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BRAGG and BLAKE

“I feel so strongly about

the wrongness of read-

ing a lecture that my lan-

guage may seem immod-

erate. · · · The spoken

word and the written word

are quite different arts.

· · · I feel that to collect

an audience and then read

one’s material is like invit-

ing a friend to go for a

walk and asking him not

to mind if you go along-

side him in your car.”

Sir Lawrence Bragg (1890-1971)

Nobel Crystallographer (Adelaide)

Songs of Innocence and
Experience (1825)

(We are both.)
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SANTAYANA

“If my teachers had begun by telling me that

mathematics was pure play with presupposi-

tions, and wholly in the air, I might have be-

come a good mathematician. But they were

overworked drudges, and I was largely inatten-

tive, and inclined lazily to attribute to incapac-

ity in myself or to a literary temperament that

dullness which perhaps was due simply to lack

of initiation.”

(George Santayana)

Persons and Places, 1945, 238–9.

TWO FINE REFERENCES:

1. J.M. Borwein and Qiji Zhu, Techniques

of Variational Analysis, CMS/Springer-Verlag,

New York, 2005.

2. J.M. Borwein and A.S Lewis, Convex Analy-

sis and Nonlinear Optimization, CMS/Springer-

Verlag, 2nd expanded edition, New York, 2005.
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OUTLINE

I shall discuss in “tutorial mode” the formaliza-

tion of inverse problems such as signal recovery

and option pricing as (convex and non-convex)

optimization problems over the infinite dimen-

sional space of signals. I shall touch on∗ the

following:

1. The impact of the choice of “entropy”

(e.g., Boltzmann-Shannon, Burg entropy,

Fisher information) on the well-posedness of

the problem and the form of the solution.

2. Convex programming duality:

what it is and what it buys you.

3. Algorithmic consequences.

4. Non-convex extensions: life is hard. But

sometimes more works than should.

♠ Related papers at http://docserver.cs.dal.ca/

∗More is an unrealistic task!
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THE GENERAL PROBLEM

• Many applied problems reduce to “best” solv-

ing (under-determined) systems of linear (or

non-linear) equations Ax = b , where b ∈ IRn,

and the unknown x lies in some appropriate

function space.

Discretization reduces this to a finite-dimensional

setting where A is now a m× n matrix.

⋄ In many cases, I believe it is better to ad-

dress the problem in its function space home,

discretizing only as necessary for computation.

• Thus, the problem often is how do we esti-

mate x from a finite number of its ’moments’?

This is typically an under-determined linear in-

version problem where the unknown is most

naturally a function, not a vector in IRm.
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EXAMPLE 1. AUTOCORRELATION

• Consider, extrapolating an autocorrelation

function R(t) given sample measurements.

⋄ The Fourier transform S(z) of the autocor-

relation is the power spectrum of the data.

Fourier moments of the power spec-

trum are the same as samples of the

autocorrelation function, so by com-

puting several values of R(t) directly

from the data, we are in essence com-

puting moments of S(z).

• We compute a finite number of moments of

S, and estimate S from them, and may com-

pute more moments from the estimate Ŝ by

direct numerical integration.

• Thereby extrapolating R, without directly

computing R from potentially noisy data.
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THE ENTROPY APPROACH

• Following (B-Zhu) I sketch a maximum en-

tropy approach to under-determined systems

where the unknown, x, is a function, typically

living in a Hilbert space, or more general space

of functions.

This technique picks a “best” represen-

tative from the infinite set of feasible

functions (functions that possess the

same n moments as the sampled func-

tion) by minimizing an integral func-

tional, f , of the unknown.

http://projects.cs.dal.ca/ddrive

7



⋄ The approach finds applications in countless

fields including:

Acoustics, constrained spline fitting, im-

age reconstruction, inverse scattering,

optics, option pricing, multidimensional

NMR, tomography, statistical moment

fitting, and time series analysis, etc.

(Many thousands of papers)

• However, the derivations and mathematics

are fraught with subtle errors.

I will discuss some of the difficulties in-

herent in infinite dimensional calculus,

and provide a simple theoretical algo-

rithm for correctly deriving maximum

entropy-type solutions.
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WHAT is

Boltzmann (1844-1906) Shannon (1916-2001)
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WHAT is ENTROPY?

