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MAXIMUM ENTROPY AND FEASIBILITY METHODS FOR
CONVEX AND NONCONVEX INVERSE PROBLEMS

JONATHAN M. BORWEIN

Abstract. We discuss informally two approaches to solving convex and non-
convex feasibility problems — via entropy optimization and via algebraic iterative
methods. We shall highlight the advantages and disadvantages of each and give
various related applications and limiting-examples. While some of the results are
very classical, they are not as well known to practitioners as they should be. A key
role is played by the Fenchel conjugate.

1. Introduction

I feel so strongly about the wrongness of reading a lecture that my
language may seem immoderate. · · · The spoken word and the written
word are quite different arts.

· · ·
I feel that to collect an audience and then read one’s material is like
inviting a friend to go for a walk and asking him not to mind if you
go alongside him in your car. William Lawrence Bragg (Nobel crys-
tallographer, 1890-1971)

We shall discuss in a ‘tutorial mode’1 the formalization of inverse problems
such as signal recovery, phase retrieval and option pricing: first as (convex and non-
convex) optimization problems and second as feasibility problems — each over
the infinite dimensional space of signals. We shall touch on the following:2

(1) The impact of the choice of “entropy” (e.g., Boltzmann-Shannon entropy,
Burg entropy, Fisher information, etc.) on the well-posedness of the problem
and the form of the solution.

(2) Convex programming duality: what it is and what it buys you.
(3) Algorithmic consequences: for both design and implementation.
(4) Non-convex extensions and feasibility problems: life is hard. Entropy op-

timization, used directly, does not have much to offer. But sometimes we
observe that more works than we yet understand why it should.

1A companion lecture is at http://www.carma.newcastle.edu.au/~jb616/inverse.pdf.
2More is an unrealistic task; all details may be found in the references!
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2. The General Problem

The infinite we shall do right away. The finite may take a little longer.
Stanislav Ulam (1909-1984)3

Many applied problems, and some rather pure ones [26], reduce to ‘best’ solving
(under-determined) systems of linear (or non-linear) equations:

Find x such thatA(x) = b,

where b ∈ IRn, and the unknown x lies in some appropriate function space. Dis-
cretization reduces this to a finite-dimensional setting where A is now a m × n
matrix.

In most cases, I believe it is better to address the problem in its func-
tion space home, discretizing only as necessary for numerical compu-
tation. One is by then more aware of the shape of the solutions and
can be guided by the analysis analysis.

Thus, the problem often is how do we estimate x from a finite number of its ‘mo-
ments’? This is typically an under-determined inverse problem (linear or non-
linear) where the unknown is most naturally a function, not a vector in IRm.

Example 1 (Robust autocorrelation). Consider, extrapolating an autocorrelation
function from given sample measurements:

R(t) :=
E [(Xs − µ)(Xt+s − µ)]

σ

The Wiener-Khintchine theorem says that the Fourier moments of the power spec-
trum S(σ) are samples of the autocorrelation function, so values of R(t) computed
directly from the data yields moments of S(σ).

R(t) =

∫
R

e2πitσS(σ)dσ and S(σ) =

∫
R

e−2πitσR(t)dt.

Hence, we may compute a finite number of moments of S, and use them to make
an estimate Ŝ of S. We may then estimate more moments from Ŝ by direct numerical
integration. So we dually extrapolate R. This avoids having to compute R directly
from potentially noisy (unstable) larger data series. ♦

3In D. MacHale, Comic Sections (Dublin 1993).
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3. Part I: The Entropy Approach

Following [25], I now sketch a maximum entropy approach to under-determined
systems where the unknown, x, is a function, typically living in a Hilbert space, or a
more general space of functions. For Hilbert space theory an excellent new reference
is [5].

The entropy technique picks a ‘best’ representative from the infinite
set of feasible signals (functions that possess the same n moments as
the sampled function) by minimizing an (integral) functional, f(x),
of the unknown x.

The approach finds applications in myriad fields including (to my personal knowl-
edge):

Acoustics, actuarial science, astronomy, biochemistry, compressed sens-
ing, constrained spline fitting, engineering, finance and risk, image
reconstruction, inverse scattering, optics, option pricing, multidimen-
sional NMR (MRI), quantum physics, statistical moment fitting, time
series analysis, and tomography ... (Many thousands of papers).

Some of these are described in the examples throughout this paper.
However, the derivations and mathematics are fraught with subtle — and less

subtle — errors. I will next discuss some of the difficulties inherent in infinite di-
mensional calculus, and provide a simple theoretical algorithm for correctly deriving
maximum entropy-type solutions.

4. What is Entropy?

Despite the narrative force that the concept of entropy appears to evoke
in everyday writing, in scientific writing entropy remains a thermo-
dynamic quantity and a mathematical formula that numerically quan-
tifies disorder. When the American scientist Claude Shannon found
that the mathematical formula of Boltzmann defined a useful quan-
tity in information theory, he hesitated to name this newly discovered
quantity entropy because of its philosophical baggage.

The mathematician John von Neumann encouraged Shannon to go
ahead with the name entropy, however, since “no one knows what
entropy is, so in a debate you will always have the advantage.”4

• In the 19C for Ludwig Boltzmann entropy was a measure of thermodynamic
disorder ;
• In the 20C for Claude Shannon it had become information uncertainty ;

4This possibly apocryphal anecdote is taken from The American Heritage Book of English Usage,
p. 158.
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(a) Boltzmann (b) Shannon

Figure 1. Boltzmann (1844-1906) and Shannon (1916-2001).

• In the 21C: for my collaborators and others, entropies have become barrier
functions (potentials, merit functions) — often with superlinear growth.

Information theoretic characterizations abound. A nice example is:

Theorem 1 (Entropy characterization). [45] Up to a positive multiple,

H(−→p ) := −
N∑
k=1

pk log pk

is the unique continuous function on finite probabilities such that:

[I.] Uncertainty grows:

H


n︷ ︸︸ ︷

1

n
,

1

n
, · · · , 1

n


increases with n.

[II.] Subordinate choices are respected: for distributions −→p1 and −→p2 and 0 < p < 1,

H (p−→p1 , (1− p)−→p2) = pH(−→p1) + (1− p)H(−→p2).

