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Abstract In this paper, we study maximal monotone inclusions from the

perspective of gap functions. We propose a very natural gap function for an

arbitrary maximal monotone inclusion, and will demonstrate how naturally

this gap function arises from the Fitzpatrick function, which is a convex func-

tion, used to represent maximal monotone operators. This allows us to use

the powerful strong Fitzpatrick inequality to analyse solutions of the inclusion.

We also study the special cases of a variational inequality and of a generalized
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variational inequality problem. The associated notion of a scalar gap is also

considered in some detail. Corresponding local and global error bounds are

also developed for the maximal monotone inclusion.
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inequality · Fitzpatrick function · gap functions · error bounds
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1 Introduction

Our main focus in this article is the study of the monotone and the maximal

monotone inclusion problem through the use of a gap function. Given a mono-

tone or a maximal monotone map, the monotone inclusion problem seeks to

find a vector, such that the zero vector lies in the image of that vector under

the monotone map. We shall also consider particular forms of the monotone

operator, which will lead us to the variational and generalized variational in-

equality problems. We shall also study these particular problems in terms of

their gap function. The new feature of our approach here is that the gap func-

tion for the maximal monotone inclusion evolves naturally from the celebrated

Fitzpatrick function, which is used to represent a maximal monotone operator.

We will describe our goals and the organization of the paper below.

In this article, we study various aspects of the monotone inclusion problem

through the lens of a gap function. Gap functions have played a fundamental

role in the study of variational inequalities (see for example, Fukushima [1] and

Facchinei and Pang [2]). Gap functions allow us to reformulate a variational
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inequality problem as an optimization problem. They also play a key role in

devising error bounds for certain classes of variational inequality problems.

Though there has been a large volume of literature studying the monotone

inclusion problem, most of it is geared towards developing algorithms. One of

the earliest such papers is due to Rockafellar [3]. To the best of our knowledge,

however, there has been no qualitative study of monotone inclusions from the

perspective of gap functions. More interestingly, we demonstrate here that

an appropriate gap function for a monotone inclusion is derived from the

so-called Fitzpatrick function, which is a convex function used to represent

maximal monotone operators. We will also see the pivotal role played by the

strong Fitzpatrick inequality (see Borwein and Vanderwerff [4]) in understand-

ing various aspects of the monotone inclusion problem. We shall also provide

limiting examples to illustrate our results. While we work entirely in finite

dimensions, almost all of our results have counterparts for reflexive Banach

space.

The paper is organized as follows. In Section 2, we formally introduce the no-

tion of a monotone inclusion and also discuss the related variational inequality

problems. In Section 3, we introduce a convex gap function associated with

the monotone inclusion problem. We subsequently relate this gap function to

obtain convex gap functions associated with variational inequality, and the

generalized variational inequality, respectively. We then discuss the issue of

finiteness of the gap function wherein coercivity of the set-valued map plays a

fundamental role. We additionally introduce the notion of the scalar gap as-
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sociated with the monotone inclusion. Moreover, we study this gap for special

problems such as the complementarity problem, and the variational inequality

associated with a primal-dual pair of linear programming problems. In Section

4, we first discuss existence of solutions of the monotone inclusion, and then

examine approximate solutions. The strong Fitzpatrick inequality will play a

pivotal role here. In Section 5, we study both local and global error bounds for

the monotone inclusion. Metric regularity is used as the main vehicle for ex-

pressing local error bounds in terms of the gap function. Global error bounds

are developed for the monotone inclusion, when T is strongly monotone, by

using a regularization of the gap function. In Section 6, we finish by present-

ing some examples to illustrate the results obtained in this article. At the end

there is an Appendix, which consists of a proof of a result in the paper and

also the statements of two results used in the paper.

2 Monotone Inclusions and Variational Inequalities

In this section, we formally introduce the notion of a monotone inclusion prob-

lem and the variational inequalities, that arise when we consider particular

forms of the set-valued map which describes the monotone inclusion.

2.1 Monotone Inclusions

We shall consider a set-valued map T : Rn ⇒ Rn, which is maximal monotone

in the following sense. Recall that a set-valued map T : Rn ⇒ Rn is said to be
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monotone iff for any x and y in Rn we have, for all u ∈ T (y) and v ∈ T (x),

〈u− v, y − x〉 ≥ 0.

The graph of a set-valued map T is given as

gphT := {(x, y) : y ∈ T (x)}.

The domain of the set-valued map T is given as

domT := {x ∈ Rn : T (x) 6= ∅},

while the range of the set-valued map T is given as

ranT :=
⋃

x∈dom T

T (x).

A monotone map T is said to be maximal monotone iff there is no monotone

map whose graph properly contains the graph of T .

In this work, we focus on the following well-studied problem [5] : Given a

set-valued map T : Rn ⇒ Rn, which is maximal monotone, the monotone

inclusion problem requests a point x ∈ Rn such that 0 ∈ T (x).

The set T−1(0) := {x ∈ Rn : 0 ∈ T (x)} is the solution set (which may be

empty ) of our monotone inclusion problem.

2.2 Variational Inequalities

We shall also be interested in two special cases of the monotone inclusion

problem.

(a) First, we consider the case where T (x) := S(x) +NC(x) for each x ∈ Rn,
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where S : Rn ⇒ Rn is a maximal monotone map and NC is the normal cone

map associated with the closed and convex set C; we recall that given a closed

and convex set C the normal cone map NC : Rn ⇒ Rn is given as follows,

NC(x) := {v ∈ Rn : 〈v, y − x〉 ≤ 0 ∀y ∈ C},

when x ∈ C and NC(x) := ∅ if x 6∈ C.

Thus, we have domT = C∩domS. We assume (without any loss of generality)

that C has a non-empty interior. We assume that domS ∩ int C 6= ∅, so that

S+NC is maximal monotone [5]. In this case, the monotone inclusion problem

requires finding x ∈ C and ξ ∈ S(x) such that 〈ξ, y − x〉 ≥ 0, ∀y ∈ C.

This problem is often referred to as the generalized variational inequality prob-

lem determined by the set-valued map S and the convex set C, and is de-

noted by GV I(S,C). When S := ∂f for f : Rn → R, a proper and lower-

semicontinuous convex function, then the generalized variational inequality

problem reduces to the well known Rockafellar-Pschenychni condition [5] in

convex optimization. We note that GV I(S,C) itself reduces to the inclusion

problem if C = Rn. Indeed, we can also view the inclusion 0 ∈ T (x) as

GV I(T,Rn).

(b) In the second case we consider T (x) := F (x) + NC(x) for all x ∈ Rn,

where F : Rn → Rn is a single-valued everywhere continuous and monotone

map (hence maximal monotone) and C, as before is a closed and convex set.

Since domT = C and domF = Rn, then T = F + NC is maximal monotone

[5]. Thus, this monotone inclusion problem now reduces to finding x ∈ C such

that 〈F (x), y − x〉 ≥ 0,∀y ∈ C.
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This is traditionally known as variational inequality (VI for short), determined

by F and C and is denoted by V I(F,C). It is well known that, if C = Rn+, then

the VI reduces to the so called non-linear complementarity problem where one

wishes to find x ∈ Rn such that

x ∈ Rn+, F (x) ∈ Rn+, 〈x, F (x)〉 = 0.

The non-linear complementary problem is denoted by NCP (F ). If C = Rn,

then the VI reduces to the problem of solving equations, that is, of finding an

x ∈ Rn such that F (x) = 0. For more details on variational inequalities see,

for example, the two volume monograph of Facchinei and Pang [2], and for

monotone operators we refer to [4, Chapter 9].

3 Gap Functions

We begin by describing the notion of a (convex) gap function associated with

the maximal monotone inclusion (refmonotone-inclusion). This is a (convex)

function ϕ which satisfies,

i ) ϕ(x) ≥ 0 for all x ∈ Rn.

ii) ϕ(x) = 0 if and only if x ∈ T−1(0).

It is important to note that the gap function ϕ is, in general, an extended-

valued function. We will now show that such a function can be constructed out

of the celebrated Fitzpatrick function from the theory of monotone operators.

