas in 1997 which has produced
a simpler, clearer and less troubling implementation.

11While it is not Hersh’s intention, a superficial reading of point 5. hints at a cultural relativism to which
I certainly do not subscribe.

12Trisection, circle squaring and cube doubling were taken by the educated to be impossible in antiquity.
Already in 414 BCE, in his play The Birds, Aristophanes uses ‘circle-squarers’ as a term for those who attempt
the impossible. Similarly, the French Academy stopped accepting claimed proofs a full two centuries before
the 19th century achieved proofs of their impossibility.
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The need for rigour arrived in full force in the time of Cauchy and Fourier. The treacher-
ous countably infinite processes of analysis and the limitations of formal manipulation came
to the fore. It is difficult with a modern sensibility to understand how Cauchy’s proof of
the continuity of pointwise-limits could coexist in texts for a generation with clear counter-
examples originating in Fourier’s theory of heat.13

By the end of the 19th century Frege’s (1848-1925) attempt to base mathematics in a
linguistically based logicism had foundered on Russell and other’s discoveries of the paradoxes
of naive set theory. Within thirty five years Gödel—and then Turing’s more algorithmic
treatment14—had similarly damaged both Russell and Whitehead’s and Hilbert’s programs.

Throughout the twentieth century, bolstered by the armor of abstraction, the great ship
Mathematics has sailed on largely unperturbed. During the last decade of the 19th and first
few decades of the 20th century the following main streams of philosophy emerged explicitly
within mathematics to replace logicism, but primarily as the domain of philosophers and
logicians.

• Platonism. Everyman’s idealist philosophy—stuff exists and we must find it. De-
spite being the oldest mathematical philosophy, Platonism—still predominant among
working mathematicians—was only christened in 1934 by Paul Bernays.15

• Formalism. Associated mostly with Hilbert—it asserts that mathematics is invented
and is best viewed as formal symbolic games without intrinsic meaning.

• Intuitionism. Invented by Brouwer and championed by Heyting, intuitionism asks for
inarguable monadic components that can be fully analyzed and has many variants;
this has interesting overlaps with recent work in cognitive psychology such as Lakoff
and Nunez’ work, [38], on ‘embodied cognition’.16

• Constructivism. Originating with Markoff and especially Kronecker (1823–1891), and
refined by Bishop it finds fault with significant parts of classical mathematics. Its ‘I’m
from Missouri, tell me how big it is’ sensibility is not to be confused with Paul Ernest’s
‘social constructivism’, [26].

The last two philosophies deny the principle of the excluded middle, “A or not A”,
and resonate with computer science—as does some of formalism. It is hard after all to
run a deterministic program which does not know which disjunctive logic-gate to follow.

13Cauchy’s proof appeared in his 1821 text on analysis. While counterexamples were pointed out almost
immediately, Stokes and Seidel were still refining the missing uniformity conditions in the late 1840s.

14The modern treatment of incompleteness leans heavily on Turing’s analysis of the Halting problem for
so-called Turing machines.

15See Karlis Podnieks, “Platonism, Intuition and the Nature on Mathematics”, available at
http://www.ltn.lv/ podnieks/gt1.html

16The cognate views of Henri Poincaré (1854–1912), [46, p. 23] on the role of the subliminal are reflected
in “The mathematical facts that are worthy of study are those that, by their analogy with other facts are
susceptible of leading us to knowledge of a mathematical law, in the same way that physical facts lead us to
a physical law.” He also wrote “It is by logic we prove, it is by intuition that we invent,” [47].
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By contrast the battle between a Platonic idealism (a ‘deductive absolutism’) and various
forms of ‘fallibilism’(a quasi-empirical ‘relativism’) plays out across all four, but fallibilism
perhaps lives most easily within a restrained version of intuitionism which looks for ‘intuitive
arguments’ and is willing to accept that ‘a proof is what convinces’. As Lakatos shows, an
argument that was convincing a hundred years ago may well now be viewed as inadequate.
And one today trusted may be challenged in the next century.

As we illustrate in the next section or two, it is only perhaps in the last twenty five years,
with the emergence of powerful mathematical platforms, that any approach other than a
largely undigested Platonism and a reliance on proof and abstraction has had the tools17 to
give it traction with working mathematicians.

In this light, Hales’ proof of Kepler’s conjecture that the densest way to stack spheres
is in a pyramid resolves the oldest problem in discrete geometry. It also supplies the most
interesting recent example of intensively computer-assisted proof, and after five years with
the review process was published in the Annals of Mathematics—with an “only 99% checked”
disclaimer.

This process has triggered very varied reactions [33] and has provoked Thomas Hales to
attempt a formal computational proof which he expects to complete by 2011, [25]. Famous
earlier examples of fundamentally computer-assisted proof include the Four color theorem
and proof of the Non-existence of a projective plane of order 10. The three raise and answer
quite distinct questions about computer-assisted proof—both real and specious. For example,
there were real concerns about the completeness of the search in the 1976 proof of the Four
color theorem but there should be none about the 1997 reworking by Seymour, Robertson
and Thomas.18 Correspondingly, Lam deservedly won the 1992 Lester R. Ford award for
his compelling explanation of why to trust his computer when it announced there was no
plane of order ten, [39]. Finally, while it is reasonable to be concerned about the certainty
of Hales’ conclusion, was it really the Annal’s purpose to suggest all other articles have been
more than 99% certified?