Despite the narrative force that the concept of

entropy appears to evoke in everyday writing,

in scientific writing entropy remains a thermo-

dynamic quantity and a mathematical formula

that numerically quantifies disorder. When the

American scientist Claude Shannon found that

the mathematical formula of Boltzmann de-

fined a useful quantity in information theory,

he hesitated to name this newly discovered

quantity entropy because of its philosophical

baggage.

The mathematician John von Neumann en-

couraged Shannon to go ahead with the name

entropy, however, since “no one knows what

entropy is, so in a debate you will always have

the advantage.”

• 19C: Boltzmann—thermodynamic disorder

• 20C: Shannon—information uncertainty

• 21C: JMB—potentials with superlinear growth
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CHARACTERIZATIONS of ENTROPY

• Information theoretic characterizations abound.

A nice one is:

Theorem H(−→p ) = −
∑N
k=1 pk log pk is the unique

continuous function (up to a positive scalar

multiple) on finite probabilities such that

I. Uncertainty grows:

H







n
︷ ︸︸ ︷

1

n
,
1

n
, · · · ,

1

n







increases with n.

II. Subordinate choices are respected: for dis-

tributions −→p1 and −→p2 and 0 < p < 1,

H
(

p−→p1, (1 − p)−→p2
)

= pH(−→p1)+(1−p)H(−→p2).
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ENTROPIES FOR US

• Let X be our function space, typically Hilbert

space L2(Ω), or the function space L1(Ω) (or

a Sobelov space).

⋄ For p ≥ 1,

Lp(Ω) =

{

x measurable :

∫

Ω
|x(t)|pdt <∞

}

.

It is well known that L2(Ω) is a Hilbert

space with inner product

〈x, y〉 =

∫

Ω
x(t)y(t)dt,

(with variations in Sobelov space).

• A bounded linear map A : X → IRn is deter-

mined by

(Ax)i =
∫

x(t)ai(t) dt

for i = 1, . . . , n and ai ∈ X∗ the ‘dual’ of X

(L2 in the Hilbert case, L∞ in the L1 case).
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• To pick a solution from the infinitude of pos-

sibilities, we may freely define “best”.

⊗
The most common approach is to find the

minimum norm solution∗, by solving the Gram

system

AATλ = b .

⊕
The solution is then x̂ = ATλ. This recap-

tures all of Fourier analysis!

• This actually solved the following variational

problem:

inf

{∫

Ω
x(t)2dt : Ax = b x ∈ X

}

.

∗Even in the (realistic) infeasible case.
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• We generalize the norm with a strictly convex

functional f as in

min {f(x) : Ax = b, x ∈ X} , (P)

where f is what we call, an entropy functional,

f : X → (−∞,+∞]. Here we suppose f is a

strictly convex integral functional∗ of the form

f(x) =
∫

Ω
φ(x(t))dt.

The functional f can be used to include other

constraints†.

For example, the constrained L2 norm func-

tional (‘positive energy’),

f(x) =

{ ∫ 1
0 x(t)

2 dt if x ≥ 0
+∞ else

is used in constrained spline fitting.

• Entropy constructions abound: Bregman and

Csizar distances model statistical divergences.

∗Essentially φ′′(t) > 0.
†Including nonnegativity, by appropriate use of +∞.

14



• Two popular choices for f are the Boltzmann-

Shannon entropy (in image processing)

f(x) =
∫

x log x,

and the Burg entropy (in time series analysis),

f(x) = −
∫

logx.

⋄ Both implicitly impose a nonnegativity con-

straint (positivity in Burg’s non-superlinear case).

• There has been much information-theoretic

debate about which entropy is best.

This is more theology than science!

• More recently, the use of Fisher Information

f(x, x′) =

∫

Ω

x′(t)2

2x(t)
µ(dt)

has become more usual as it penalizes large

derivatives; and can be argued for physically

(‘hot’ over past five years).
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WHAT ‘WORKS’ BUT CAN GO WRONG?

• Consider solving Ax = b, where, b ∈ IRn and
x ∈ L2[0,1]. Assume further that A is a contin-

uous linear map, hence represented as above.

• As L2 is infinite dimensional, so is N(A): if
Ax = b is solvable, it is under-determined.