See for example [5, Chapter 8] and [4, Chapter 9]. The Fitzpatrick function is a
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convex function used to represent maximal monotone operators. The original

idea of the function was given in Fitzpatrick [6].

The Fitzpatrick function, representing a maximal monotone operator T , is the

convex function on Rn × Rn, given as follows

FT (x, x∗) := sup
(y,y∗)∈gphT

{〈y∗, x− y〉+ 〈x∗, y〉}.

An immediate property is that for any maximal monotone operator T we have

FT (x, x∗) ≥ 〈x∗, x〉, with equality holding if and only if (x, x∗) ∈ graph T . In

particular, FT (x, 0) ≥ 0, while FT (x, 0) = 0 if and only if 0 ∈ T (x).

Thus, x 7→ FT (x, 0) is indeed a gap function for our monotone inclusion. For

convenience let us set GT (x) := FT (x, 0). Then explicitly

GT (x) = sup
y∈dom T

sup
y∗∈T (y)

〈y∗, x− y〉. (1)

Moreover, GT is clearly a convex function. We also have the following less

obvious fact.

Theorem 3.1 (Minimality of GT ) The function GT is the smallest trans-

lation invariant gap function associated with the maximal monotone inclusion.

Proof: If we apply the definition of GT to the mapping x 7→ T (x)− x∗, then

we determine that GT−x∗(x) = FT (x, x∗) − 〈x∗, x〉. Since FT is known to be

minimal among closed representative functions [4, Chapter 8], we may deduce

that GT is the smallest translation invariant convex gap function. �

Remark 3.1 (Finitization of GT ) If we are willing to relinquish monotonic-

ity of T , then we may assume that GT is finite-valued. This can be achieved
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as follows. Following Crouzeix [7] we consider the function GT̂ instead of GT ,

where we define T̂ as follows,

T̂ (y) :=

{
z∗: z∗ =

y∗

max(||y∗||, 1) max(||y||, 1)
, y∗ ∈ T (y)

}
.

Now T̂ (y) is bounded for all y ∈ Rn since examination of the above definition

reveals that ||z∗|| ≤ 1 for any z∗ ∈ T̂ (y). Following the arguments above we

immediately see that GT̂ is a gap function for the probably non-monotone

inclusion 0 ∈ T̂ (x). It is easy to see that T̂ is still pseudomonotone in the

sense that

x∗ ∈ T̂ (x); 〈x∗, y − x〉 ≥ 0 implies that 〈y∗, y − x〉 ≥ 0,∀y∗ ∈ T̂ (y).

Though the solution sets of the inclusions 0 ∈ T (x) and 0 ∈ T̂ (x) coincide, the

fact that T̂ is usually non-monotone makes it unsuitable for further analysis

based on maximal monotonicity. �

It is thus natural to ask how to tell if GT is finite-valued using only conditions

on the operator T itself. Perhaps the most natural assumption on T is its

coercivity as described next. Given x ∈ Rn the monotone operator T is said

to be coercive at x iff

lim inf
||y||→∞,y∗∈T (y)

〈y∗, y − x〉
||y||2

> 0. (2)

We now examine how coercivity of T leads to the finiteness of GT . To prove

finiteness of GT when T is maximal monotone, we use a notion of lower-

quadraticity — a condition which is motivated by the core case when T is
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single-valued and coercive. We note that, if T (x) is single-valued and contin-

uous on its domain, then whenever (2) holds we have

inf
y∗∈T (y)

〈y∗, y − x〉 ≥ qx(y) (3)

for some convex quadratic term qx(y) := cx‖y‖2 − bx with bx, cx > 0, and we

call T lower quadratic at x. Now clearly, whenever T is lower quadratic at x,

GT (x) is finite.

More generally, (3) holds when T is coercive and is bounded on bounded

sets (but ( 3) can hold for unbounded mappings). Note, if T is maximally

monotone then it is locally bounded on the interior of its domain. Now, in

Euclidean space, when T is everywhere defined, then is bounded on bounded

sets, and so coercivity again implies lower quadraticity.

We arrive at the following proposition.

Proposition 3.1 (Finiteness of GT for T monotone) Consider the max-

imal monotone inclusion problem 0 ∈ T (x). Then, GT is everywhere finite and

convex, hence continuous, if any one of the following conditions holds.

i) T is lower-quadratic for all x ∈ Rn.

ii) Let domT = Rn and let T be coercive for all x ∈ domT .

Of course we can deduce the corresponding result that GT is finite on domT

by requiring the conditions to hold only on domT. Indeed, if T is coercive at

x in its domain, then monotonicity alone shows T is lower quadratic at such

an x.
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The following result, showing that GT is finite-valued function when T is

locally bounded on its domain without any assumption of monotonicity on T ,

is of some independent interest.

Proposition 3.2 (Finiteness of GT for T non-monotone) Let T be a set-

valued map which is coercive on Rn and locally bounded on its domain. Then

GT is everywhere finite and convex, hence continuous.

Proof: Assume that GT is not finite-valued. Then, there exists x ∈ Rn such

that GT (x) = +∞. Thence

sup
(y.y∗)∈gph T

〈y∗, x− y〉 = +∞.

This shows there exist sequences yn ∈ Rn and y∗n ∈ T (yn), such that

lim
n→∞

〈y∗n, x− yn〉 = +∞.

We claim that {yn} is unbounded. To the contrary assume {yn} is bounded

and, without any loss of generality, assume yn → y. Since T is locally bounded

we can assume {y∗n} is bounded. Thus, we have positive numbers K and L

such that ‖yn‖ ≤ K and ‖y∗n‖ ≤ L for all n ∈ N. Hence,

lim
n→∞

〈y∗n, x− yn〉 ≤ L‖x‖+ LK < +∞.

This is clearly a contradiction. Hence, for M > 0 we have n0 ∈ N such that,

for all n ≥ n0 , 〈y∗n, x − yn〉 > M . Hence we have for n sufficiently large

that
〈y∗n, yn − x〉
‖yn‖2

< − M

‖yn‖2
< 0. Recall that {yn} is an unbounded sequence.

Hence we can assume, without any loss of generality, ‖yn‖ → ∞, and so

lim inf
‖y‖→∞,(y,y∗)∈gph T

〈y∗, y − x〉
‖y‖2

≤ lim inf
‖yn‖→∞,(yn,y∗n)∈gph T

〈y∗n, yn − x〉
‖yn‖2

≤ 0.
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This is a contradiction to the fact that T is coercive and hence concludes the

result. �

We have discussed above the conditions which ensure that GT is finite. The

finiteness of GT is one of the key features we shall require to develop useful

error bounds for monotone inclusions in terms of the gap function GT .

We now turn to the notion of a scalar gap, which is nothing but the infimal

value of the gap function over the feasible set — or of some other set obtained

from the problem data. Define

γ := γT = inf
x∈Rn

GT (x).

The scalar value γ = γT is called the gap associated with the gap function

GT . We have the following.

Theorem 3.2 Suppose the maximal monotone inclusion 0 ∈ T (x) has a so-

lution. Then γ = 0. Conversely assume that γ = 0 and that GT is weakly

coercive in the following sense that

lim
||x||→∞

GT (x) = +∞. (4)

Then the corresponding maximal monotone inclusion has a solution.

Proof: Let x̄ be a solution of the maximal monotone inclusion. Then, GT (x̄) =

0 and thus γ = 0. Conversely if γ = 0, by noting that GT is proper and lower-

semicontinuous and weakly coercive we conclude that the infimum of GT is

attained. Thus, there exists x̄ ∈ Rn such that 0 = G(x̄), and hence x̄ is a

solution of the maximal monotone inclusion. �
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Remark 3.2 If, in the above result, we had assumed that T is coercive and

domT = Rn, then we could have easily concluded, using Proposition 3.1, that

GT is finite-valued and hence continuous. That along with the weak coercivity

of GT , gives us our desired result that , if the gap is zero ,then, there exists

a solution for the maximal monotone inclusion. �

It is important to note from a theoretical point of view, one may consider solv-

ing the maximal monotone inclusion problem by unconstrained minimization

of the convex function GT . In such a case, the notion of the gap will play a

fundamental role, as illustrated by Theorem 3.2.