To make the case as to how far mathematical computation has come we trace the changes
over the past half century. The 1949 computation of π to 2,037 places suggested by von
Neumann, took 70 hours. A billion digits may now be computed in much less time on a
laptop. Strikingly, it would have taken roughly 100,000 ENIAC’s to store the Smithsonian’s
picture—as is possible thanks to 40 years of Moore’s law in action . . ..19

This is an astounding record of sustained exponential progress without peer in the history
of technology. Additionally, mathematical tools are now being implemented on parallel
platforms, providing much greater power to the research mathematician. Amassing huge
amounts of processing power will not alone solve many mathematical problems. There are
very few mathematical ‘Grand-challenge problems’, [12] where, as in the physical sciences,
a few more orders of computational power will resolve a problem.

17That is, to broadly implement Hersh’s central points (2.-4.).
18See http://www.math.gatech.edu/ thomas/FC/fourcolor.html.
19Moore’s Law is now taken to be the assertion that semiconductor technology approximately doubles in

capacity and performance roughly every 18 to 24 months.
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For example, an order of magnitude improvement in computational power currently trans-
lates into one more day of accurate weather forecasting, while it is now common for biomed-
ical researchers to design experiments today whose outcome is predicated on ‘peta-scale‘
computation being available by say 2010, [50]. There is, however, much more value in very
rapid ‘Aha’s’ as can be obtained through “micro-parallelism”; that is, where we benefit by
being able to compute many simultaneous answers on a neurologically-rapid scale and so can
hold many parts of a problem in our mind at one time.

To sum up, in light of the discussion and terms above, I now describe myself a a social-
constructivist, and as a computer-assisted fallibilist with constructivist leanings. I believe
that more-and-more the interesting parts of mathematics will be less-and-less susceptible to
classical deductive analysis and that Hersh’s ‘non-traditional standard of rigor’ must come
to the fore.

4 Our Experimental Mathodology

Despite Picasso’s complaint that “computers are useless, they only give answers,” the main
goal of computation in pure mathematics is arguably to yield insight. This demands speed
or, equivalently, substantial micro-parallelism to provide answers on a cognitively relevant
scale; so that we may ask and answer more questions while they remain in our consciousness.
This is relevant for rapid verification; for validation; for proofs and especially for refutations
which includes what Lakatos calls “monster barring”, [37]. Most of this goes on in the daily
small-scale accretive level of mathematical discovery but insight is gained even in cases like
the proof of the Four color theorem or the Non-existence of a plane of order ten. Such
insight is not found in the case-enumeration of the proof, but rather in the algorithmic
reasons for believing that one has at hand a tractable unavoidable set of configurations
or another effective algorithmic strategy. For instance, Lam [39] ran his algorithms on
known cases in various subtle ways, and also explained why built-in redundancy made the
probability of machine-generated error negligible. More generally, the act of programming—
if well performed—always leads to more insight about the structure of the problem.

In this setting it is enough to equate parallelism with access to requisite more space
and speed of computation. Also, we should be willing to consider all computations as ‘ex-
act’ which provide truly reliable answers.20 This now usually requires a careful hybrid of
symbolic and numeric methods, such as achieved by Maple’s liaison with the Numerical Al-
gorithms Group (NAG) Library21, see [5, 8]. There are now excellent tools for such purposes
throughout analysis, algebra, geometry and topology, see [9, 10, 5, 12, 15].

Along the way questions required by—or just made natural by—computing start to force
out older questions and possibilities in the way beautifully described a century ago by Dewey
regarding evolution.

20If careful interval analysis can certify that a number known to be integer is larger that 2.5 and less than
3.5, this constitutes an exact computational proof that it is 3.

21See http://www.nag.co.uk/.
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“Old ideas give way slowly; for they are more than abstract logical forms and
categories. They are habits, predispositions, deeply engrained attitudes of aver-
sion and preference. Moreover, the conviction persists—though history shows it
to be a hallucination—that all the questions that the human mind has asked are
questions that can be answered in terms of the alternatives that the questions
themselves present. But in fact intellectual progress usually occurs through sheer
abandonment of questions together with both of the alternatives they assume; an
abandonment that results from their decreasing vitality and a change of urgent
interest. We do not solve them: we get over them. Old questions are solved by
disappearing, evaporating, while new questions corresponding to the changed atti-
tude of endeavor and preference take their place. Doubtless the greatest dissolvent
in contemporary thought of old questions, the greatest precipitant of new methods,
new intentions, new problems, is the one effected by the scientific revolution that
found its climax in the ‘Origin of Species.’ ” (John Dewey, [20])

Lest one think this a feature of the humanities and the human sciences, consider the
artisanal chemical processes that have been lost as they were replaced by cheaper industrial
versions. And mathematics is far from immune. Felix Klein, quoted at length in the intro-
duction to [11], laments that “now the younger generation hardly knows abelian functions.”
He goes on to explain that:

“In mathematics as in the other sciences, the same processes can be observed
again and again. First, new questions arise, for internal or external reasons,
and draw researchers away from the old questions. And the old questions, just
because they have been worked on so much, need ever more comprehensive study
for their mastery. This is unpleasant , and so one is glad to turn to problems
that have been less developed and therefore require less foreknowledge—even if it
is only a matter of axiomatics, or set theory, or some such thing.” (Felix Klein,
[32, p. 294])

Freeman Dyson has likewise gracefully described how taste changes:

“I see some parallels between the shifts of fashion in mathematics and in music.
In music, the popular new styles of jazz and rock became fashionable a little earlier
than the new mathematical styles of chaos and complexity theory. Jazz and rock
were long despised by classical musicians, but have emerged as art-forms more
accessible than classical music to a wide section of the public. Jazz and rock
are no longer to be despised as passing fads. Neither are chaos and complexity
theory. But still, classical music and classical mathematics are not dead. Mozart
lives, and so does Euler. When the wheel of fashion turns once more, quantum
mechanics and hard analysis will once again be in style.” (Freeman Dyson, [24])

For example recursively defined objects were once anathema—Ramanujan worked very
hard to replace lovely iterations by sometimes-obscure closed-form approximations. Addi-
tionally, what is “easy” changes: high performance computing and networking are blurring,
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merging disciplines and collaborators. This is democratizing mathematics but further chal-
lenging authentication—consider how easy it is to find information on Wikipedia22 and how
hard it is to validate it.

Moving towards a well articulated Experimental Mathodology—both in theory and practice—
will take much effort. The need is premised on the assertions that intuition is acquired—we
can and must better mesh computation and mathematics, and that visualization is of growing
importance—in many settings even three is a lot of dimensions.

“Monster-barring” (Lakatos’s term, [37], for refining hypotheses to rule out nasty counter-
examples23) and “caging” (Nathalie Sinclair tells me this is my own term for imposing needed
restrictions in a conjecture) are often easy to enhance computationally, as for example with
randomized checks of equations, linear algebra, and primality or graphic checks of equalities,
inequalities, areas, etc. Moreover, our mathodology fits well with the kind of pedagogy
espoused at a more elementary level (and without the computer) by John Mason in [42].

4.1 Eight Roles for Computation

I next recapitulate eight roles for computation that Bailey and I discuss in our two recent
books [9, 10]:

#1. Gaining insight and intuition or just knowledge. Working algorithmically with
mathematical objects almost inevitably adds insight to the processes one is studying.
At some point even just the careful aggregation of data leads to better understanding.

#2. Discovering new facts, patterns and relationships. The number of additive
partitions of a positive integer n, p(n), is generated by

P (q) := 1 +
∑

n≥1

p(n)qn =
1

∏∞

n=1
(1 − qn)

. (2)

Thus, p(5) = 7 since

5 = 4 + 1 = 3 + 2 = 3 + 1 + 1 = 2 + 2 + 1 = 2 + 1 + 1 + 1 = 1 + 1 + 1 + 1 + 1.

Developing (2) is a fine introduction to enumeration via generating functions. Additive
partitions are harder to handle than multiplicative factorizations, but they are very
interesting, [10, Chapter 4]. Ramanujan used Major MacMahon’s table of p(n) to
intuit remarkable deep congruences such as

p(5n+4) ≡ 0 mod 5, p(7n+5) ≡ 0 mod 7, p(11n+6) ≡ 0 mod 11,

22Wikipedia is an open source project at http://en.wikipedia.org/wiki/Main Page; “wiki-wiki” is
Hawaiian for “quickly”.

23Is, for example, a polyhedron always convex? Is a curve intended to be simple? Is a topology assumed
Hausdorff, a group commutative?
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from relatively limited data like

P (q) = 1 + q + 2 q2 + 3 q3 + 5 q4 + 7 q5 + 11 q6 + 15 q7

+ 22 q8 + 30 q9 + 42 q10 + 56 q11 + 77 q12 + 101 q13 + 135 q14

+ 176 q15 + 231 q16 + 297 q17 + 385 q18 + 490 q19

+ 627 q20b + 792 q21 + 1002 q22 + · · · + p(200)q200 + · · · (3)

Cases 5n+4 and 7n+5 are flagged in (3). Of course, it is markedly easier to (heuristi-
cally) confirm than find these fine examples of Mathematics: the science of patterns.24

The study of such congruences—much assisted by symbolic computation—is very ac-
tive today.

#3. Graphing to expose mathematical facts, structures or principles. Consider
Nick Trefethen’s fourth challenge problem as described in [5, 8]. It requires one to find
ten good digits of:

4. What is the global minimum of the function

exp(sin(50x))+sin(60ey)+sin(70 sinx)+sin(sin(80y))−sin(10(x+y))+(x2+y2)/4?

As a foretaste of future graphic tools, one can solve this problem graphically and in-
teractively using current adaptive 3-D plotting routines which can catch all the bumps.
This does admittedly rely on trusting a good deal of software.