We pick our solution to minimize

f(x) =

∫

φ(x(t))µ(dt)

⊙
φ(x(t), x′(t)) in Fisher-like cases [BN1, BN2,

B-Vanderwerff (Convex Functions, CUP 2009)].

• We introduce the Lagrangian

L(x, λ) :=
∫ 1

0
φ(x(t))dt+

n∑

i=1

λi (bi − 〈x, ai〉) ,

and the associated dual problem

max
λ∈IRn

min
x∈X

{L(x, λ)}. (D)
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• So we formally have a “dual pair” (BL1)

min {f(x) : Ax = b, x ∈ X} , (P)

and

max
λ∈IRn

min
x∈X

{L(x, λ)}. (D)

• Moreover, for the solutions x̂ to (P), λ̂ to

(D), the derivative (w.r.t. x) of L(x, λ̂) should

be zero, since L(x̂, λ̂) ≤ L(x, λ̂),∀x.

This implies

x̂(t) = (φ′)−1





n∑

i=1

λ̂iai(t)





= (φ′)−1
(

AT λ̂
)

.

• We can now reconstruct the primal solu-

tion (qualitatively and quantitatively) from

a presumptively easier dual computation.
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A DANTZIG ANECDOTE

“George wrote in “Reminiscences about the
origins of linear programming,” 1 and 2, Oper.

Res. Letters, April 1982 (p. 47):

“The term Dual is not new. But sur-

prisingly the term Primal, introduced
around 1954, is. It came about this

way. W. Orchard-Hays, who is respon-
sible for the first commercial grade L.P.

software, said to me at RAND one day
around 1954: ‘We need a word that

stands for the original problem of which

this is the dual.’
I, in turn, asked my father, Tobias

Dantzig, mathematician and author, well
known for his books popularizing the

history of mathematics. He knew his
Greek and Latin. Whenever I tried to

bring up the subject of linear program-
ming, Toby (as he was affectionately

known) became bored and yawned.
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But on this occasion he did give the

matter some thought and several days

later suggested Primal as the natural

antonym since both primal and dual

derive from the Latin. It was Toby’s

one and only contribution to linear pro-

gramming: his sole contribution unless,

of course, you want to count the train-

ing he gave me in classical mathematics

or his part in my conception.”

A lovely story. I heard George recount this a

few times and, when he came to the “concep-

tion” part, he always had a twinkle in his eyes.

(Saul Gass, Oct 2006)

• In a Sept 2006 SIAM book review , I as-

serted George assisted his father—for rea-

sons I believe but cannot reconstruct.

I also called Lord Chesterfield, Chesterton

(gulp!).
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PITFALLS ABOUND

There are 2 major problems to this approach.∗

1. The assumption that a solution x̂ exists.

For example, consider the problem

inf
x∈L1[0,1]

{
∫ 1

0
x(t)dt :

∫ 1

0
tx(t) dt = 1, x ≥ 0

}

.

⋄ The optimal value is not attained. Similarly,

existence can fail for the Burg entropy with

trig moments. Additional conditions on φ are

needed to insure solutions exist.† (BL2)

2. The assumption that the Lagrangian is dif-

ferentiable. In the above, f is +∞ for every x
negative on a set of positive measure.

⋄ This implies the Lagrangian is +∞ on a dense

subset of L1, the set of functions not nonneg-

ative a.e.. The Lagrangian is nowhere contin-

uous, much less differentiable.
∗A third, the existence of λ̂, is less difficult to surmount.
†The solution is actually the absolutely continuous part
of a measure in C(Ω)∗.
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FIXING THE PROBLEM

• One approach to circumvent the differen-

tiability problem, is to pose the problem in

L∞(Ω), or in C(Ω), the space of essentially

bounded, or continuous, functions. However,

in these spaces, even with additional side qual-

ifications, we are not necessarily assured solu-

tions to (P) exist.

⋄ In (BL2), an example is given of a one pa-

rameter problem on the torus in IR3, using the

first four Fourier coefficients, and Burg’s en-

tropy, where solutions fail to exist for certain

feasible data values.