Example 3.1 (Gap functions for V I(F,C) or GV I(S,C) ) In particular,

under our hypotheses, for the V I(F,C) or GV I(S,C) problem, the gap func-

tion is an extended-valued function ψ such that

i) ψ(x) ≥ 0 for all x ∈ C ( or for all x ∈ Rn)

ii) ψ(x) = 0, x ∈ C if and only if x solves V I(F,C) or GV I(S,C).

Hence, V I(F,C) the following is a convex gap function:

G(x) := sup
y∈C
〈F (y), x− y〉. (5)

See the Appendix (Section 7) for a proof that G is a gap function. Note that , if

we set T := F +NC , then V I(F,C) becomes the monotone inclusion 0 ∈ T (x).

These two problems are equivalent in the sense that the solution sets of these

two problems coincide. Further without any loss of generality we can consider

int C 6= ∅ — as otherwise we may use the relative interior. Then, the sum T

is a maximal monotone operator. �
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The following proposition relates GT of (1 ) to G of ( 5) when T = F +NC .

Proposition 3.3 If T = F +NC , then for each x ∈ C , GT (x) = G(x).

Proof: We have T = F +NC . In this case we have domT = C. Thence

GT (x) = FT (x, 0) = sup
(y,y∗)∈gph (F+NC)

〈y∗, x− y〉

= sup
y∈Rn

sup
y∗∈F (y)+NC(y)

〈y∗, x− y〉.

= sup
y∈C

sup
z∗∈NC(y)

〈F (y) + z∗, x− y〉.

Given x ∈ C, consider a fixed y ∈ C. Thus we have

sup
z∗∈NC(y)

{〈F (y), x− y〉+ 〈z∗, x− y〉} = 〈F (y), x− y〉+ sup
z∗∈NC(y)

〈z∗, x− y〉.

Now using the fact that z∗ ∈ NC(x) we have

sup
z∗∈NC(y)

{〈F (y), x− y〉+ 〈z∗, x− y〉} ≤ 〈F (y), x− y〉.

This shows that GT (x) ≤ G(x). It remains to prove the reverse inequality.

Since 0 ∈ NC(y) we have

〈F (y), x− y〉 ≤ sup
z∗∈NC(y)

〈F (y) + z∗, x− y〉.

This shows that G(x) ≤ GT (x), and completes the proof. �

Thus when intC 6= ∅ and T (x) = F (x) + NC(x) for all x ∈ Rn, then we can

define GT (x) := G(x), when x ∈ C and GT (x) := +∞ otherwise.

We are now going to examine a gap function designed specifically forGV I(S,C).

This will be denoted as g, and is given by

g(x) := sup
y∈C

sup
y∗∈S(y)

〈y∗, x− y〉. (6)
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When C = Rn, then we have g(x) = GS(x). Our next task is to show that g

is indeed a gap function when S is monotone with some additional properties:

Proposition 3.4 (Gap function for GV I(S,C)) The function g of ( 6) is

a gap function for GV I(S,C), provided S is a non-empty, compact-valued,

locally bounded and graph closed, monotone map on C.

Proof: Let us first show that g is a gap function for the Minty variational

inequality which seeks an x ∈ C such that, for all ξ ∈ S(y), one has

〈ξ, y − x〉 ≥ 0, ∀y ∈ C.

To establish this we first observe that g(x) ≥ 0 for all x ∈ C, as is seen by

setting y = x. Note that g(x) = 0 leads to the fact that for each y ∈ C, we have

〈ξ, x− y〉 ≤ 0, ∀ξ ∈ S(y), and hence x is a solution of the Minty variational

inequality. Conversely, if x is a solution of the Minty variational inequality,

then, we reverse the arguments above to reach the conclusion that g(x) = 0.

We shall now show that, if S is locally bounded and graph closed, then every

solution of a Minty variational inequality is a solution of the weak variational

inequality ; we say that x is a solution of the weak variational inequality iff for

each y ∈ C there exists ξy ∈ S(x) such that 〈ξy, y − x〉 ≥ 0.

Suppose x is a solution of the Minty variational inequality, and fix any y ∈ C.

Consider the sequence {yn := x+
1

n
(y − x)}. We deduce that for ξn ∈ S(yn),

〈ξn, yn − x〉 ≥ 0.

Now, as n→ +∞ we have yn → x, and the local boundedness of S guarantees

that {ξn} forms a bounded sequence, which we assume, without any loss of
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generality to converge to ξy. As T is graph closed, we have ξy ∈ S(x). On pass-

ing to the limit from the previous inequality, as n→∞ we have 〈ξy, y−x〉 ≥ 0.

Since y ∈ C was arbitrary, we have shown that x solves the weak variational

inequality problem. In [8] Aussel and Dutta introduced a gap function for the

weak variational inequality. It was given as

ĝ(x) := sup
y∈C

inf
ξ∈S(x)

〈ξ, x− y〉.

It is proven in [8, Prop. 4.1] (see also Appendix (Section 7)) that ĝ is a gap

function for the weak variational inequality problem. Now we observe the

following: for each fixed x we have that 〈ξ, x − y〉 is a convex function in ξ,

when y is fixed and is a concave function in y for fixed ξ. By Sion’s minimax

theorem (see [19] or Appendix (Section 7)) we conclude that

ĝ(x) = inf
ξ∈S(x)

sup
y∈C
〈ξ, x− y〉.

Let us consider x ∈ C such that ĝ(x) = 0. Then we have

0 = inf
ξ∈S(x)

sup
y∈C
〈ξ, x− y〉.

Let us set ψ(x, ξ) := supy∈C〈ξ, x − y〉. Since x is fixed, ψ(x, ·) is a convex

function of ξ and is lower-semicontinuous and proper. Thus, appealing to the

compactness of S(x) we conclude that there exists ξ∗ ∈ S(x) with 0 = ψ(x, ξ∗).

This shows that for all y ∈ C, we have 〈ξ∗, x − y〉 ≤ 0, and hence x solves

GV I(S,C).

Conversely, if x ∈ C is a solution of GV I(S,C) , then, it is straight forward to

show that ĝ(x) = 0. Hence, we deduce that ĝ is a gap function for GV I(S,C).
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Let x ∈ C be such that g(x) = 0. Then, x is a solution of the Minty variational

inequality. Under our hypothesis, we can conclude that x is a solution of the

weak variational inequality. This shows that ĝ(x) = 0. Thus from the proof

above we conclude that x ∈ C is a solution of GV I(S,C).

Further, when x is a solution of GV I(S,C), by monotonicity of S, it is a

solution of the Minty variational inequality, and g(x) = 0, as needed. �

Remark 3.3 We note that the above result was already proved in Crouzeix

[7] under similar assumptions. The proof we give here is completely different,

since it relies essentially on ideas of gap functions. Further note that in general

if T = S +NC where S is a monotone map then the approach in the proof of

Proposition 3.3 shows that GT (x) = g(x) for all x ∈ C. �

3.1 Complementarity Problems

In this subsection, we consider the case when T (x) := F (x) +NK(x) for all x,

where K is a closed and convex cone. Then, the monotone inclusion problem

reduces to what is known as the cone complementarity problem, which requires

finding x ∈ Rn such that

x ∈ K,F (x) ∈ K∗, 〈F (x), x〉 = 0,

where K∗ is the dual cone of K, which is defined by

K∗ := {w ∈ Rn : 〈w, v〉 ≥ 0, ∀v ∈ K}.

We will see that in this particular setting, the notion of a gap will provide us

much more information about the nature of the cone complementarity prob-
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lem. The notion of a gap for the nonlinear cone complementarity problem was

first introduced by Borwein [9].