#4. Rigourously testing and especially falsifying conjectures. I hew to the Poppe-
rian scientific view that we primarily falsify; but that as we perform more and more
testing experiments without such falsification we draw closer to firm belief in the truth
of a conjecture such as: the polynomial P (n) = n2 − n + p has prime values for all
n = 0, 1, . . . , p − 2, exactly for Euler’s lucky prime numbers, that is, p= 2, 3, 5, 11,
17, and 41.25

#5. Exploring a possible result to see if it merits formal proof. A conventional
deductive approach to a hard multi-step problem really requires establishing all the
subordinate lemmas and propositions needed along the way—especially if they are
highly technical and un-intuitive. Now some may be independently interesting or use-
ful, but many are only worth proving if the entire expedition pans out. Computational
experimental mathematics provides tools to survey the landscape with little risk of
error: only if the view from the summit is worthwhile, does one lay out the route
carefully. I discuss this further at the end of the next Section.

#6. Suggesting approaches for formal proof. The proof of the cubic theta function
identity discussed on [10, pp. 210] shows how a fully intelligible human proof can be
obtained entirely by careful symbolic computation.

24The title of Keith Devlin’s 1996 book, [21].
25See [54] for the answer.

12



#7. Computing replacing lengthy hand derivations. Who would wish to verify the
following prime factorization by hand?

6422607578676942838792549775208734746307

= (2140992015395526641)(1963506722254397)(1527791).

Surely, what we value is understanding the underlying algorithm, not the human work?

#8. Confirming analytically derived results. This is a wonderful and frequently ac-
cessible way of confirming results. Even if the result itself is not computationally
checkable, there is often an accessible corollary. An assertion about bounded operators
on Hilbert space may have a useful consequence for three-by-three matrices. It is also
an excellent way to error correct, or to check calculus examples before giving a class.

5 Finding Things versus Proving Things

I now illuminate these eight roles with eight mathematical examples. At the end of each I
note some of the roles illustrated.

1. Pictorial comparison of y − y2 and y2 − y4 to −y2 ln(y), when y lies in the unit
interval, is a much more rapid way to divine which function is larger than by using
traditional analytic methods.

Figure 1 below shows that it is clear in the latter case the functions cross, and so it is
futile to try to prove one majorizes the other. In the first case, evidence is provided
to motivate attempting a proof and often the picture serves to guide such a proof—by
showing monotonicity or convexity or some other salient property. �

This certainly illustrates roles #3 and #4, and perhaps role #5.

Figure 1. (Ex. 1.): Graphical comparison of −x2 ln(x) (lower local maximum in
both graphs) with x − x2 (left graph) and x2 − x4 (right graph)

2. A proof and a disproof. Any modern computer algebra can tell one that

0 <

∫

1

0

(1 − x)4x4

1 + x2
dx =

22

7
− π, (4)
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since the integral may be interpreted as the area under a positive curve. We are
however no wiser as to why! If however we ask the same system to compute the
indefinite integral, we are likely to be told that

∫ t

0

· =
1

7
t7 − 2

3
t6 + t5 − 4

3
t3 + 4 t − 4 arctan (t) .

Then (4) is now rigourously established by differentiation and an appeal to the Fun-
damental theorem of calculus. �

This illustrates roles #1 and #6. It also falsifies the bad conjecture that π = 22/7 and
so illustrates #4 again. Finally, the computer’s proof is easier (#7) and very nice, though
probably it is not the one we would have developed by ourselves. The fact that 22/7 is a
continued fraction approximation to π has led to many hunts for generalizations of (4), see
[10, Chapter 1]. None so far are entirely successful.

3. A computer discovery and a ‘proof’ of the series for arcsin2(x). We compute
a few coefficients and observe that there is a regular power of 4 in the numerator, and
integers in the denominator; or equivalently we look at arcsin(x/2)2. The generating
function package ‘gfun’ in Maple, then predicts a recursion, r, for the denominators
and solves it, as R.

>with(gfun):

>s:=[seq(1/coeff(series(arcsin(x/2)^2,x,25),x,2*n),n=1..6)]:

>R:=unapply(rsolve(op(1, listtorec(s,r(m))),r(m)),m);[seq(R(m),m=0..8)];

yields, s := [4, 48, 360, 2240, 12600, 66528],

R := m 7→ 8
4m Γ(3/2 + m)(m + 1)

π1/2Γ(1 + m)
,

where Γ is the Gamma function, and then returns the sequence of values

[4, 48, 360, 2240, 12600, 66528, 336336, 1647360, 7876440].

We may now use Sloane’s Online Encyclopedia of Integer Sequences26 to reveal that
the coefficients are R(n) = 2n2

(

2n
n

)

. More precisely, sequence A002544 identifies

R(n + 1)/4 =
(

2n+1

n

)

(n + 1)2.

> [seq(2*n^2*binomial(2*n,n),n=1..8)];

confirms this with

[4, 48, 360, 2240, 12600, 66528, 336336, 1647360].

Next we write
26At www.research.att.com/∼njas/sequences/index.html
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> S:=Sum((2*x)^(2*n)/(2*n^2*binomial(2*n,n)),n=1..infinity):S=values(S);

which returns
1

2

∞
∑

n=1

(2 x)2n

n2
(

2n
n

) = arcsin2(x).

That is, we have discovered—and proven if we trust or verify Maple’s summation
algorithm—the desired Maclaurin series.