5. Entropies for Us

Let X be our function space, typically the Hilbert space L2(Ω) on a reasonable set
Ω, or often more appropriately the function space L1(Ω) (or a Sobolev space) where
as always for +∞ ≥ p ≥ 1,

Lp(Ω) =

{
x measurable :

∫
Ω

|x(t)|pµ(dt) <∞
}
,
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and we assume for simplicity that the measure is finite. (The ‘infinite horizon’ case
with infinite measure is often more challenging and sometimes the corresponding
results are false or unproven.) We also recall that L2(Ω) is a Hilbert space with
inner product

〈x, y〉 :=

∫
Ω

x(t)y(t)dt,

(with variations in Sobolev space).
A bounded (continuous) linear map A : X → IRn is then fully determined by

(Ax)i =

∫
x(t)ai(t) dt

for i = 1, . . . , n and ai ∈ X∗ the ‘dual’ of X(L2 in the Hilbert case, L∞ in the L1

case, Lq in the Lp case where 1/p+ 1/q = 1).

Figure 2. Lebesgue’s continuous function with divergent Fourier se-
ries at zero.

To pick a solution from the infinitude of possibilities, we may freely define “best”.

Example 2 (Selecting a feasible signal). The most common approach, both for
pragmatic reasons — ease of computation — and for theoretic reasons is to find the
minimum norm solution — even in the (realistic5) infeasible case, by solving the
Gram system:

Find λ such that AATλ = b .

5Given noise, modeling, measurement and numerical errors, the problem may well not be feasible
in practice.
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For any solution λ̂, a primal solution is then x̂ = AT λ̂.
Elaborated, this recaptures all of Fourier analysis, e.g., understanding Lebesgue’s

example illustrated in Figure 2 and much deeper Fourier analysis!
As we shall confirm later in Section 10, the Gram system solves the following

variational problem}:

inf

{∫
Ω

x(t)2dt : Ax = b x ∈ X
}
.

So we see the traditional approach given a variational flavour. ♦

We generalize the norm with a strictly convex functional f as in

min {f(x) : Ax = b, x ∈ X}, (P )

where f is what we shall call an entropy functional, f : X → (−∞,+∞]. Here we
suppose f is a strictly convex integral functional6 of the form

f(x) = Iφ(x) =

∫
Ω

φ(x(t))dt.

The functional f can be used to include other constraints including non-negativity,
as we shall see, by appropriate use of +∞.

Example 3 (Various important entropies). Some of the most useful entropies are
described below. Full details are in [25, 24], see also [20].

(1) The constrained L2-norm functional (‘positive energy’),

f(x) :=

{ ∫ 1

0
x(t)2 dt if x ≥ 0

+∞ else

is used in constrained spline fitting [42], and is implemented in various com-
mercial packages.

(2) Entropy constructions abound: two useful classes follow.
– Bregman (based on convex subgradients φ(y)− φ(x)− φ′(x)(y − x)); and
– Csizar distances (based on xφ(y/x)).

Both model statistical divergences extending the cross-entropy or Kullback-
Leibler divergence.

(3) Use of the Fisher Information, based on a Csizar distance,

f(x, x′) :=

∫
Ω

x′(t)2

2x(t)
µ(dt)

6This is ensured by the condition that φ′′(t) > 0.
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which turns out to be jointly convex has become more usual as it penalizes
large derivatives; and can be argued for physically (‘hot’ over past ten years)
[24].

(4) Two popular choices for f are the (negative of) Boltzmann-Shannon entropy
(in image processing),

f(x) :=

∫
x log x (−x) dµ,

(changes dramatically with µ) and the (negative of) Burg entropy (in time
series analysis and acoustics),

f(x) := −
∫

log x dµ.

The later includes the log barrier and log det functions from interior point the-
ory. Both implicitly impose a nonnegativity constraint (positivity in Burg’s
non-superlinear case), and it is this ability to force the objective to assist in
modeling the problem that gives the approach much of its power. ♦

There has been much information-theoretic debate about which entropy is best.
This is more theology than science !

6. What ‘Works’ Formally

Consider solving Ax = b, where, b ∈ IRn and x ∈ L2[0, 1]. Assume further that
A is a continuous linear map, hence represented as above. As L2[0, 1] is infinite
dimensional, so is the null space N(A). That is, if Ax = b is solvable, it is under-
determined.

We pick our solution to minimize

f(x) =

∫
φ(x(t))µ(dt)

(or φ(x(t), x′(t)) in Fisher-like cases) [17, 19, 24]. We introduce the Lagrangian

L(x, λ) :=

∫ 1

0

φ(x(t))dt+
n∑
i=1

λi (bi − 〈x, ai〉)

and the associated dual problem

max
λ∈IRn

min
x∈X
{L(x, λ)}. (D)

So we formally have a “dual pair” (see [16, 52] and Section eight)

min {f(x) : Ax = b, x ∈ X} = min
x∈X

max
λ∈IRn
{L(x, λ)}, (P )
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and its formal dual (D) above.

Moreover, for the solutions x̂ to (P ), λ̂ to (D), the derivative (w.r.t. x) of L(x, λ̂)
should be zero, since

L(x̂, λ̂) ≤ L(x, λ̂),

∀x ∈ X. As

L(x, λ̂) =

∫ 1

0

φ(x(t))dt+
n∑
i=1

λ̂i (bi − 〈x, ai〉)

this implies

x̂(t) = (φ′)−1

(
n∑
i=1

λ̂iai(t)

)
= (φ′)−1

(
AT λ̂

)
.

Thus, we can now reconstruct the primal solution (qualitatively and quantita-
tively) from a presumptively easier dual computation.

7. An Interlude with George Dantzig

Figure 3. George Danzig (1914–2005).