• Alternatively, Minerbo poses the problem of

tomographic reconstruction in C(Ω) with the

Boltzmann-Shannon entropy. Unfortunately,

the functions ai are characteristic functions of

strips across Ω, and the solution is piecewise

constant, not continuous.
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CONVEX ANALYSIS (AN ADVERT)

We prepare to state a theorem that guarantees

that the form of solution found in the above

faulty derivation x̂ = (φ′)−1(AT λ̂) is, in fact,

correct. A full derivation is given in (BL2) and

(BZ05).

• We introduce the Fenchel (Legendre) conju-

gate (see BL1) of a function φ : IR → (−∞,+∞]:

φ∗(u) = sup
v∈IR

{uv − φ(v)}.

• Often this can be (pre-)computed explicitly,

using Newtonian calculus. Thus,

φ(v) = v log v − v,− log v and v2/2

yield

φ∗(u) = exp(u),−1 − log(−u) and u2/2

respectively. The red is the log barrier of in-

terior point fame!

• The Fisher case is similarly explicit.
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EXAMPLE 2. CONJUGATES & NMR

The Hoch and Stern information measure, or

neg-entropy, is defined in complex n−space by

H(z) =
n∑

j=1

h(zj/b),

where h is convex and given (for scaling b) by:

h(z) , |z| log
(

|z| +
√

1 + |z|2
)

−
√

1 + |z|2

for quantum theoretic (NMR) reasons.

• Recall the Fenchel-Legendre conjugate

f∗(y) := sup
x

〈y, x〉 − f(x).

• Our symbolic convex analysis package (stored

at www.cecm.sfu.ca/projects/CCA/, also in Chris

Hamilton’s package at Dal) produced:

h∗(z) = cosh(|z|)

⋄ Compare the Shannon entropy:

(z log z − z)∗ = exp(z).
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COERCIVITY AND DUALITY

• We say φ possess regular growth if either

d = ∞, or d < ∞ and k > 0, where d =

limu→∞ φ(u)/u and k = limv↑d(d− v)(φ∗)′(v).∗

• The domain of a convex function is dom(φ) =

{u : φ(u) < +∞}; φ is proper if dom(φ) 6= ∅.
Let ı = inf dom(φ) and σ = supdom(φ).

• Our constraint qualification,† (CQ), reads

∃x ∈ L1(Ω), such that Ax = b,
f(x) ∈ IR, ı < x < σ a.e.

⋄ In many cases, (CQ) reduces to feasibility ,

(e.g., spectral estimation) and trivially holds.

• In this language, the dual problem for (P) is

sup

{

〈b, λ〉 −
∫

Ω
φ∗(ATλ(t))dt

}

. (D)

∗-log does nor possess regular growth; v → v log v does.
†The standard Slater’s condition fails; this is what guar-
antees dual solutions exist.
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Theorem 1 (BL2) Let Ω be a finite inter-

val, µ Lebesgue measure, each ak continuously

differentiable (or just locally Lipschitz) and φ

proper, strictly convex with regular growth.

Suppose (CQ) holds and also

(1)

∃ τ ∈ IRn such that
n∑

i=1

τiai(t) < d ∀t ∈ [a, b],

then the unique solution to (P) is given by

(2) x̂(t) = (φ∗)′(
n∑

i=1

λ̂iai(t))

where λ̂ is any solution to dual problem (D)

(and such λ̂ must exist).

• This theorem generalizes to cover Ω ⊂ IRn,

and more elaborately in Fisher-like cases. These

results can be found in (BL2, BN1).

⋄ ‘Bogus’ differentiation of a discontinuous func-

tion becomes the delicate (
∫

Ω φ)
∗(x∗) =

∫

Ω φ∗(x∗) .
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• Thus, the form of the maximum entropy so-

lution can be legitimated simply by validating

the easily checked conditions of Theorem 1.

♠ Also, any solution to Ax = b of the form in

(2) is automatically a solution to (P).

So, solving (P) is equivalent to finding λ ∈ IRn

with

(3) 〈(φ∗)′(ATλ), ai〉 = bi, i = 1, . . . , n,

a finite dimensional set of non-linear equations.

One can then apply a standard ‘indus-

trial strength’ nonlinear equation solver,

like Newton’s method, to this system,

to find the optimal λ.

• Often, (φ′)−1 = (φ∗)′ and so the ’dubious’

solution agrees with the ’honest’ solution.