A cone complementarity problem can also be viewed as a special case of

V I(F,C), where C = K is a closed and convex cone. Let us begin with the case

that K = Rn+ and F (x) = Mx+q, where M is a n×n, matrix which is positive

semidefinite, but may well not be symmetric. Then, the cone complementar-

ity problem becomes the linear complementarity problem and is denoted by

LCP (M, q). Following [9] let us define the gap associated with LCP (M, q) as

follows:

γ(q) := inf{〈Mx+ q, x〉 : Mx+ q ≥ 0, x ≥ 0}, (7)

where the ordering in the above expression is taken component-wise. We shall

show below that the gap value is always zero and the set of minimizers of the

above problem is exactly the solution set of LCP (M, q).

Before we show that the gap value is zero we need to motivate how we arrived

at the above definition of the gap for LCP (M, q). At a first glance it is not

clear that the gap defined in (7) is related to GT . The gap in ( 7) arises from

concept of the Auslender gap function for V I(F,C) (see [2]) which is given as

θ(x) = sup
x∈C
〈F (x), x− y〉.

Now monotonicity of F shows that for all x, we have G(x) ≤ θ(x). Thus, from

Proposition 3.3 we have for x ∈ C , GT (x) ≤ θ(x). Now consider the case

when C = Rn+ and F (x) = Mx+ q, where M is a positive semidefinite matrix.
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Since we have GT (x) = +∞ when x 6∈ Rn+, we can write

γ = γT = inf
x∈Rn

+

GT (x) ≤ inf
x∈Rn

+

θ(x).

We now claim that γ(q) = infx∈Rn
+
θ(x). In fact, if we can establish this we may

conclude that for T (x) = Mx+ q +NRn
+

(x), γT ≤ γ(q). Thus, when γ(q) = 0

we will have γT = 0. Further, θ(x) = 〈Mx+ q, x〉 − infy∈Rn
+
〈Mx+ q, y〉.

A simple calculation shows us that θ(x) = Mx + q when Mx + q ≥ 0 and

θ(x) = +∞ otherwise. Hence,

inf
x∈Rn

+

θ(x) = inf
x∈Rn

+

{〈Mx+ q, x〉 : Mx+ q ≥ 0} = γ(q).

Proposition 3.5 Consider the problem LCP (M, q) where M is positive semi-

definite. Then, γ(q) = 0 and

argmin {〈Mx+ q, x〉 : Mx+ q ≥ 0, x ≥ 0} = sol(LCP (M, q)),

where sol(LCP (M, q)) denotes the solution set of LCP (M, q).

Proof: The proof is based on ideas and techniques from [9]. Note that the

optimization problem which defines the gap is a convex quadratic problem

under linear (or rather affine) constraints; indeed, the objective is 〈Qx+ q, x〉,

where Q = M+M∗

2 is symmetric. For any x which is feasible for the above

problem we have 〈Mx+ q, x〉 ≥ 0. Thus, the problem is bounded below on the

feasible set, and using the Frank-Wolfe Theorem (see [10]) we may conclude

that there exists a minimizer for the problem. In other words

argmin {〈Mx+ q, x〉 : Mx+ q ≥ 0, x ≥ 0} 6= ∅.
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We claim that γ(q) = 0. Let x̄ ∈ argmin {〈Mx + q, x〉 : Mx + q ≥ 0, x ≥ 0}.

Since the constraints in the convex quadratic optimization problem which

defines the gap are affine, then without any constraint qualification, the saddle

point conditions hold. Hence, we write down the Lagrangian, which is the

function L : Rn × Rn+ → R, given by

L(x, λ) := 〈Mx+ q, x〉 − 〈λ,Mx+ q〉.

Since γ(q) is the infimal value, by the saddle point theorem there exists λ̄ ∈ Rn+

such that

L(x, λ̄) ≥ L(x̄, λ̄) = γ(q),∀x ∈ Rn+. (8)

Since λ̄ ∈ Rn+, on substituting x := λ̄ in (8) we have γ(q) ≤ 0. This shows that

γ(q) = 0.

Now that we have established that γ(q) = 0, it is simple to show that

argmin {〈Mx+ q, x〉 : Mx+ q ≥ 0, x ≥ 0} = sol(LCP (M, q)).

This establishes the result. �

Remark 3.4 (Asymmetry) We emphasize that above we have not assumed

M to be symmetric. In general, we can write M = S + A, where S is the

symmetric part of M and A is the skew-symmetric part. If M is positive

semidefinite then we have 〈x, Sx〉 ≥ 0 for all x since 〈x,Ax〉 = 0 for all x.

In some important cases, F (x) = Mx+ q will be monotone without M being

symmetric. �
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One such case comes from linear programming. Consider the following pair of

primal-dual linear programming problems:

min〈c, x〉 subject to Ax ≥ b, x ≥ 0, (9)

and

max〈b, y〉 subject to AT y ≤ c, y ≥ 0, (10)

where x ∈ Rn, y ∈ Rm, A is a m × n matrix, c ∈ Rn, and b ∈ Rm. Here the

vector inequalities are again in the component-wise sense. From Borwein and

Lewis [5, Chapter 8] it follows that primal and dual solvability of the above

primal-dual pair of linear programming problem is equivalent to solvability of

the following variational inequality V I(F (x, y),Rn+ × Rm+ ), where

F (x, y) := Mz + q

for z := (x, y)T , and

M :=

 0 −AT

A 0


and q := (c,−b)T . Note that M is positive semi-definite since it is skew:

〈(x, y),M(x, y)〉 = 0

for all (x, y) ∈ Rn × Rm. Thus F is a monotone map, but M is never a

symmetric matrix if non-trivial.

Equivalence between the variational inequality and the primal-dual pair of

linear programs is in the sense that the solution set of V I(F (x, y),Rn+ × Rm+ )

coincides with the combined primal-dual solution set. This is indeed easy
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to show. We briefly outline only the proof of the fact that any solution of

V I(F (x, y),Rn+ × Rm+ ), is a solution of the primal-dual pair of variational in-

equalities.

Consider (x̄, ȳ) a solution of V I(F (x, y),Rn+ × Rm+ ). Then we have

〈c−AT ȳ, x− x̄〉+ 〈Ax̄− b, y − ȳ〉 ≥ 0,∀(x, y) ∈ Rn+ × Rm+ .

Putting y = ȳ we conclude that AT ȳ ≤ c; and putting x = x̄ shows that

Ax̄ ≥ b. Setting x = 0 and y = 0 leads to the expression

−〈c, x̄〉+ 〈AT ȳ, x̄〉 − 〈Ax̄, ȳ〉+ 〈b, ȳ〉 ≥ 0.

This shows that 〈b, ȳ〉 ≥ 〈c, x̄〉. Then using weak duality we conclude that

〈c, x̄〉 = 〈b, ȳ〉. Hence x̄ solves the primal and ȳ solves the dual. The converse

can be proved very easily. For a complete and more general version of the

above discussion, for conic programming, see Borwein and Lewis [5, Theorem

8.3.13].

Thus, it is interesting to consider the consequences for the variational inequal-

ity V I(F,C), where F (x) = Sx+ q with S being skew-symmetric. In this case

using the definition of the gap function G as in (5) we have,

G(x) = 〈q, x〉+ sup
y∈C
〈−(Sx+ q), y〉. (11)

Of course, if x is a solution of the V I(F,C), then, G(x) = 0. If x is not

a solution of V I(Sx + q, C) then the value G(x) depends on the set C. Of

course the variational inequality, associated with the pair of primal dual linear

programming problem, is of this type and it is interesting to compute the gap

function for it.
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Proposition 3.6 Consider the variational inequality associated to the pair of

primal-dual linear programs, as above. Using the definition of the gap function

G as in (5), we obtain

G(x, y) = 〈c, x〉 − 〈b, y〉,

if (x, y) is feasible to the primal-dual pair, of linear programming problems. If

(x, y) is not feasible for the primal-dual pair then we have G(x, y) = +∞.

Proof: For the variational inequality associated with the primal-dual pair of

linear programming problems we have C = Rn+ × Rm+ . Then, using (11) we

have

G(x, y) = 〈(c,−b), (x, y)〉+ sup
(x′y′)∈Rn

+×Rm
+

〈(AT y − c, b−Ax), (x′, y′)〉. (12)

Suppose (x, y) is feasible, then AT y ≤ c and Ax− b ≥ 0, showing that for all

(x′, y′) ∈ Rn+ × Rm+ ,

〈(AT y − c, b−Ax), (x′, y′)〉 ≤ 0.