“The term Dual is not new. But surprisingly the term Primal, intro-
duced around 1954, is. It came about this way. W. Orchard-Hays,
who is responsible for the first commercial grade L.P. software, said
to me at RAND one day around 1954: ‘We need a word that stands
for the original problem of which this is the dual.’ I, in turn, asked my
father, Tobias Dantzig, mathematician and author, well known for his
books popularizing the history of mathematics. He knew his Greek and

9



Latin. Whenever I tried to bring up the subject of linear programming,
Toby (as he was affectionately known) became bored and yawned. But
on this occasion he did give the matter some thought and several days
later suggested Primal as the natural antonym since both primal and
dual derive from the Latin. It was Toby’s one and only contribution to
linear programming: his sole contribution unless, of course, you want
to count the training he gave me in classical mathematics or his part
in my conception.”

A lovely story. I heard George recount this a few times and, when
he came to the “conception” part, he always had a twinkle in his eyes.
(Saul Gass, 2006)7

In a Sept 2006 SIAM book review about dictionaries [7], I asserted George assisted
his father with his dictionary — for reasons I still believe but cannot reconstruct.
This led to Saul Gass’s letter above. I also called Lord Chesterfield, Lord Chesterton
(gulp!). Donald Coxeter used to correct such errors in libraries during lecturing visits.

8. Pitfalls Abound

There are two major problems with this free-wheeling formal approach.

Figure 4. A ‘spike’ proving the nonnegative cone in Lp with 1 ≤ p <
∞ has empty interior.

7Letter from Saul Gass. Dantzig’s reminiscence is quoted from [31].
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(1) The assumption that a solution x̂ exists. For example, consider the problem

inf
x∈L1[0,1]

{∫ 1

0

x(t)dt :

∫ 1

0

tx(t) dt = 1, x ≥ 0

}
.

Above, the optimal value is not attained. While this is a rather contrived
example with no strict convexity, we will see that existence can fail for the
Burg entropy with simple three-dimensional trigonometric moments. Addi-
tional conditions on φ are needed to insure solutions exist.8

(2) The assumption that the Lagrangian is differentiable. In the above problem,
f is +∞ for every x negative on a set of positive measure.

Thus, for 1 ≤ p < +∞ the Lagrangian is +∞ on a dense subset of L1, the
set of functions not nonnegative a.e. As Figure 4 illustrates, we can perturb
a function in Lp (for p <∞) and change its norm as little as we wish. Hence,
the Lagrangian is nowhere continuous, much less differentiable.

(3) A third problem, the existence of λ̂, is less difficult to surmount.

Understanding and fixing the problems. One way to assure continuity or dif-
ferentiability of f is to work in some L∞(Ω), or C(Ω), using essentially bounded,
or continuous, functions. Even with such unrealistic settings, solutions to (P ) may
still not exist, or may be unnatural. For example, Minerbo [48], posed tomographic
reconstruction in C(Ω), with Shannon entropy. But, his moments are characteristic
functions of strips across Ω, and the solution is piecewise constant.

Example 4 (Burg entropy failure of attainment). Consider the following Burg en-
tropy maximization in L1[T 3], where T is the circle, and variables (x, y, z):

sup

∫
T 3

log(w)dV subject to

∫
T 3

w(x, y, z)dV = 0

with side constraints given by∫
T 3

w cos(x)dV =

∫
T 3

w cos(y)dV =

∫
T 3

w cos(z)dV = α.

For 1 > α > α, solutions only exist in (L∞)∗; indeed α is a computable statistical
mechanical quantity [13]. In contrast, for 0 < α < α the problem attains its infimum
in L1. I challenge anyone to see a physical difference in the two cases. ♦

8The solution is actually the absolutely continuous part of a measure in C(Ω)∗ [13].
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9. Convex Analysis: an Advert

We shall now turn to a theorem that guarantees the form of solution found in the
above faulty derivation by ruling out pathology such as in Example 4. That is, we
shall legitimate:

x̂ = (φ′)−1(AT λ̂) .

A full derivation of what follows can be found in [13, 25] and an early summary
in [18]. In finite dimensions the underlying convex analysis is described in [16, 24]
and Terry Rockafellar’s classic 1970 book [52] while [25, 24] describes the modern
infinite dimensional theory. A highly recommended addition is Jean-Paul Penot’s
recent book [49].

Figure 5. Werner Fenchel (1905-1988).

We recall that the (effective) domain of a convex function is dom(φ) = {u :
φ(u) < +∞} and that φ is proper if dom(φ) 6= ∅. We may now introduce the Fenchel
(Legendre) conjugate [16, 20] of an arbitrary function φ : IR→ (−∞,+∞]:

φ∗(u) = sup
v∈IR
{uv − φ(v)},

and more generally for f : X → (−∞,+∞]:

f ∗(u) = sup
v∈X∗
{〈u, v〉 − f(v)}.

This is also called some variation of the Fenchel-Legendre-Moreau-Rockafellar con-
jugate. We also need the convex subgradient defined by

∂f(x) := {y ∈ X∗ : f(z) ≥ f(x) + 〈y, z − x〉,∀z ∈ X},
12



which is is single-valued if and only if the function is Gâteaux differentiable at x. Also
for f convex, proper and closed f = f ∗∗. The Fenchel conjugate is hiding whenever
the convex subgradient or subdifferential appears since if f is closed, proper and
convex then

y ∈ ∂f(x)⇔ f(x) + f ∗(y) = 〈y, x〉.(1)

The Fenchel conjugate — prefigured by Legendre’s differential equation work and
indeed by the ‘pole to polar’ duality of projective geometry — is at the heart of
the modern theory (and practice) of optimization — and of non-linear functional
analysis. It plays the role for ‘+’ and ‘max’ that the Fourier transform plays for
product and convolution. Its basic properties are accessible and useful to upper level
undergraduates. For example, the Fenchel-Young inequality

f(x) + f ∗(y) ≥ 〈x, y〉(2)

with equality if and only if y∗ ∈ ∂f(x) (see (1) and Figure 9) recaptures the classical
Young inequality

1

p
|x|p +

1

q
|y|q ≥ xy

for 1/p+ 1/q = 1 and 1 ≤ p ≤ +∞.
Introduced in 1949 by Fenchel (see Figure 5) and refined in the next few decades,

especially by Hörmander, Rockafellar and Moreau, the Fenchel conjugate is now a
ubiquitous tool for both theoretical and algorithmic reasons. Its power and ele-
gance is currently being exploited in nonsmooth optimization [49, 25], mathematical
economics [41, 44], electrical engineering [28], optimization and control theory [30],
statistics [50], optimal design [51], variational approaches to PDEs [36] and mechan-
ics [36], statistical mechanics (not surprisingly given the entropy connection), and
Banach space renorming theory [38], monotone operator theory [24, 53]; and many
other subjects [24].