Importantly, we may tailor (φ′)−1 to our needs.
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• Note that discretization is only needed to

compute terms in (3). Indeed, these integrals

can sometimes be computed exactly (e.g., in

some tomography and option estimation prob-

lems). This is the gain of not discretizing early.

By waiting to see the form of dual prob-

lem, one can customize one’s integra-

tion scheme to the problem at hand.

• For European option pricing the constraints

are based on ‘hockey-sticks’ of the form

ai(x) := max{0, x− ti}

so the dual can be computed exactly and leads

to a relatively small and explicit nonlinear equa-

tion to solve (BCM).

⋄ Even when this is not the case one can of-

ten use the shape of the dual solution to fash-

ion veryefficient heuristic reconstructions that

avoid any iterative steps (see BN2).
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MomEnt+

• MomEnt+ (www.cecm.sfu.ca/interfaces/) has

code for entropic reconstructions as above. Mo-

ments (including wavelets), entropies and di-

mension are easily varied. It also allows for

adding noise and relaxation of the constraints.

Several methods of solving the dual are

possible, including Newton and quasi-

Newton methods (BFGS, DFP), con-

jugate gradients, and the suddenly sexy

Barzilai-Borwein line-search free method.

• For iterative methods below, I recommend:

H.H. Bauschke and J.M. Borwein, “On pro-

jection algorithms for solving convex feasibil-

ity problems,” SIAM Review, 38 (1996), 367–

426 (cited over 100 time by MathSciNet, 215

times in ISI, 350 in Google!), and a forthcom-

ing CMS-Springer book written by Bauschke

and Combettes.
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COMPARISON OF ENTROPIES

• The positive L2, Boltzmann-Shannon and

Burg entropy reconstruction of the charac-

teristic function of [0,1/2] using 10 algebraic

moments (bi =
∫ 1/2
0 ti−1dt) on Ω = [0,1].

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

chi(0,.5,t)
Boltzmann-Shannon

Burg
Positive L2

• Solution: x̂(t) = (φ∗)′(
∑n
i=1 λ̂it

i−1).

Burg over-oscillates since (φ∗)′(t) = 1/t.
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THE NON-CONVEX CASE

• In general non-convex optimization is a much

less satisfactory field. We can usually hope

only to find critical points (f ′(x) = 0) or lo-

cal minima. Thus, problem-specific heuristics

dominate.

• Crystallography: We of course wish to es-

timate x in L2(IRn)∗ Then the modulus c = |x̂|
is known (x̂ is the Fourier transform of x).†

Now {y : |ŷ| = c}, is not convex. So the issue

is to find x given c and other convex infor-

mation. An appropriate optimization problem

extending the previous one is

min {f(x) : Ax = b, ‖Mx‖ = c, x ∈ X} , (NP)

where M models the modular constraint, and

f is as in Theorem 1.

∗Here n = 2 for images, 3 for holographic imaging, etc.
†Observation of the modulus of the diffracted image in
crystallography. Similarly, for optical aberration cor-
rection.
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EXAMPLE 3: CRYSTALLOGRAPHY

• My Parisian collaborator Combettes is ex-

pert on optimization perspectives of cognates

to (NP) and related feasibility problems.

⋄ Most methods rely on a two-stage (easy con-

vex, hard non-convex) decoupling schema—

the following from Decarreau et al. (D). They

suggest solving

min {f(x) : Ax = y, ‖Bky‖ = bk, x ∈ X} ,

(NP ∗)

where ‖Bky‖ = bk, k ∈ K encodes the hard

modular constraints.

• They solve formal first-order Kuhn-Tucker

conditions for a relaxed form of (NP ∗). The

easy constraints are treated by Thm 1.

I am obscure, largely because the results were

largely negative:
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• They applied these ideas to a prostaglandin

molecule (25 atoms), with known structure,

using quasi-Newton (which could fail to find

a local min), truncated Newton (better) and

trust-region (best) numerical schemes.

⋄ They observe that the “reconstructions were

often mediocre” and highly dependent on the

amount of prior information – a small propor-

tion of unknown phases to be satisfactory.

“Conclusion: It is fair to say that the

entropy approach has limited efficiency,

in the sense that it requires a good

deal of information, especially concern-

ing the phases. Other methods are

wanted when this information is not

available.”