Thus it is simple to see that

sup
(x′y′)∈Rn

+×Rm
+

〈(AT y − c, b−Ax), (x′, y′)〉 = 0.

This shows that

G(x, y) = 〈c, x〉 − 〈b, y〉.

When (x, y) is not feasible to the primal-dual pair of linear programs it is very

simple to see that G(x, y) = +∞. Hence the result. �
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To conclude this section, let us consider the cone complementarity problem,

where F (x) := Mx+q, but now K is merely a closed and convex cone and not

necessarily Rn+. This is referred to as the generalized linear complementarity

problem (GLCP) [9]. Thus, we have problem

x ∈ K,Mx+ q ∈ K∗, 〈x,Mx+ q〉 = 0. (13)

Then, the associated gap problem, as given in Borwein [9], is as follows,

γ(q) := inf{〈Mx+ q, x〉 : Mx+ q ∈ K∗, x ∈ K}.

We have the following result.

Proposition 3.7 ((GLCP) [9] ) Consider the complementarity problem of

( 13). Assume that K is a closed and convex pointed cone with nonempty

interior. Suppose the Slater condition holds, that is, there exists x ∈ K such

that Mx+ q ∈ intK∗. Then, γ(q) = 0.

Remark 3.5 Proposition 3.5 has a much stronger conclusion than Proposi-

tion 3.7 since polyhedrality of the feasible set is, in general, lost in the (GLCP)

gap problem. �

4 Strong Fitzpatrick Inequality and Existence of Solutions

In this section, we focus on the existence of solutions for the maximal monotone

inclusion. We also define and study the nature of approximate solutions for

this inclusion.
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4.1 Exact Solutions to Inclusions

The main vehicle of our investigation will be two deep and recent results from

the theory of maximal monotone operators. These are given as Theorem 9.7.2

and Corollary 9.7.3 in Borwein and Vanderwerff [4].1 We combine these results,

which hold for all maximal monotone operators in reflexive Banach space, in

the following theorem. They are a consequence of a subtle application of the

Fenchel duality theorem.

Theorem 4.1 (Strong Fitzpatrick inequality) Let T : Rn ⇒ Rn be a

maximal monotone operator, then

FT (x, x∗)− 〈x, x∗〉 ≥ 1

4
d2
gph (T )

(x, x∗), (14)

and

d2
gph T (x, x∗) ≥ max{d2

dom (T )
(x), d2

ran (T )(x
∗)}. (15)

Proof: We shall prove only the second part of the lemma. For the proof of

the first part of the result see [4]. Note that

d2
gph (T )

(x, x∗) = inf
(y,y∗)∈gph (T ),y∈dom T

{||y − x||2 + ||y∗ − x∗||2}.

This shows that

d2
gph (T )

(x, x∗) ≥ inf
y∗∈T (y),y∈dom T

||y − x||2 = d2
dom(T )

(x).

We also have

d2
gph (T )

(x, x∗) ≥ inf
y∗∈T (y)

||y∗ − x∗||2 = d2
ran (T )(x

∗).

1 As discussed in [4], the constant 1/4 is not best possible; 1/2 is.
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This completes the proof. �

The first inequality in Theorem 4.1 is known as the strong Fitzpatrick in-

equality. We emphasize that, with no additional hypothesis imposed on T , we

always have

2
√
GT (x) ≥ dgph (T )

(x, 0), (16)

when T is maximal monotone.

Let us now establish an almost immediate application of the above result.

Theorem 4.2 Suppose T is maximal monotone, is coercive in the sense of

(2), and let domT = Rn. Then, there exists q ∈ Rn such that ‖q‖ ≤ 2
√
GT (0)

such that the inclusion 0 ∈ T (x)− q has a solution.

Proof: Since T is coercive and locally bounded on its domain by Proposition

3.1 ii) we see that GT is finite on Rn, and since GT is convex, it is continuous

on Rn. Hence GT is continuous at x = 0. Now consider a decreasing sequence

{εk} with εk > 0 for all k ∈ N and εk → 0 as k → ∞. Using the continuity

of GT at x = 0, we conclude that for each εk there exist δk ≤ εk and xk such

that ‖xk‖ ≤ δk and GT (xk) ≤ GT (0) +
εk
8

. Now, using Theorem 4.1 and (16)

we deduce that for each εk > 0 there exists (yk, y
∗
k) ∈ gph (T ) such that

‖y∗k‖2 + ‖xk − yk‖2 ≤ 4GT (xk) +
εk
2
.

Hence we have ‖y∗k‖2 + ‖xk − yk‖2 ≤ 4GT (0) + εk. This shows that

‖y∗k‖2 ≤ 4GT (0) + εk (17)
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and

‖xk − yk‖2 ≤ 4GT (0) + εk. (18)

From (17) we see that {y∗k} is a bounded sequence, and (18) gives us

‖yk‖ ≤ ‖xk‖+
√

4GT (0) + εk.

By construction {xk} is bounded, and so this shows that {yk} is also bounded.

Thus, without any loss of generality, we assume that yk → ȳ, and since {y∗k}

is bounded, let us assume that y∗k → q. Since T is maximal monotone, it is

graph closed and thus we have q ∈ T (ȳ) i.e., 0 ∈ T (ȳ)− q. Now, passing to

the limit as k →∞ in (17) we see, ‖q‖ ≤ 2
√
GT (0). Hence the result. �

Remark 4.1 Note, in the proof of the above result we have considered only

the point x = 0. In fact, any x0 ∈ Rn would be sufficient for our purpose.

Then, we simply deduce ‖q‖ ≤ 2
√
GT (x0). �

4.2 Approximate Solutions to Inclusions

In practice, however, it is rarely easy to get the exact solution of a maximal

monotone inclusion. This calls for the study of approximate solutions of the

maximal monotone inclusion problem. Given ε > 0 we say that x is an ε-

approximate solution of the maximal monotone inclusion iff there exists y∗ ∈

T (x) with ‖y∗‖ < ε. Let us also note that associated with the inclusion problem

is the gap problem, which seeks a minimizer for the problem

γ = inf
x∈Rn

GT (x).
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We say that x ∈ Rn is an ε-approximate solution to the gap problem iffGT (x) <

ε. The following result will connect the approximate solutions of the inclusion

problem and of its associated gap problem.

Theorem 4.3 (Approximate solutions) Let ε > 0 be given. Let z be an
ε

8
-

approximate solution of the gap problem. Then, there exists y with ‖y−z‖ <
√
ε

such that y is an
√
ε-approximate solution of the maximal monotone inclusion

problem 0 ∈ T (x).

Proof: Using Theorem 4.1 for the given ε > 0 we obtain existence of (y, y∗) ∈

gph (T ) such that, ‖y∗‖2 + ‖z − y‖2 ≤ 4GT (z) + ε
2 . Now noting that z is a

ε

8
-approximate minimizer of the gap function we have GT (z) <

ε

8
. Hence we

conclude that, ‖y∗‖2 + ‖z − y‖2 < ε.This certainly shows that ‖y∗‖ <
√
ε and

that‖y − z‖ <
√
ε, and hence establishes the result. �.

Remark 4.2 Theorem 4.3 can be viewed as a variational principle for maxi-

mal monotone inclusions. What it says is that, if one can obtain an approxi-

mate minimizer of the gap problem, then one can obtain a nearby approximate

minimizer of the inclusion problem. �

Our intention above was to highlight the logic, not to provide the best pos-

sible estimate. It was brought to our attention by a referee that, if we apply

the Bronsted-Rockafellar theorem for Fitzpatrick functions, then we obtain a

better estimate for the approximate solution with which we begin in Theorem

4.3. This is achieved using Theorem 3.4 in Alves and Svaiter [11] . If x is a an
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ε-approximate solution to the gap problem, then we have

GT (x) = FT (x, 0)− 〈x, 0〉 < ε.