Yet it is rarely mentioned in undergraduate analysis books (Davidson and Donsig
[34] being one pleasant exception) and when during a recent conference presentation
I asked sixty numerical optimization specialists, only a handful knew of it. This is
in part because it can happily lurk under the hood as we see in Section 10. Indeed,
in the late David Gale’s lovely short 1967 paper in the Review of Economic Studies
[41] neither conjugate nor subdifferential is explicitly identified and yet it was the
source from which I first clearly understood both. As this and [44] help emphasize,
mathematical economists played a large part in the birth of modern convex analysis.

Often the conjugate can be (pre-)computed explicitly — using Newtonian calculus.
For instance,

φ(v) = v log v − v,− log v and
v2

2
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yield

φ∗(u) = exp(u),−1− log(−u) and
u2

2
respectively. In the centre is the log barrier of interior point fame! The Fisher case
is also explicit — via an integro-differential equation of Ricatti type [17, 19].

(a) φ(v) := v log v − v,− log v, v2/2 (b) φ∗(u) = exp(u),−1− log(−u), u2/2

Figure 6. The three entropies and their conjugates.

Primals and Duals. We sketch our three core entropies and their conjugates in
Figure 6. A more subtle conjugate pair is shown in Figure 7.

Example 5 (Conjugates & MRI). The Hoch and Stern information measure, or
neg-entropy, is defined in complex n−space by

H(z) :=
n∑
j=1

h(zj/b),

where h is convex and given (for scaling b) by:

h(z) := |z| log
(
|z|+

√
1 + |z|2

)
−
√

1 + |z|2

for quantum theoretic (Magnetic Resonance Imaging (MRI) or (NMR)) reasons.
(Here |z| is the complex modulus.)
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Our symbolic convex analysis package (see [10] and Chris Hamilton’s Dalhousie
thesis software package) produced:

h∗(z) = cosh(|z|).
Compare the Shannon entropy:

(|z| log |z| − |z|)∗ = exp(|z|).
Remarkably, the former is smooth (being even) while the later is not. So physical re-
quirements for the primal produces very nice mathematics — and efficient algorithms
— in the dual [22]. ♦

(a) Hoch-Stern entropy (b) cosh entropy

Figure 7. The MRI entropy and its conjugate.

We now turn to the star of this part of our work: the Fenchel duality theorem
(1953) [40]. In its modern form this is:

Theorem 2 (Fenchel duality theorem (Utility grade)). Given Banach spaces X and
Y , suppose f : X → R∪ {+∞} and g : Y → R∪ {+∞} are convex while A : X → Y
is linear and continuous. Then

p := inf
X
f + g ◦ A = max

Y ∗
−g∗(−·)− f ∗ ◦ A∗,

if

int A(dom f) ∩ dom g 6= ∅,
(or if f, g are polyhedral).

We recall another important conjugacy which relates the indicator function (ιC(x) :=
0 if x ∈ C and +∞ otherwise) to the support function σC(x∗) := (ιC)∗ (x∗) =
supx∈C〈x∗, x〉.
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Example 6 (Specializations of Fenchel’s duality theorem [16]). Three examples in
Euclidean space suffice to show the power of Fenchel’s result.

(1) The case with A := I is equivalent to the analytic form of the Hahn-Banach
theorem.

(2) Letting g := ι{b} yields

p := inf{f(x) : Ax = b}.
This specializes to a linear program if f := ιR+

n
+ c.

(3) If f := ιC , g := σD yields the von Neumann minimax theorem:

inf
C

sup
D
〈Ax, y〉 = sup

D
inf
C
〈Ax, y〉.

Here C,D are appropriately closed and convex.

These specializations and more may be followed up in [16, 25, 24] or with a more
applied bent in [20]. A recent complete application of case (2) with Shannon entropy
is given in [12] where it is used to estimate rainfall. ♦

Using the concave conjugate: g∗ := −(−g)∗(−) we get a very fine symmetric
formulation of the Hahn-Banach sandwich theorem: as shown in Figure 8. Unfortu-
nately, optimizers like minimization while neo-classical economists like maximization
so we seem doomed to lots of extra ‘-‘ signs.

infX f(x)− g(x) = maxX∗ g∗(x
∗)− f ∗(x∗)

10. Coercivity and a Proof of Duality

We say φ possesses regular growth if either d =∞, or d <∞ and k > 0, where

d := lim
u→∞

φ(u)/u, k := lim
v↑d

(d− v)(φ∗)′(v).

Regular growth is a technically useful way of forcing the function to grow (that is,
of coercivity). Let α := inf dom(φ) and β := sup dom(φ).

To ensure dual solutions in function spaces, we need a constraint qualification9,
or (CQ), more flexible than Slater’s condition because we are using constraint sets
with empty interior (see Example 4). Our (CQ) reads:

∃x ∈ L1(Ω), such that Ax = b,
f(x) ∈ IR, α < x < β a.e.

9Fenchel like other early researchers in nonlinear duality theory missed the need for a (CQ) in
his 1951 Princeton Notes.

16



2

0–0.5 1 1.50.5
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–1

Figure 2.6 Fenchel duality (Theorem 2.3.4) illustrated for x2/2+ 1 and −(x − 1)2/2− 1/2.
The minimum gap occurs at 1/2 with value 7/4.Figure 8. f(x) := 1 + x2

2
and g(x) := −1

2
− (1−x)2

2
. The least gap is

at 1/2 with value 7/4.

In many cases, (CQ) reduces to feasibility — e.g., for spectral estimation or Haus-
dorff moment problems we have pseudo-Haar sets of moments, and so (CQ) trivially
holds if the problem is feasible [14].