As prefigured by Ramanujan, it transpires that there is a beautiful closed form for
arcsin2m(x) for all m = 1, 2, . . .. In [14] there is a discussion of the use of integer
relation methods, [9, Chapter 6], to find this closed form and associated proofs are
presented. �

Here we see an admixture of all of the roles save #3, but above all #2 and #5.

4. Discovery without proof. Donald Knuth27 asked for a closed form evaluation of:

∞
∑

k=1

{

kk

k! ek
− 1√

2 π k

}

= −0.084069508727655 . . . . (5)

Since about 2000 CE it has been easy to compute 20—or 200—digits of this sum
in Maple or Mathematica; and then to use the ‘smart lookup’ facility in the Inverse
Symbolic Calculator(ISC). The ISC at http://oldweb.cecm.sfu.ca/projects/ISC

uses a variety of search algorithms and heuristics to predict what a number might
actually be. Similar ideas are now implemented as ‘identify’ in Maple and (for algebraic
numbers only) as ‘Recognize’ in Mathematica, and are described in [8, 9, 15, 1]. In this
case it rapidly returns

0.084069508727655 ≈ 2

3
+

ζ (1/2)√
2 π

.

We thus have a prediction which Maple 9.5 on a 2004 laptop confirms to 100 places in
under 6 seconds and to 500 in 40 seconds. Arguably we are done. After all we were
asked to evaluate the series and we now know a closed-form answer.

Notice also that the ‘divergent’ ζ(1/2) term is formally to be expected in that while
∑∞

n=1
1/n1/2 = ∞, the analytic continuation of ζ(s) :=

∑∞

n=1
1/ns for s > 1 evaluated

at 1/2 does occur! �

We have discovered and tested the result and in so doing gained insight and knowledge
while illustrating roles #1, #2 and #4. Moreover, as described in [10, pp. 15], one can also
be led by the computer to a very satisfactory computer-assisted but also very human proof,

27Posed as an MAA Problem [35].
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thus illustrating role #6. Indeed, the first hint is that the computer algebra system returned
the value in (5) very quickly even though the series is very slowly convergent. This suggests
the program is doing something intelligent—and it is! Such a use of computing is termed
“instrumental” in that the computer is fundamental to the process, see [40].

5. A striking conjecture with no known proof strategy (as of spring 2007) given
in [10, p. 162] is: for n = 1, 2, 3 · · ·

8n ζ
(

{2, 1}n

) ?
= ζ ({2, 1}n) . (6)

Explicitly, the first two cases are

8
∑

n>m>0

(−1)n

n2m
=
∑

n>0

1

n3
and 64

∑

n>m>o>p>0

(−1)n+o

n2m o2p
=
∑

n>m>0

1

n3m3
.

The notation should now be clear—we use the ‘overbar’ to denote an alternation. Such
alternating sums are called multi-zeta values (MZV) and positive ones are called Euler
sums after Euler who first studied them seriously. They arise naturally in a variety of
modern fields from combinatorics to mathematical physics and knot theory.

There is abundant evidence amassed since ‘identity’ (6) was found in 1996. For exam-
ple, very recently Petr Lisonek checked the first 85 cases to 1000 places in about 41
HP hours with only the predicted round-off error. And the case n = 163 was checked
in about ten hours. These objects are very hard to compute naively and require sub-
stantial computation as a precursor to their analysis.

Formula (6) is the only identification of its type of an Euler sum with a distinct MZV
and we have no idea why it is true. Any similar MZV proof has been both highly
non-trivial and illuminating. To illustrate how far we are from proof: can just the case
n = 2 be proven symbolically as has been the case for n = 1? �
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Figure 2. (Ex. 6.): “The price of metaphor is eternal vigilance.”
(Arturo Rosenblueth & Norbert Wiener, [41])

This identity was discovered by the British quantum field theorist David Broadhurst and
me during a large hunt for such objects in the mid-nineties. In this process we discovered
and proved many lovely results (see [9, Chapter 2] and [10, Chapter 4]), thereby illustrating
#1,#2, #4, #5 and #7. In the case of ‘identity’ (6) we have failed with #6, but we have
ruled out many sterile approaches. It is one of many examples where we can now have (near)
certainty without proof. Another was shown in equation (1) above.

6. What you draw is what you see. Roots of polynomials with coefficients 1 or -1 up
to degree 18.

As the quote suggests, pictures are highly metaphorical. The shading in Figure 2 is
determined by a normalized sensitivity of the coefficients of the polynomials to slight
variations around the values of the zeros with red indicating low sensitivity and violet
indicating high sensitivity.28 It is hard to see how the structure revealed in the pictures
above29 would be seen other than through graphically data-mining. Note the different
shapes—now proven—of the holes around the various roots of unity.

The striations are unexplained but all re-computations expose them! And the fractal
structure is provably there. Nonetheless different ways of measuring the stability of

28Colour versions may be seen at http://oldweb.cecm.sfu.ca/personal/loki/Projects/Roots/Book/.
29We plot all complex zeroes of polynomials with only -1 and 1 as coefficients up to a given degree. As

the degree increases some of the holes fill in—at different rates.
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the calculations reveal somewhat different features. This is very much analogous to a
chemist discovering an unexplained but robust spectral line. �

This certainly illustrates #2 and #7, but also #1 and #3.