• Thus, I offer this part of my presentation

largely to illustrate the difficulties.
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EXAMPLE 4. HUBBLE TELESCOPE

The basic setup—more details follow.

• Electromagnetic field: u : R2 → C ∈ L2

• DATA: Field intensities for m = 1,2, . . . ,M :

ψm : R2 → R+ ∈ L1 ∩ L2 ∩ L∞

• MODEL: Functions Fm : L2 → L2, are mod-

ified Fourier Transforms, for which we can mea-

sure the modulus (intensity)

|Fm(u)| = ψm ∀m = 1,2, . . . ,M.

⊕
INVERSE PROBLEM: For the given trans-

forms Fm and measured field intensities ψm
(for m = 1, . . . ,M), find a robust estimate of

the underlying u.
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... AND SOME HOPE FROM HUBBLE

• The (human-ground) lens with a micro-asymmetry

was mounted upside-down. The perfect back-

up (computer-ground) lens stayed on earth!

⋄ NASA challenged ten teams to devise algo-

rithmic fixes.

• Optical aberration correction, using the

Misell algorithm, a method of alternating pro-

jections, works much better than it should—

given that it is being applied to find a member

of a version of

Ψ :=
M⋂

k=1

{x : Ax = b, ‖Mkx‖ = ck, x ∈ X} ,

(NCFP)

which is a non-convex feasibility problem as

on the next page.

Is there hidden convexity?
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HUBBLE IS ALIVE AND KICKING

Hubble reveals most distant planets yet
Last Updated: Wednesday, October 4, 2006 | 7:21 PM ET
CBC News

Astronomers have discovered the farthest planets from Earth yet found, including one with a year as short as 10 hours — the

fastest known.

Using the Hubble space telescope to peer deeply into the centre of the galaxy, the scientists found as many as 16 planetary 

candidates, they said at a news conference in Washington, D.C., on Wednesday.

The findings were published in the journal Nature.

Looking into a part of the Milky Way known as the galactic bulge, 26,000 light years from Earth, Kailash Sahu and his team 

of astronomers confirmed they had found two planets, with at least seven more candidates that they said should be planets.

The bodies are about 10 times farther away from Earth than any planet previously detected.

A light year is the distance light travels in one year, or about 9.46 trillion kilometres.

Continue Article

• From Nature Oct 2006. Hubble has since

been reborn twice and exoplanets have become

quotidian. There were 228 exoplanets listed at

www.exoplanets.org in Sept 08 and March 09.
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5 Facts About Kepler (launch March 6)
-- Kepler is the world's first mission with the ability to find true Earth analogs -- planets that 
orbit stars like our sun in the "habitable zone." The habitable zone is the region around a star 
where the temperature is just right for water -- an essential ingredient for life as we know it -- to 
pool on a planet's surface. 

-- By the end of Kepler's three-and-one-half-year mission, it will give us a good 

idea of how common or rare other Earths are in our Milky Way galaxy. This will be

an important step in answering the age-old question: Are we alone? 

-- Kepler detects planets by looking for periodic dips in the brightness of stars. 

Some planets pass in front of their stars as seen from our point of view on Earth; 

when they do, they cause their stars to dim slightly, an event Kepler can see. 

-- Kepler has the largest camera ever launched into space, a 95-megapixel array

of charge-coupled devices, or CCDs, as in everyday digital cameras. 

-- Kepler's telescope is so powerful that, from its view up in space, it 

could see one person in a small town turning off a porch light at night. 

NASA 05.03.2009



TWO MAIN APPROACHES

I. Non-convex (in)feasibility problem: Given

ψm 6= 0, define Q0 ⊂ L2 convex, and

Qm :=
{

u ∈ L2 | |Fm(u)| = ψm a.e.
}

(nonconvex)

we wish to find u ∈
⋂M
m=0 Qm = ∅.

⊙
via an alternating projection method: e.g.,

for two sets A and B, repeatedly compute

x→ PB(x) =: y → PA(y) =: x.

II. Error reduction of a nonsmooth objec-

tive (‘entropy’) : for fixed βm > 0

⊙
we attempt to solve

minimize E(u) :=
M∑

m=0

βm

2
dist2(u,Qm)

over u ∈ L2.
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I: NON-CONVEX PROJECTION CAN FAIL

• If A∩B 6= ∅ and A,B are closed convex then

weak convergence (only 2002) is assured—von

Neumann (1933) for subspaces, Bregman (1965).