The Fenchel dual problem for (P ) is now:

sup

{
〈b, λ〉 −

∫
Ω

φ∗(ATλ(t))dt

}
. (D)

Theorem 3 (Solution of entropy problems [13]). Let Ω be a finite interval, µ
Lebesgue measure, each ak continuously differentiable (or just locally Lipschitz) and
φ proper, strictly convex with regular growth. Suppose (CQ) holds and also10

(3) ∃ τ ∈ IRn such that
n∑
i=1

τiai(t) < d ∀t ∈ [a, b],

then the unique solution to (P ) is given by

(4) x̂(t) =

(
φ∗)′(

n∑
i=1

λ̂iai(t)

)
10This is trivial if d =∞.
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where λ̂ is any solution to dual problem (D) (such λ̂ must exist).

We have now obtained a powerful functional reconstruction for all t ∈ Ω. This
generalizes to cover Ω ⊂ IRn, certain unbounded cases, and more elaborately in
Fisher-like cases [13, 17], etc. Indeed ‘bogus’ differentiation of a discontinuous func-
tion becomes the delicate conjugacy formula [24]:(∫

Ω
φ
)∗

(x∗) =
∫

Ω
φ∗(x∗).

Thus, the form of the max-ent solution can be legitimated by validating the easily
checked conditions of Theorem 3.

Also, any solution to Ax = b of the form in (4) is automatically a solution to (P ).
So solving (P ) is equivalent to finding λ ∈ IRn with

(5) 〈ai, (φ∗)′(ATλ)〉 = bi, i = 1, . . . , n

which is a finite dimensional set of non-linear equations. When φ(t) := t2/2 this
recovers the Gram system of Example 2.

One can now apply a standard ‘industrial strength’ nonlinear equation
solver, based say on Newton’s method, to this system, to find the
optimal λ.

Let us emphasize that frequently (φ′)−1 = (φ∗)′. In which case, the ‘dubious’

formal solution and ‘honest’ rigorous solution agree. Importantly, we may tailor
(φ′)−1 to our needs:

• For Shannon entropy, the solution is strictly positive: (φ′)−1 = exp.
• For positive energy, we can fit zero intervals: (φ′)−1(t) = t+.
• For Burg, we can locate the support well: (φ′)−1(t) = 1/t.

These are excellent methods with relatively few moments (say 5 to 100). For larger
problems, stability issues become more vexing. We note that in many medical imag-
ing contexts [29], and other settings such as compressed sensing (as in Figure 12), it
is the support that is being sought and it is unrealistic to expect the magnitude to
be close.

Note that discretization is only needed to compute terms in evaluation of (5).
Indeed, these integrals can sometimes be computed exactly (e.g., in some tomography
problems [35] and option pricing problem as in Example 7). This is the gain of not
discretizing early.

By waiting to see the form of dual, one can customize ones integration
scheme to the problem at hand.

Even when this is not the case, one can often use the shape of the dual solution to
fashion very efficient heuristic reconstructions that avoid any iterative steps (see [19]
and Wendy Huang’s 1993 thesis or [11]).
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Example 7 (Option asset pricing [9]). For European call options the precise problem
we address is that of estimating the density p(x) of the price x of a given asset at a
set future expiration time T . As elsewhere our paradigm legitimates faulty arguments
in the finance literature. Let bi be the price of a risk neutral European call option
for the given asset with strike prices ki, i = 1, 2, ...,m. Following [1] and others, the
problem can be formulated as a Shannon entropy optimization problem in exactly
the form we have discussed:

inf
X

{∫
I

p(x) log p(x)− p(x) dt :

∫
I

x(t) dt = 1,

∫
I

ai(x)p(x) dx = bi

}
,

where the constraints — representing the price paid at a strike price — are ‘hockey-
sticks’ of the form:

ai(x) := max{0, x− ki},
while I = [0, K] is an interval known to contain the range of x, which may just be
I=[0,∞]. In this case the dual can be computed exactly and leads to a relatively
small and explicit dual problem or nonlinear equation to solve the problem:

max
λ∈IRm+1

{
λ0 +

m∑
i=1

λidi − eλ0
m∑
j=1

e−νj
exp(kj+1µj)− exp(kjµj)

µj

}
,

in which km+1 := K, νj :=
∑j

i=1 λiki, µj :=
∑j

i=1 λi. The primal is now easily
reconstructed as above. For K =∞ we obtain the primal optimal density as:

p(x) = e−λ0−
∑m

i=1 λi(x−ki)+

where λ is the optimal dual value. Note that we can write

−λ0 = log

∫ ∞
0

exp(
m∑
i=1

λi(x− ki)+) dx.

We have implemented this using realistic financial data and have been very pleased
with the results [9] . These results have been taken quite a bit further by [27]
for financially interesting boundary cases not covered by our basic theory, since we
require strict convexity of the data. ♦

I might add that this example illustrates that the more nonlinear the optimization
problem the more wasteful, dangerous and misleading it is to treat it purely formally
or to discretise early.
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11. From Fenchel’s Acorn . . .

The first publication of the Fenchel-Young inequality (2) was in the fist issue of
the Canadian Journal of Mathematics [39]. The main result therein is reproduced
in Figure 9. The first issue of the Canadian Journal was extraordinary. As the
reproduction in (see Figure 10) of the title page — from the web version — makes
clear, many great mathematicians wanted to help the launch.

Figure 9. Fenchel describing φ = f ∗ in 1949.

. . . a modern oak emerges. Theorem 3 works by relaxing the problem to (L1)
∗∗

—
where solutions always exist — and using the Lebesgue decomposition theorem. Reg-
ular growth rules out a non-trivial singular part to the relaxed solution via analysis
with the formula:

Iφ∗∗ = (Iφ)∗∗ |X .
More generally, for Ω an interval, we can work with

Iφ(x) :=

∫
Ω

φ(x) dµ

as a function on L1(Ω).
Buried in Theorem 3 is the following notion, more-or-less dual to regular growth,

of strong rotundity.