7. Visual Dynamics. In recent continued fraction work, Crandall and I needed to study
the dynamical system t0 := t1 := 1:

tn :=
1

n
tn−1 + ωn−1

(

1 − 1

n

)

tn−2,

where ωn = a2, b2 for n even, odd respectively, are two unit vectors. Think of this
as a black box which we wish to examine scientifically. Numerically, all one sees is
tn → 0 slowly. Pictorially, in Figure 3, we learn significantly more.30 If the iterates are
plotted with colour changing after every few hundred iterates,31 it is clear that they
spiral roman-candle like in to the origin:

Figure 3. (Ex. 7.): “Visual convergence in the complex plane”

Scaling by
√

n, and distinguishing even and odd iterates, fine structure appear in
Figure 4. We now observe, predict and validate that the outcomes depend on whether
or not one or both of a and b are roots of unity (that is, rational multiples of π). Input
a p-th root of unity and out come p spirals, input a non-root of unity and we see a
circle. �

This forceably illustrates role #2 but also roles #1, #3, #4. It took my coauthors and
me, over a year and 100 pages to convert this intuition into a rigorous formal proof, [3].
Indeed, the results are technical and delicate enough that I have more faith in the facts than
in the finished argument. In this sentiment, I am not entirely alone.

30. . . “Then felt I like a watcher of the skies, when a new planet swims into his ken.” From John Keats
(1795-1821) poem On first looking into Chapman’s Homer.

31A colour version may be seen on the cover of [2].

18



Figure 4. (Ex. 7.): The attractors for various |a| = |b| = 1

Carl Friedrich Gauss, who drew (carefully) and computed a great deal, is said to have
noted, I have the result, but I do not yet know how to get it.32 An excited young Gauss
writes: “A new field of analysis has appeared to us, self-evidently, in the study of functions
etc.” (October 1798, reproduced in [9, Fig. 1.2, p.15]). It had and the consequent proofs
pried open the doors of much modern elliptic function and number theory.

My penultimate and more comprehensive example is more sophisticated and I beg the
less-expert analyst’s indulgence. Please consider its structure and not the details.

8. A full run. Consider the unsolved Problem 10738 from the 1999 American Mathe-

matical Monthly, [10]:

Problem: For t > 0 let

mn(t) =
∞
∑

k=0

kn exp(−t)
tk

k!

be the nth moment of a Poisson distribution with parameter t. Let cn(t) = mn(t)/n!.
Show

a) {mn(t)}∞n=0 is log-convex33 for all t > 0.

b) {cn(t)}∞n=0 is not log-concave for t < 1.

c∗) {cn(t)}∞n=0 is log-concave for t ≥ 1.

Solution. (a) Neglecting the factor of exp(−t) as we may, this reduces to

∑

k,j≥0

(jk)n+1tk+j

k!j!
≤
∑

k,j≥0

(jk)ntk+j

k! j!
k2 =

∑

k,j≥0

(jk)ntk+j

k!j!

k2 + j2

2
,

and this now follows from 2jk ≤ k2 + j2.

(b) As

mn+1(t) = t
∞
∑

k=0

(k + 1)n exp(−t)
tk

k!
,

32Like so many attributions, the quote has so far escaped exact isolation!
33A sequence {an} is log-convex if an+1an−1 ≥ a2

n
, for n ≥ 1 and log-concave when the inequality is

reversed.
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on applying the binomial theorem to (k+1)n, we see that mn(t) satisfies the recurrence

mn+1(t) = t

n
∑

k=0

(

n

k

)

mk(t), m0(t) = 1.

In particular for t = 1, we computationally obtain as many terms of the sequence

1, 1, 2, 5, 15, 52, 203, 877, 4140 . . .

as we wish. These are the Bell numbers as was discovered again by consulting Sloane’s
Encyclopedia which can also tell us that, for t = 2, we have the generalized Bell
numbers, and gives the exponential generating functions.34 Inter alia, an explicit com-
putation shows that

t
1 + t

2
= c0(t) c2(t) ≤ c1(t)

2 = t2

exactly if t ≥ 1, which completes (b).

Also, preparatory to the next part, a simple calculation shows that

∑

n≥0

cnun = exp (t(eu − 1)) . (7)

(c∗)35 We appeal to a recent theorem, [10, p. 42], due to E. Rodney Canfield which
proves the lovely and quite difficult result below. A self-contained proof would be very
fine.

Theorem 1 If a sequence 1, b1, b2, · · · is non-negative and log-concave then so is the
sequence 1, c1, c2, · · · determined by the generating function equation

∑

n≥0

cnun = exp

(

∑

j≥1

bj
uj

j

)

.

Using equation (7) above, we apply this to the sequence bj = t/(j− 1)! which is log-
concave exactly for t ≥ 1. �

A search in 2001 on MathSciNet for “Bell numbers” since 1995 turned up 18 items.
Canfield’s paper showed up as number 10. Later, Google found it immediately!