Now applying Theorem 3.4 in [11] we deduce the existence of (y, y∗) ∈ gphT

such that ‖y−x‖ <
√
ε and ‖y∗‖ <

√
ε. This shows that y is a

√
ε-approximate

minimum to the inclusion problem.

It is interesting to note further that Monterio and Svaiter [12] had developed

certain notions of approximate solutions of the monotone inclusion in terms of

the notion of the enlargement of a monotone operator. It would be interesting

to see if their ideas can be used in our framework. The following is an obvious

corollary.

Corollary 4.1 Suppose the gap problem has γ = 0. Then, for any ε > 0 there

exists a
√
ε-approximate solution to the inclusion problem 0 ∈ T (x).

5 Error Bounds for the Maximal Monotone Inclusion

Before we begin our study of local error bounds let us take another look at in-

equality (16), which provides a global error bound for the maximal monotone

inclusion but viewed from a higher dimension. The gap function GT then pro-

vides an error bound without strong monotonicity assumptions. Traditionally,

error bounds are understood as providing estimates for the distance of a point

from the actual solution set.
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5.1 Metric Regularity and Local Error Bounds

In this section we will assume that T will satisfy the property of metric reg-

ularity. We say the maximal monotone mapping T is metrically regular at

(x̄, ȳ) ∈ gphT iff there exist real numbers k > 0, δ > 0, and γ > 0 such that

dT−1(y)(x) ≤ kdT (x)(y) ∀x ∈ Bδ(x̄) and y ∈ Bγ(ȳ), (19)

and we say that T is metrically regular over the graph if T is metrically-

regular for every (x̄, ȳ) ∈ gphT . For more details on metric regularity see

for example Dontchev and Rockafellar [13]. In fact, metric regularity is itself

a kind of error bound, which can be fine tuned in our setting. Sadly, even

subdifferentials of simple convex functions can fail to be metrically regular.

Nonetheless, by setting ȳ = 0, ( 19) implies that

dT−1(0)(x) ≤ kdT (x)(0) ∀x ∈ Bδ(x̄). (20)

To set ȳ = 0 we have tacitly assumed (x̄, 0) is in the graph of T and so that x̄ is

a solution. Using (16), we have
√
GT (x) ≥ 1

2dgph (T )
(x, 0), for all x ∈ Bδ(x̄).

Further dgph (T )(x, 0) ≤ dT (x)(0). For developing bounds, however, it seems

to be crucial that we have dT (x)(0) ≤ k dgph (T )
(x, 0), for some k > 0. This

does not hold in general and so we consider the following set:

Uk(T ) = {x ∈ Rn : dT (x)(0) ≤ k dgph (T )
(x, 0)}.

Let us impose the qualification condition that Uk(T ) 6= ∅. Then for any

x ∈ Uk(T ) ∩Bδ(x̄), we have, dT−1(0)(x) ≤ 2k
√
GT (x).
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All this said, as is well known, for a maximal monotone operator, metric reg-

ularity will force the inverse mapping to be LSC [14] and so single-valued and

indeed strongly monotone as discussed in Section 5.3. For completeness we

add the fundamental underlying reason for this result (see Borwein [15]).

Proposition 5.1 (Lower-semicontinuity (LSC) and singlevaluedness)

Suppose T is monotone and is lower semicontinuous at x in the domain of T .

Then T (x) is singleton.

Proof: Assume not let y and z lie in T (x). Select h such that 〈h, y〉 < 〈h, z〉

and consider the neighbourhood N = {w : 〈w, h〉 < 〈z, h〉}. Then y lies in T (x)

and in N hence T (x+ th) meets N for t small and positive since T is LSC at

x. But by monotonicity 〈T (x+ th)− z, h〉 ≥ 0 which is a contradiction. �

5.2 The Convex Case

The previous discussion motivates the need to exploit weaker regularity notions

even for the subdifferential of a convex function. The subdifferential map ∂f

of a convex function f : Rn → R is metrically subregular at (x̄, ȳ) ∈ gph (∂f)

iff there exist neighbourhoods U and V of x̄ and ȳ, respectively, and k > 0

such that

d(∂f)−1(ȳ)(x) ≤ kd∂f(x)∩V (ȳ) ∀x ∈ U.

We shall call ∂f metrically subregular iff it is metrically subregular at each

(x̄, ȳ) ∈ gph ∂f . Note that the function f(x) := |x| , x ∈ R is indeed metrically
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subregular. This leads us to the following result which is a simple consequence

of [16, Theorem 3.3 ].

Proposition 5.2 Let f : Rn → R be a convex function and let S denote the

set of all global minimizers of f . Assume that S is non-empty and that ∂f is

metrically subregular. Let α := infx∈Rn f . Then, for any x̄ in the boundary of

S there exists a neighbourhood Ux̄ and a positive number cx̄ > 0 such that

dS(x) ≤

√
f(x)− α

cx̄
∀x ∈ Ux̄.

Proof: Note that S = (∂f)−1(0). Let us consider x̄ in the boundary of S.

Since ∂f is metrically subregular, we now apply Theorem 3.3 in [16] with v̄ = 0

to conclude that there exists cx̄ > 0 and a neighbourhood of Ux̄ of x̄ such that

f(x) ≥ f(x̄) + cx̄d
2
(∂f)−1(0)(x), ∀x ∈ Ux̄.

The final form of the error bound is easily derived by noting that f(x̄) = α.

�

Remark 5.1 We ask how we can interpret the above result so that it becomes

a useful tool in practice. In fact, we need not always consider the infimum α,

but rather can take any available lower bound of f . In many situations we

can find such a lower-bound. When running an algorithm for solving a convex

optimization problem, if for some iterates the above error bound holds, then,

we may argue that such points are near the boundary of the solution set. Sadly,

in practice it is often not possible to figure out whether the subdifferential

satisfies the notion of metric subregularity. �
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By contrast, we can exploit Theorem 4.1 for a proper and lower semicontin-

uous convex function f , as soon as µ := inf f is finite. We begin by check-

ing that from the definition of the subgradient and the Young-Fenchel in-

equality, we have F∂f (x, x∗) ≤ f(x) + f∗(x∗), for all x, x∗. See [17] for de-

tails. Thus, when µ = −f∗(0) is finite, we derive G∂f (x) ≤ f(x) − µ. Hence√
G∂f (x) ≤

√
f(x)− µ. Thus using (16) we can conclude that

dgph ∂f (x, 0) ≤ 2
√
f(x)− µ.

This tells us that, if we know the lower bound of a convex function over Rn,

then, just using the functional values and the lower-bound one can develop an

error bound though viewed from an higher dimension.

5.3 Error Bounds in the Strongly Monotone Case

In this final subsection we present a new gap function for the maximal mono-

tone inclusion when T is strongly monotone. We say that, T is strongly mono-

tone or ρ-strongly monotone, if there exists ρ > 0 for all ξ ∈ T (y) and η ∈ T (x)

we have

〈ξ − η, y − x〉 ≥ ρ‖y − x‖2, ∀x, y ∈ Rn.

The scalar ρ > 0 is the modulus of strong monotonicity. Our gap fuction is

based on regularization of GT and generalizes an approach of Nesterov and

Scrimali [18].
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Let T be strongly monotone with modulus of strong monotonicity ρ. We define

the function ĜT as follows

ĜT (x) := sup
y∈Rn

{
sup

y∗∈T (y)

〈y∗, x− y〉+
ρ

2
‖y − x‖2

}
. (21)

It is simple to note that the function ĜT can be written as

ĜT (x) := sup
y∈dom T

{
sup

y∗∈T (y)

〈y∗, x− y〉+
ρ

2
‖y − x‖2

}
.

We begin by the following result.

Proposition 5.3 If T is strongly monotone with modulus ρ, then the function

ĜT is a finite-valued, strongly convex and continuous function.

Proof: We first show that ĜT is finite-valued. The definition of strong mono-

tonicity shows that for any fixed x and y, for all x∗ ∈ T (x) and y∗ ∈ T (y) we

have

〈y∗, x− y〉+
ρ

2
‖y − x‖2 ≤ 〈x∗, x− y〉 − ρ

2
‖y − x‖2.