⊙
Consider the alternating projection method

to find the unique red point on the line-segment

A (convex) and the blue circle B (non-convex).

• The method is ‘myopic’.

A

B

• Starting on line-segment outside the

red circle, we converge to the unique

feasible solution.

• Starting inside the red circle leads to

a period-two locally ‘least-distance’ so-

lution.
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I: PROJECTION METHOD OF CHOICE

• For optical abberation correction this is the

alternating projection method:

x→ PA (PB(x))

x

PA(x)

RA(x)

A

• For crystallography it is better to use (HIO)

over-relax and average: reflect to RA(x) :=

2PA(x) − x and use

x→
x+RA (RB(x))

2

• Both parallelize neatly: A :=diag, B :=
∏

iCi.

• Both are nonexpansive in the convex case.
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APPROACH I: NAMES CHANGE . . .

• The optics community calls projection al-

gorithms “Iterative Transform Algorithms”.

Hubble used Misell’s Algorithm, which

is just averaged projections. The best

projection algorithm Luke∗ found was

cyclic projections (with no relaxation).

• For the crystallography problem the best

known method is called the Hybrid Input-Output

algorithm in the optical setting. Bauschke-

Combettes-Luke (JMAA, 2004) showed HIO,

Lions-Mercier (1979), Douglas-Rachford, Feinup,

and divide-and-concur coincide.

• When u(t) ≥ 0 is imposed, Feinup’s no longer

coincides, and LM (‘HPR’) is still better.

∗My former PDF, he was a Hubble Graduate student.
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ELSER, QUEENS and SUDOKU

2006 Veit Elser at Cornell has had huge suc-

cess (and press) using divide-and-concur on

protein folding, sphere-packing, 3SAT, Sudoku

(R2916), and more. Bauschke and Schaad like-

wise study Eight queens problem (R256) and

image-retrieval (Science News, 08).

Given a partially completed grid, fill it so that each
column, each row, and each of the nine 3× 3 regions
contains the digits from 1 to 9 only once.

• This success (a.e.?) is not seen with alter-

nating projections and cries out for explana-

tion.
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A SAMPLE RECONSTRUCTION (via II)

• The object and its spectrum

Top row: data

Middle: reconstruction

Bottom: truth and error
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EXAMPLE 5. INVERSE SCATTERING

• Central problem: determine the location

and shape of buried objects from measure-

ments of the scattered field after illuminating

a region with a known incident field.

• Recent techniques: determine if a point z is

inside or outside of the scatterer by determin-

ing solvability of the linear integral equation

Fgz
?
= ϕz

where F → X is a compact linear operator con-

structed from the observed data, and ϕz ∈ X

is a known function parameterized by z.

• F has dense range, but if z is on the exterior

of the scatterer, then ϕz /∈Range(F).
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• Since F is compact, any numerical implemen-

tation to solve the above integral equation will

need some regularization scheme.

• If Tikhonov regularization is used—in a re-

stricted physical setting—the solution to the

regularized integral equation, gz,α, has the be-

haviour

||gz,α|| → ∞ as α→ 0

if and only if z is a point outside the scatterer.

• An important open problem is to deter-

mine the behavior of regularized solutions gz,α

under different regularization strategies.

In other words, when can these techniques fail?

(On going joint work with Russell Luke for a

2009 IMA Summer School: also in Experimen-

tal Math in Action, AKP, 2007).
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FINIS: REFLECTIONS IN THE CIRCLE

• Dynamics when B is the unit circle and A

is the blue horizontal line at height α ≥ 0 are

already fascinating. Steps are for

T :=
I +RA ◦RB

2
:

with θn the argument this becomes set

xn+1 := cos θn, yn+1 := yn + α− sin θn.

• α = 0: converge iff start off y-axis (‘chaos’):

• α > 1 ⇒ y → ∞, while α = 0.95 (0 < α < 1)

(unproven) and α = 1 respectively produce:
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DYNAMIC GEOMETRY

• I finish with a Cinderella demo developed

with Chris Maitland.

• Next week a proper introduction to the

package will be given by Ulli Kortenkamp

...
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