Strong rotundity. As in [15, 24], we say Iφ is strongly rotund (very well posed) if
it is (i) strictly convex, with (ii) weakly compact lower level sets (the Dunford-Pettis
criterion for weak compactness in L1), and satisfies (iii) the Kadec-Klee condition:

Iφ(xn)→ Iφ(x), xn ⇀ x⇒ xn →1 x.

Theorem 4 (Strong Rotundity Characterization [15]). Iφ is strongly rotund as soon
as φ∗ is everywhere finite and differentiable on R; and conversely if µ is not purely
atomic.
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Figure 10. Contents of issue 1 of the first volume of Can. J. Math. in 1949.

What is quite fine about this result is that it allows for sophisticated functional
analytic tools to be applied by practitioners who are not at home with their corpus.
The requirement is only to check the global smoothness of φ∗. Thence we see that
the Shannon entropy, the energy and positive energy yield a strongly rotund Iφ while
the strictly convex Burg entropy does not. Correspondingly, the Fermi-Dirac entropy
[21, 16, 24] sets

φ(x) := x log(x) + (1− x) log(1− x),

which has dual

φ∗(y) = log(1− exp(y))

and so is also strongly rotund.
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This is excellent news, since we know that strongly rotund entropy optimization
problems always attain their infima and are well-posed. The use of strong rotundity
to establish the norm-convergence of moment estimates — as the number of moments
increases — is also detailed in [15]. Moreover, as described in [15] a strongly rotund Iφ
is by far the best surrogate for the properties of a reflexive norm on the non-reflexive
Banach space L1.

12. A Graphical Comparison

An old (circa 1997) interface: Moment+ (www.cecm.sfu.ca/interfaces/) pro-
vided code for entropic reconstructions as above. Moments (including wavelets),
entropies and dimension are easily varied. It also allows for adding noise and relax-
ation of the constraints. Several methods of solving the dual are possible, including
Newton and quasi-Newton methods (BFGS, DFP), conjugate gradients, and the sud-
denly sexy Barzilai-Borwein line-search free method [2].

Comparison of our three basic entropies. In Figure 11, we compare the positive
L2, Boltzmann-Shannon and Burg entropy reconstruction of the characteristic func-

tion χ(1/2, t) of [0, 1/2] using 10 algebraic moments bi =
∫ 1/2

0
ti−1 dt on Ω = [0, 1].

In each case the solution is

x̂(t) = (φ∗)′(
n∑
i=1

λ̂it
i−1)

and so is a function of a genuine algebraic polynomial.
Note that Burg over-oscillates since (φ∗)′(t) = 1/t. But is still often the ‘best’

solution as it finds the support of the signal well (and there is a closed form for
Fourier moments!). We emphasize that the optimization problem we solved does not
ask for the “best picture”. For instance, a relaxation to ‖Ax− b‖1 ≤ ε with ε = .110

will produce a solution that looks noting like χ(1/2, t).

13. Part II: The Non-convex Case

In general, non-convex optimization is a much less satisfactory pursuit. We can
usually hope only to find critical points (f ′(x) = 0) or local minima. Thus, problem-
specific heuristics dominate.

Example 8 (Molecular crystallography [32]). We wish to estimate x in L2(IRn)11

and can suppose the modulus c = |x̂| is known (here x̂ is the Fourier transform of
x).12

11Here n = 2 for images, 3 for holographic imaging, etc.
12Observation of the modulus of the diffracted image in crystallography. Similarly, for optical

aberration correction.
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Figure 11. Comparison of three core entropies.

Now {y : |ŷ| = c}, is not convex. So the issue is to find x given c and other convex
information. An appropriate problem extending the previous one is

min {f(x) : Ax = b, ‖Mx‖ = c, x ∈ X}, (NP )

where M models the modular constraint, and f is as in Theorem 3.
Most optimization methods rely on a two-stage (easy convex, hard non-convex)

decoupling schema — the following is from Decarreau-Hilhorst-LeMaréchal-Navaza
[32].

Now DHLN suggest solving

min {f(x) : Ax = y, ‖Bky‖ = bk, (k ∈ K) x ∈ X}, (NP ∗)

where ‖Bky‖ = bk, (k ∈ K) encodes the hard modular constraints.
They solve formal first-order Kuhn-Tucker conditions for a relaxed form of (NP ∗).

The easy constraints are treated by Thm. 3. I am obscure, mainly because the results
were largely negative:

The authors applied these ideas to a prostaglandin mol-
ecule (25 atoms), with known structure, using quasi-
Newton (which could fail to find a local min), trun-
cated Newton (better) and trust-region (best) numerical
schemes.
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Ultimately DHL observe that the “reconstructions were often mediocre” and highly
dependent on the amount of prior information — a small proportion of unknown
phases — to be satisfactory.

“Conclusion. It is fair to say that the entropy approach has limited
efficiency, in the sense that it requires a good deal of information,
especially concerning the phases. Other methods are wanted when
this information is not available.”

We had similar experiences with attempts at non-convex medical image recon-
struction. But reporting negative results has been under-valued in optimization and
in mathematics more generally. ♦

Another thing I must point out is that you cannot prove a vague the-
ory wrong. ... Also, if the process of computing the consequences is
indefinite, then with a little skill any experimental result can be made
to look like the expected consequences. Richard Feynman (1964 Nobel
speech)

14. General Phase Reconstruction and Inversion

The basic setup [20] is as follows. (See also Examples 9 and 10 below.) We are
given an electromagnetic field: u : R2 → C ∈ L2 and data: these are field intensities
for m = 1, 2, . . . ,M :

ψm : R2 → R+ ∈ L1 ∩ L2 ∩ L∞.
We are also in possession of functions Fm : L2 → L2 (modified Fourier Transforms)

for which we can measure the modulus (signal intensity)

|Fm(u)| = ψm ∀m = 1, 2, . . . ,M.

General Physical Inverse Problem. This now becomes:

Given transforms Fm and measured field intensities ψm (for m =
1, . . . ,M), find a robust estimate of the underlying field function u
satisfying

|Fm(u)| = ψm ∀m = 1, 2, . . . ,M.

Example 9 (Some hope from Hubble). The (human-ground) lens was mis-assembled
by 1.33mm. The perfect back-up (computer -ground) lens stayed on earth!