The above inequality leads easily to the following,

sup
y∈Rn

{
sup

y∗∈T (y)

〈y∗, x− y〉+
ρ

2
‖y − x‖2

}
≤ sup
y∈Rn

{
inf

x∗∈T (x)
〈x∗, x− y〉 − ρ

2
‖y − x‖2

}
.

(22)

Let us set ϕ(x, y) := infx∗∈T (x)〈x∗, x− y〉. Note that when x is fixed for each

x∗, the function y 7→ 〈x∗, x − y〉 is affine in y. Thus, for each fixed x we see

that ϕ(x, .) is a concave function. Thus the function ϕ(x, y)− ρ
2‖y − x‖

2 is a

strongly concave function in y for each x. Hence, there is a unique maximizer

of the problem,

sup
y∈Rn

{
ϕ(x, y)− ρ

2
‖y − x‖2

}
.
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Consequently, we have

ĜT (x) = sup
y∈Rn

{
sup

y∗∈T (y)

〈y∗, x− y〉+
ρ

2
‖y − x‖2

}
< +∞.

By setting y = x we conclude that ĜT (x) ≥ 0 for all x ∈ Rn. This shows that

ĜT is finite. We now show that ĜT is (strongly) convex. Let us set

ψ(x, y) := sup
y∗∈T (y)

〈y∗, x− y〉.

Note that for every fixed y, the function 〈y∗, x − y〉 is affine in x for each

y∗ ∈ T (y). Thus for each fixed y, the function ψ(., y) is convex in x. Thus,

ĜT is a strongly convex function in x as the supremum of a family of strongly

convex functions in x. Hence the result is established. �

We now demonstrate that under natural conditions, ĜT is a gap function for

the associated monotone inclusion.

Theorem 5.1 Let T be maximal monotone operator with non-empty convex

and compact-values throughout Rn. Suppose that T is strongly monotone with

ρ > 0 as the modulus of strong convexity. Then, ĜT is a gap function for the

maximal monotone inclusion 0 ∈ T (x).

Proof: Let us begin by considering x̄ to be a solution of the monotone inclu-

sion. This implies that for any y ∈ Rn, we have

inf
x∗∈T (x̄)

〈x∗, x̄− y〉 ≤ 0 ≤ ρ

2
‖x̄− y‖2.

This shows that

sup
y∈Rm

{
inf

x∗∈T (x̄)
〈x∗, x̄− y〉 − ρ

2
‖x̄− y‖2

}
≤ 0.
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Now, using ( 22) we conclude that ĜT (x̄) ≤ 0. It is simple to see that ĜT (x) ≥

0 for all x ∈ Rn. This shows that ĜT (x̄) = 0.

Now suppose only that x̄ satisfies ĜT (x̄) = 0. Then, for all y ∈ Rn we have

sup
y∗∈T (y)

〈y∗, x̄− y〉 ≤ −ρ
2
‖y − x̄‖2. (23)

Consider a fixed but arbitrary y ∈ Rn, and set yk := x̄ +
1

k
(y − x̄). Thus

yk → x̄ as k →∞. Now, using (23) we have

sup
y∗∈T (yk)

〈y∗, x̄− yk〉 ≤ −
ρ

2
‖yk − x̄‖2.

As T has compact images, we conclude that for each k there exists y∗k ∈ T (yk)

such that 〈y∗k, x̄− yk〉 ≤ −
ρ
2‖yk − x̄‖

2. A simple calculation shows

〈y∗k, x̄− y〉 ≤ −
ρ

2k
‖y − x̄‖2. (24)

Since T is locally bounded it follows that {y∗k} is a bounded sequence. Since T

is graph closed, we can assume without any loss of generality that y∗k → x∗y ∈

T (x̄). Note here that x∗y is dependent on the choice of y. Hence, as k → ∞

from ( 24), we have 〈x∗y, x̄− y〉 ≤ 0.

Noting that y is chosen arbitrarily we conclude that for each y ∈ Rn, we have

inf
x∗∈T (x̄)

〈x∗, x̄− y〉 − ρ

2
‖y − x̄‖2 ≤ 0.

Hence we have

sup
y∈Rn

inf
x∗∈T (x̄)

{
〈x∗, x̄− y〉 − ρ

2
‖y − x̄‖2

}
≤ 0.

Observe that the function, 〈x∗, x̄− y〉 − ρ
2‖y − x̄‖

2, is convex in x∗ for a fixed

y, and is concave in y for fixed x∗. Since T (x̄) is compact we can again use
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Sion’s minimax Theorem [19] to conclude that

inf
x∗∈T (x̄)

sup
y∈Rn

{
〈x∗, x̄− y〉 − ρ

2
‖y − x̄‖2

}
≤ 0. (25)

Now, by using the well known fact that the function
1

2
‖.‖2 is self-conjugate

we have

sup
y∈Rn

{
〈x∗, x̄− y〉 − ρ

2
‖y − x̄‖2

}
=

1

2ρ
‖x∗‖2.

Hence from (25) we see that infx∗∈T (x̄)
1
2ρ‖x

∗‖2 ≤ 0. Now using the compact-

ness of T (x̄) we conclude the existence of x̂∗ ∈ T (x̄) such that 1
2ρ‖x̂

∗‖2 ≤ 0.

This allows us to conclude that x̂∗ = 0, and thus proving that x̄ is a solution

of the monotone inclusion. �

While in the above theorem we assumed that domT = Rn, the proof works

as soon as domT ⊂ Rn is open.

Theorem 5.2 Let T be a maximal monotone operator with nonempty values

on all of Rn. Let T be strongly monotone with ρ > 0, as the modulus of strong

monotonicity. Let x̄ be the unique solution of the maximal monotone inclusion

0 ∈ T (x). Then, for any x ∈ Rn we have

‖x− x̄‖ ≤
√

2

ρ
ĜT (x).

Proof: By the definition of ĜT we see that for each y ∈ Rn we have

ĜT (x) ≥ sup
y∗∈T (y)

〈y∗, x− y〉+
ρ

2
‖x− y‖2.

Now, setting y = x̄ we have

ĜT (x) ≥ sup
y∗∈T (x̄)

〈y∗, x− x̄〉+
ρ

2
‖x− x̄‖2. (26)
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Now, as x̄ is a solution of the monotone inclusion, we have 0 ∈ T (x̄). This shows

that supy∗∈T (x̄)〈y∗, x− x̄〉 ≥ 0. Hence from ( 26) we have ĜT (x) ≥ ρ
2‖x− x̄‖

2.

This completes the proof. �

In fact, we can modify the above theorem for the case when domT ⊂ Rn. We

have only to assume that T is locally bounded on domT (necessarily open).

6 Related Examples

Let us now provide some examples associated with the gap function GT and

the gap γ.

Example 6.1 (Non-coercivity) Consider the convex function f(x) = − log x

, x > 0 and f(x) = +∞ for x ≤ 0. This means that infR = −∞. Then, for

any x > 0 let us set T (x) = ∂f(x) = {− 1
x}. A simple calculation will show

that GT (x) = 1 for all x ≥ 0 and GT (x) = +∞, otherwise. Hence γ = 1. Since

γ 6= 0, it clearly shows that, the monotone inclusion problem has no solution,

which is same as saying that infR f = −∞, which indeed is true in this case.

Since GT is not finite we can conclude from here that T = ∇f is not coercive

in the sense in Theorem 3.2. �

We have shown that coercivity of T leads to finiteness of GT . The following

example shows that coercivity of T is only sufficient and not necessary.

Example 6.2 (Finiteness of GT ) Consider T (x) = ex. Then, from very

simple calculations we can conclude that GT (x) = ex−1. Thus GT is finite,
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though T is not coercive in the sense used in this article. Note that the gap

γT = 0 but is not attained. �

Example 6.3 (Affine variational inequalities) In this example we shall

consider the problem V I(F,C) for F (x) = Mx+q, where F is a monotone map,

which is equivalent to saying that M is positive semi-definite. As observed,

this problem is equivalent to the monotone inclusion problem where T (x) =

F (x) +NC(x) .