Quite unusually, the given solution to (c) was the only one received by the Monthly. The
reason might well be that it relied on the following sequence of steps:

34Bell numbers were known earlier to Ramanujan—an example of Stigler’s Law of Eponymy, [10, p. 60].
Combinatorially they count the number of nonempty subsets of a finite set.

35The ‘*’ indicates this was the unsolved component.
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A (Question Posed) ⇒ Computer Algebra System ⇒ Interface ⇒
Search Engine ⇒ Digital Library ⇒ Hard New Paper ⇒ (Answer)

Without going into detail, we have visited most of the points elaborated in Section 4.1. Now
if only we could already automate this process!

Jacques Hadamard, describes the role of proof as well as anyone—and most persuasively
given that his 1896 proof of the Prime number theorem is an inarguable apex of rigorous
analysis.

“The object of mathematical rigor is to sanction and legitimize the conquests of
intuition, and there was never any other object for it.” (Jacques Hadamard36)

Of the eight uses of computers instanced above, let me reiterate the central importance
of heuristic methods for determining what is true and whether it merits proof. I tentatively
offer the following surprising example which is very very likely to be true, offers no suggestion
of a proof and indeed may have no reasonable proof.

9. Conjecture. Consider

xn =

{

16xn−1 +
120n2 − 89n + 16

512n4 − 1024n3 + 712n2 − 206n + 21

}

(8)

The sequence βn = (⌊16xn⌋), where (xn) is the sequence of iterates defined in equation
(8), precisely generates the hexadecimal expansion of π − 3.

(Here {·} denotes the fractional part and (⌊·⌋) denotes the integer part.) In fact, we
know from [9, Chapter 4] that the first million iterates are correct and in consequence:

∞
∑

n=1

‖xn − {16nπ}‖ ≤ 1.46 × 10−8 . . . . (9)

where ‖a‖ = min(a, 1 − a). By the first Borel-Cantelli lemma this shows that the
hexadecimal expansion of π only finitely differs from (βn). Heuristically, the probability
of any error is very low. �

6 Conclusions

To summarize, I do argue that reimposing the primacy of mathematical knowledge over
proof is appropriate. So I return to the matter of what it takes to persuade an individual to
adopt new methods and drop time honoured ones. Aptly, we may start by consulting Kuhn
on the matter of paradigm shift:

36J. Hadamard, in E. Borel, Lecons sur la theorie des fonctions, 3rd ed. 1928, quoted in [48, (2), p. 127] .
See also [46].
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“The issue of paradigm choice can never be unequivocally settled by logic and
experiment alone. · · · in these matters neither proof nor error is at issue. The
transfer of allegiance from paradigm to paradigm is a conversion experience that
cannot be forced.” (Thomas Kuhn37)

As we have seen, the pragmatist philosopher John Dewey eloquently agrees, while Max
Planck, [45], has also famously remarked on the difficulty of such paradigm shifts. This is
Kuhn’s version38:

“And Max Planck, surveying his own career in his Scientific Autobiography, sadly
remarked that “a new scientific truth does not triumph by convincing its opponents
and making them see the light, but rather because its opponents eventually die,
and a new generation grows up that is familiar with it.” (Albert Einstein, [36, 45])

This transition is certainly already apparent. It is certainly rarer to find a mathematician
under thirty who is unfamiliar with at least one of Maple, Mathematica or MatLab, than it
is to one over sixty five who is really fluent. As such fluency becomes ubiquitous, I expect a
re-balancing of our community’s valuing of deductive proof over inductive knowledge.

In his famous lecture to the Paris International Congress in 1900, Hilbert writes39

“Moreover a mathematical problem should be difficult in order to entice us, yet
not completely inaccessible, lest it mock our efforts. It should be to us a guidepost
on the mazy path to hidden truths, and ultimately a reminder of our pleasure in
the successful solution.” (David Hilbert, [55])

Note the primacy given by a most exacting researcher to discovery and to truth over
proof and rigor. More controversially and most of a century later, Greg Chaitin invites us
to be bolder and act more like physicists.

“I believe that elementary number theory and the rest of mathematics should
be pursued more in the spirit of experimental science, and that you should be
willing to adopt new principles... And the Riemann Hypothesis isn’t self-evident
either, but it’s very useful. A physicist would say that there is ample experimental
evidence for the Riemann Hypothesis and would go ahead and take it as a working
assumption. · · · We may want to introduce it formally into our mathematical
system.” (Greg Chaitin, [9, p. 254])

Ten years later:

37In [49], Who Got Einstein’s Office? The answer is Arne Beurling.
38Kuhn is quoting Einstein quoting Planck. There are various renderings of this second-hand German

quotation.
39See the late Ben Yandell’s fine account of the twenty-three “Mathematische Probleme” lecture, Hilbert

Problems and their solvers, [55]. The written lecture (given in [55]) is considerably longer and further ranging
that the one delivered in person.
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“[Chaitin’s] “Opinion” article proposes that the Riemann hypothesis (RH) be
adopted as a new axiom for mathematics. Normally one could only countenance
such a suggestion if one were assured that the RH was undecidable. However, a
proof of undecidability is a logical impossibility in this case, since if RH is false
it is provably false. Thus, the author contends, one may either wait for a proof,
or disproof, of RH—both of which could be impossible—or one may take the bull
by the horns and accept the RH as an axiom. He prefers this latter course as the
more positive one.” (Roger Heath Brown40)

Much as I admire the challenge of Greg Chaitin’s statements, I am not yet convinced that
it is helpful to add axioms as opposed to proving conditional results that start “Assuming
the continuum hypothesis” or emphasize that “without assuming the Riemann hypothesis
we are able to show ...”. Most important is that we lay our cards on the table. We should
explicitly and honestly indicate when we believe our tools to be heuristic, we should carefully
indicate why we have confidence in our computations—and where our uncertainty lies— and
the like.