NASA challenged ten teams to devise algorithmic fixes until the Hubble obser-
vatory (see Figure 13) could be visited and physically repaired. The winner was
Optical aberration correction, using the Misell algorithm, a method of alternating
projections, which works much better than it should — given that it is being applied
to the following M-set non-convex feasibility problem examined more fully below:
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Figure 12. Compressed sensing reconstruction [21].

Figure 13. NASA’s Hubble telescope.

PROBLEM. Find a member of a specification of

Ψ :=
M⋂
k=1

{x : Ax = b, ‖Mkx‖ = ck, x ∈ X}. (NCFP )

The Misell solution was so successful that such methods are now routinely applied
to improve image quality (just as one might always add a Newton step to improve an
algebraic numerical solution). It is worth asking whether there is hidden convexity
structure to explain unanticipated such good behaviour?

Hubble has since been reborn twice and exoplanet discoveries have become quotid-
ian. There were 228 listed at www.exoplanets.org in March 2009 and 432 a year
later, 563 as of 22/6/11. Many more remain to be confirmed according to the new
Kepler search http://kepler.nasa.gov/. Though, one might wonder how mathe-
matically reliable are these determinations (of velocity, imaging, transiting, timing,
micro-lensing, etc.)? ♦
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15. Inverse Problems: Two Reconstruction Approaches

The two reconstruction approaches we wish to compare now are:

I. Error reduction of a nonsmooth objective (a freely chosen ‘entropy’ in the sense of
Part I): In this case we attempt to solve for fixed βm > 0

minimize E(u) :=
M∑
m=0

βm
2

dist2(u,Qm) over u ∈ L2.

Needless-to-say, many variations on this theme are possible. Alternatively, we con-
sider:

II. Solution of a non-convex feasibility problem: Given ψm 6= 0, let Q0 ⊂ L2 be a
convex set , and for 1 ≤ m ≤M

Qm :=
{
u ∈ L2 : |Fm(u)| = ψm a.e.

}
(nonconvex)

we wish to find u ∈ ⋂M
m=0 Qm = ∅.

This is often well solved via an alternating projection method or some variant: e.g.,
for two sets A and B, repeatedly compute

x 7→ PB(x) =: y 7→ PA(y) =: x.

For highly nonlinear and very large problems, it is unlikely that direct optimiza-
tion methods will be implementable. It is in this arena particularly that iterative
projection methods come to the fore. We return to such methods in the next section.

Example 10 (Inverse scattering [20]). We wish to determine the location and shape
of buried objects (treasure or trash) from measurements of the scattered field after
illuminating a region which has a known incident field. An example is shown in
Figure 14.

Recent techniques determine if a point z is inside or outside of the scatterer by
determining solvability of the linear integral equation:

Fgz ?
= ϕz

where F : X → X is a compact linear operator constructed from the observed data,
and ϕz ∈ X is a known function parameterized by z [20]. Interestingly, F being a
compact operator has dense range, but if z is on the exterior of the scatterer, then
ϕz /∈ Range(F) (which has a Fenchel conjugate characterization).

Since F is compact, any numerical implementation to solve the above integral
equation will need some regularization scheme. If Tikhonov regularization is used —
in a restricted physical setting — the solution to the regularized integral equation,
gz,α, has the behaviour ‖gz,α‖ → ∞ as α → 0 if and only if z is a point outside
the scatterer. An important open problem [20, 8] is to determine the behaviour of
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Figure 14. Reconstruction (via I). Top row: the data. Middle:
reconstruction. Bottom: truth and error.

regularized solutions gz,α under different regularization strategies. In other words,
when can these techniques fail? ♦

To conclude this article we discuss further alternating projection algorithms (AP)
[4, 5], and their extensions [5].

16. Alternating Projections and Reflections

A heavy warning used to be given [by lecturers] that pictures are not
rigorous; this has never had its bluff called and has permanently fright-
ened its victims into playing for safety. Some pictures, of course, are
not rigorous, but I should say most are (and I use them whenever
possible myself). J.E. Littlewood (1885-1977)

The alternating projection method — discovered by many including Schwarz, Wiener,
Von Neumann (as accessible good ideas often are) — is fairly well understood when
all sets are convex. (See Figure 15.)
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ALTERNATING PROJECTIONS FOR CIRCLE AND RAY

Figure 15. (AP) ‘zig-zagging’ to a point on the intersection of a
sphere and line segment.

Theorem 5 (Alternating projections). If A,B are closed and convex subsets of
Hilbert space and A ∩B 6= ∅ then for any x0 := x

xn 7→ PB(xn) =: yn 7→ PA(yn) =: xn+1

converges weakly to a point in the intersection of A and B.

Norm convergence was shown by von Neumann (1933) for two subspaces, and the
general result is due to Bregman (1965) [4, 5, 24]. It was only shown recently by
Hundal (2002) that norm convergence can actually fail — but this phenomenon is
only shown for an ingenious ‘artificial’ example with a hyperplane and an odd cone.
This suggests the following.

Conjecture 1 (Norm convergence of realistic alternating projections models). If A
has finite codimension, closed and affine (a translate of a vector subspace) and B
is the nonnegative cone in `2(N), while A ∩ B 6= ∅, then the alternating projection
method is norm convergent.

This conjecture, which covers a great many concrete cases, is known to be true
when A is a closed hyperplane [3] but for codimension two it remains open.

Non-convex alternating projections methods can fail. Consider the alternat-
ing projection method to find the unique red point on the line-segment A (convex)
and the circle B (non-convex). The method is ‘myopic’ in that it works locally.
Consider what happens if B is replaced by its convex hull the sphere.

As suggested by Figure 16, starting on the line-segment outside the smaller circle,
we converge to unique feasible solution. Starting inside that circle leads to a period-
two locally ‘least-distance’ solution. It is possible to exhibit much more interesting
periodic behaviour by perturbing the two cycle.
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A

B

Figure 16. Projection method for circle B and segment A fails inside
smaller circle.

This example and similar ones leads us to focus on the case where the convex set
Q0 is actually affine. This is certainly the case when Q0 := {x : Lx = b} for a finite
rank bounded linear mapping L as defining the set A in Conjecture 1.