Let us consider the case where M is skew-symmetric and thus monotone. In

that case we have already shown in Section 2 that

G(x) = 〈q, x〉+ sup
y∈C
〈−(Mx+ q), y〉.

If for example, we choose C = B, the unit ball in Rn, then we have

G(x) = 〈q, x〉+ ‖Mx+ q‖.

�

Let us now provide a very simple example to illustrate that GT can indeed be

weakly coercive in the sense of (4) but not strongly so.

Example 6.4 Let us consider the function f(x) = |x|, x ∈ R. Now consider

the inclusion 0 ∈ ∂f(x). It is well known that the unique solution is x = 0.

Thus in this case we have

GT (x) = sup
y∈R

sup
y∗∈∂f(y)

y∗(x− y).

A simple calculation will show that GT (0) = 0, GT (x) = x if x > 0, and

GT (x) = −x if x < 0. It is simple to observe that GT is only weakly coercive

in the sense of (4). �
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Let us note that the gap functions computed in Examples 6.1 and Example

6.4 can also be obtained easily from Example 3.1 and 3.3 in [17]. We shall now

show that we can obtain the following interesting example using Example 3.6

from [17]

Example 6.5 (Negative Entropy)

Let us the consider the convex function f : R → R which is given as follows.

We set f(x) := x lnx−x if x > 0, f(x) = 0 if x = 0, and f(x) = +∞ if x < 0.

This function has a unique minimizer at x = 1. Let us consider T = ∂f . Now,

using Example 3.6 in [17] we have GT (x) = +∞ if x < 0 , GT (x) = e−1 if

x = 0, and when x > 0 we have

GT (x) = x(W (xe) +
1

W (xe)
− 2), (27)

where W is the inverse of the real function x 7→ xex and is known as the Lam-

bert W function. Thence, we have W (x)eW (x) = x. This shows that W (e) = 1,

and so from (27) we see that GT (1) = 0, showing that x = 1 is indeed the

minimizer. Note also that for any x > 0 we have GT (x) > 0, thus establishing

that x = 1 is indeed the unique minimizer. �

Example 6.6 ( Computation of ĜT ) It is not easy to compute the regu-

larised gap function ĜT (x). However, let us see to what extent we can sim-

plify the computation when we consider a strongly convex function given as

f(x) := g(x) + ρ
2‖x‖

2, where g : Rn → R is a convex function and ρ > 0. Now

∂f is ρ-strongly monotone and ∂f(x) = ∂g(x) + ρx. Hence we have

Ĝ∂f (x) = sup
y∈Rn

{
sup

y∗∈∂g(y)

〈y∗ + ρy, x− y〉+
ρ

2
‖y − x‖2

}
.
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This reduces to the following formula:

Ĝ∂f (x) = sup
y∈Rn

{
g′(y, x− y) + ρ〈x, y〉 − ρ‖y‖2 +

ρ

2
‖y − x‖2

}
.

Consider the case where g(x) := |x| , x ∈ R. Then, x = 0 is the minimizer of

f over R. Thence

Ĝ∂f (0) = sup
y∈R

{
g′(y,−y)− ρ

2
|y|2
}

= sup
y∈R

{
−|y| − ρ

2
|y|2
}

= 0.

�

Example 6.7 In this example we show that, even if we have a very simple

looking structure for T which can be easily solved it may not be possible to get

an explicit form of GT , and one will have to use modern mathematical packages

to get an idea of the nature of GT . In fact, even if we know the solutions of

the inclusions, it may be even difficult to exactly compute the value of GT at

the solution points and show it to be zero. However mathematical packages

can be used to get a good insight into the computation of the gap function.

For example let us f(x) = −1/x if x < 0, and f(x) = +∞ if x ≥ 0, and look

for solutions of 0 ∈ T (x) := ∂f(x)− z, where z > 0. It is simple to note that,

for any z > 0 , we have 0 ∈ T (x), if and only if x = −
√

1
z . Given z > 0, the

function GT is given as

GT (x) = sup
y<0

(
1

y2
− z
)

(x− y).

Now set

ϕx,z(y) =

(
1

y2
− z
)

(x− y).
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In fact, the natural instinct is to compute the derivative of ϕx,z in terms of y,

and equate it to zero. However that would result in a cubic equation which only

complicates the matter. So we considered particular values of z i.e. z = 2 and

z = 3 at the solution points, and tried to compute approximately GT

(
−
√

1
2

)
and GT

(
−
√

1
3

)
and also draw the graph of ϕx,z with x = −

√
1
2 ,−

√
1
3 with

z = 2, 3. We observed that ( 1
y2−2)(−

√
1
2−y) < 0 for all y < 0, and the function

value approaches zero asymptotically. This shows that GT

(
−
√

1
2

)
= 0. This

is same when z = 3 and x = −
√

1
3 . However using MATLAB ( version R2014)

we have computed approximate values of GT

(
−
√

1
2

)
, and GT

(
−
√

1
3

)
, which

we present below. First we present for the case z = 2, and then z = 3.

For z = 2 we have,

GT

(
−
√

1

2

)
= −5.8609× 10−11(obtained in 105 iterates),

and

GT

(
−
√

1

2

)
= −2.0022× 10−15(obtained in 107 iterates).

Now for z = 3 we have,

GT

(
−
√

1

3

)
= −7.5306× 10−13(obtained in 105 iterates),

and

GT

(
−
√

1

3

)
= −9.8652× 10−15(obtained in 107 iterates).

So we see that as we increase the number of iterations the approximate values

that we obtain for the gap function at the solution points continue to increase

towards zero. �
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Finally, we note that the construction in [20] can be used to show that the gap

γ in Proposition 3.7 may be finite and positive.

Appendix

In this appendix we first prove that the function

G(x) = sup
y∈C
〈F (y), x− y〉,

is a gap function when F is monotone.

We establish this directly. The functionG is convex, proper and lower-semicontinuous.

When C is compact, G is continuous since it is finite. It is easy to see that

G(x) ≥ 0. If G(x) = 0, then we have, for all y ∈ C, 〈F (y), x−y〉 ≤ 0. Consider

a fixed y ∈ C, and construct the sequence yn = x+ 1
n (y−x). Since C is convex,

yn ∈ C. Hence we have 〈F (yn), x− yn〉 ≤ 0. As n → ∞, using the continuity

of F , we have 〈F (x), x− y〉 ≤ 0. Thus x is a solution of V I(F,C) since y ∈ C

was chosen arbitrarily.

Now assume that x is a solution of V I(F,C). Hence 〈F (x), x− y〉 ≤ 0, for all

y ∈ C. Then, using monotonicity of F we have 〈F (y), x−y〉 ≤ 0, for all y ∈ C.

This shows that G(x) ≤ 0. Hence G(x) = 0, and proves that G is a gap func-

tion when F is monotone.

We shall now state the Proposition 4.1 of Aussel and Dutta [8] adapted to our

setting.

Proposition A.1 Assume that the set-valued map T is compact-valued. The

the function ĝ is a gap function for the weak variational inequality.



44 J. M. Borwein, J. Dutta

We end the Appendix by stating the Sion’s minimax theorem as given in

Komiya [19] but will present it only in our finite dimensional setting. We

recall that a quasi-convex function is a function, whose lower level sets are

always convex. If h is quasi-convex, then −h is quasi-concave. Thus, every

convex function is quasi-convex, and every concave function is quasi-concave.

For more details on quasi-convex functions see, for example, [21].

Theorem A.1 (Sion’s minimax theorem)

Let X be a compact convex set of Rn and Y be a convex set of Rm and let f

be a real-valued function on X × Y such that

i) f(x, .) is quasi-concave and upper-semicontinuous on Y for each x ∈ X;

ii) f(., y) is quasi-convex and lower-semicontinuous on X for each y ∈ Y .

Then, we have

inf
x∈X

sup
y∈Y

f(x, y) = sup
y∈Y

inf
x∈X

f(x, y).
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