On that note, Hardy is supposed to have commented—somewhat dismissively—that Lan-
dau, a great German number theorist, would never be the first to prove the Riemann Hy-
pothesis, but that if someone else did so then Landau would have the best possible proof
shortly after. I certainly hope that a more experimental methodology will better value in-
dependent replication and honour the first transparent proof41 of Fermat’s last theorem as
much as Andrew Wiles’ monumental proof. Hardy also commented that he did his best work
past forty. Inductive, accretive, tool-assisted mathematics certainly allows brilliance to be
supplemented by experience and—as in my case—stands to further undermine the notion
that one necessarily does one’s best mathematics young.

6.1 As for Education

The main consequence for me is that a constructivist educational curriculum—supported
by both good technology and reliable content—is both possible and highly desirable. In
a traditional instructivist mathematics classroom there are few opportunities for realistic
discovery. The current sophistication of dynamic geometry software such as Geometer’s
Sketchpad, Cabri or Cinderella, of many fine web-interfaces, and of broad mathematical
computation platforms like Maple and Mathematica has changed this greatly—though in
my opinion both Maple and Mathematica are unsuitable until late in high-school, as they
presume too much of both the student and the teacher. A thoughtful and detailed discussion
of many of the central issues can be found in J.P. Lagrange’s article [40] on teaching functions
in such a milieu.

Another important lesson is that we need to teach procedural or algorithmic thinking.
Although some vague notion of a computer program as a repeated procedure is probably

40Roger Heath-Brown’s Mathematical Review of [18], 2004.
41Should such exist and as you prefer be discovered or invented.
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ubiquitous today, this does not carry much water in practice. For example, five years or
so ago, while teaching future elementary school teachers (in their final year), I introduced
only one topic not in the text: extraction of roots by Newton’s method. I taught this in
class, tested it on an assignment and repeated it during the review period. About half of the
students participated in both sessions. On the final exam, I asked the students to compute√

3 using Newton’s method starting at x0 = 3 to estimate
√

3 = 1.732050808 . . . so that the
first three digits after the decimal point were correct. I hoped to see x1 = 2, x2 = 7/4 and
x3 = 97/56 = 1.732142857 . . . . I gave the students the exact iteration in the form

xNEW =
x + 3/xOLD

2
, (10)

and some other details. The half of the class that had been taught the method had no
trouble with the question. The rest almost without exception “guessed and checked”. They
tried xOLD = 3 and then rather randomly substituted many other values in (10). If they
were lucky they found some xOLD such that xNEW did the job.

My own recent experiences with technology-mediated curriculum are described in Jen
Chang’s 2006 MPub, [19]. There is a concurrent commercial implementation of such a
middle-school Interactive School Mathematics currently being completed by MathResources.42

Many of the examples I have given, or similar ones more tailored to school [7], are easily
introduced into the curriculum, but only if the teacher is not left alone to do so. Technol-
ogy also allows the same teacher to provide enriched material (say, on fractions, binomials,
irrationality, fractals or chaos) to the brightest in the class while allowing more practice for
those still struggling with the basics. That said, successful mathematical education relies
on active participation of the learner and the teacher and my own goal has been to produce
technological resources to support not supplant this process; and I hope to make learning or
teaching mathematics more rewarding and often more fun.

6.2 Last Words

To reprise, I hope to have made convincing arguments that the traditional deductive ac-
counting of Mathematics is a largely ahistorical caricature—Euclid’s millennial sway not
withstanding.43 Above all, mathematics is primarily about secure knowledge not proof, and
that while the aesthetic is central, we must put much more emphasis on notions of supporting
evidence and attend more closely to the reliability of witnesses.

Proofs are often out of reach—but understanding, even certainty, is not. Clearly, com-
puter packages can make concepts more accessible. A short list includes linear relation
algorithms, Galois theory, Groebner bases, etc. While progress is made “one funeral at a
time,”44 in Thomas Wolfe’s words “you can’t go home again” and as the co-inventor of the

42See http://www.mathresources.com/products/ism/index.html. I am a co-founder of this ten-year
old company. Such a venture is very expensive and thus relies on commercial underpinning.

43Most of the cited quotations are stored at jborwein/quotations.html
44This grim version of Planck’s comment is sometimes attributed to Niels Bohr but this seems specious.

It is also spuriously attributed on the web to Michael Milken, and I imagine many others
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Fast Fourier transform properly observed, in [52]45

“Far better an approximate answer to the right question, which is often vague,
than the exact answer to the wrong question, which can always be made precise.”
(J. W. Tukey, 1962)
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