17. The Projection Method of Choice

x

PA(x)

RA(x)

A

Figure 17. Projector PA(x) and reflector RA(x) for point x.

For optical abberation correction this is the classical alternating projection method:

x 7→ PA (PB(x)).

For crystallography it is better to use (HIO) over-relax and average: reflect to
RA(x) := 2PA(x)− x and use

x 7→ x+RA (RB(x))

2

with the reflection illustrated in Figure 17.
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Both reflection and projection on a closed convex set in Hilbert space are non-
expansive mappings and it is this geometric property that ensures convergence of
algorithms in the convex case.

Example 11 (Parallelization [4, 5].). Both reflection and projection parallelize neatly
to handle M sets in X by using

B := Q1 ⊗Q2 ⊗ · · · ⊗QM , A := {(x1, x2, . . . , xM) : x1 = x2 · · · = xm ∈ X}.
Note that

RB(x) =
M∏
i=1

RQi
(xi), RA(x) =

M∏
i=1

x1 + x2 + · · ·xM
M

.

Put concisely the ‘divide and conquer’ algorithm we obtain from Douglas-Rachford
is x0 := x ∈ X and

yn =
1

M

M∑
i=1

RQi
(xn), xn+1 =

yn + xn

2
.(6)

Averaged projections is correspondingly

xn+1 =
1

M

M∑
i=1

PQi
(xn).(7)

Of course many variants are possible and some are very useful [4, 5].
Thus, if many processors are available and the complexity of computing RQi

(PQi
)

is fairly uniform the algorithm is well suited to a loosely couple cluster where a ‘head-
node’ distributes the current estimate to the ‘salve-nodes‘ which compute and return
their assigned reflections (projections). Observe also that while B is non convex A
is definitely affine. ♦

Both reflection and projection need new theory developed to understand the the
non-convex case.

Names change when fields do. . . The optics community calls projection algo-
rithms “Iterative Transform Algorithms”. Hubble used Misell’s Algorithm, which is
just averaged projections. The best projection algorithm Russell Luke13 found was
cyclic projections (with no relaxation).

For the crystallography problem the best known method is called the Hybrid
Input-Output algorithm in the optical setting. Bauschke-Combettes-Luke [6] showed
HIO, Lions-Mercier (1979), Douglas-Rachford (1959), Fienup (1982), and divide-
and-concur coincide. When u(t) ≥ 0 is imposed, Fienup’s method no longer coin-
cides, and DR (‘HPR’) is still better.

13My former PDF, he was a Hubble Graduate student.
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(a) Elser and a large puzzle

Given a partially completed grid, fill it so that each
column, each row, and each of the nine 3× 3 regions
contains the digits from 1 to 9 only once.

(b) Sudoku rules

Figure 18. Veit Elser and Sudoku.

Elser and Sudoku, Bauschke and Queens. Since 2006 Veit Elser [37, 43] at
Cornell has had huge success (and good press) using ‘divide-and-concur’ on very
hard combinatorial optimization problems such as protein folding, sphere-packing,
3SAT, for Sudoku (posed in R2916), and more as in Figure 18. In 2008 Bauschke
and Schaad likewise studied the classical eight queens chess problem (posed in R256)
and in image-retrieval, both covered in Science News (2008) (See Figure 19.)

This success (are we observing convergence a.e.?) is not seen with alternating
projections and cries out for explanation. Brailey Sims and I [23] have made some
theoretical progress as we now indicate.

18. Finis: Douglas-Rachford on the Sphere

The Douglas-Rachford iteration (DR) originated a half century ago as a heuristic
algorithm to solve the heat equation [23]. Dynamics are already fascinating for B the
unit circle and A the blue line at height α ≥ 0. Steps are determined by xn+1 = T (xn)
where

T :=
I +RA ◦RB

2
.

This can be thought of as the simplest realistic non-convex phase-reconstruction
problem (and note that the set B is affine).
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Figure 19. Bauschke and Schaad’s work.

With θn denoting the argument this becomes the iteration

xn+1 := cos θn(8)

yn+1 := yn + α− sin θn(9)

and we have convergence results iff we start off y-axis where ‘chaos’ provably rules.
(See Figure 20(a) which shows a period two point on the y-axis. Figure 20(b) shows
convergence in the case of a line through diametral points.)

For 0 < α < 1 we can prove we converge locally exponentially asymptotically, but
we are sure that the result is true globally. For α > 1 it is easy to show that yn →∞,
while for α = 0.95 (0 < α < 1) and α = 1 respectively we arrive at behaviour shown
in the pictures of Figure 20(c) and Figure 20(d). These convergence results are
explained in detail in [23]. They remain valid for a sphere and any affine manifold
in Euclidean space [23].

Interactive geometry. Many of these Douglas-Rachford results were discovered by
analyzing orbits of the iteration as dynamic and interactive objects. HTML versions
of two Cinderella applets are available at:

(1) www.carma.newcastle.edu.au/~jb616/composite.html

(2) www.carma.newcastle.edu.au/~jb616/expansion.html
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(a) DR for a cycle on the y-axis, (b) DR in the equatorial case

(c) DR for a typical secant case (d) DR in the tangent case

Figure 20. Douglas-Rachford cases.

Figure 21. A dynamic Cinderella applet studying trajectories of DR
and variants.
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The underlying Cinderella applets were built with Chris Maitland and their features
are detailed in [23]. The first is illustrated in Figure 21 and the second in Figure 22.
We invite the reader to play with them.

Figure 22. Applet studying thousands of trajectories simultaneously.
Starting points are coloured by distance from the y-axis.
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[22] J. M. Borwein, P. Maréchal and D. Naugler,“A convex dual approach to the computation of
NMR complex spectra,” Mathematical Methods of Operations Research, 51 (2000), 91–102.

[23] J.M. Borwein and B. Sims, “The Douglas-Rachford algorithm in the absence of convexity.”
Chapter 6, pp. 93–109 in Fixed-Point Algorithms for Inverse Problems in Science and Engi-
neering in Springer Optimization and Its Applications, 2011.

[24] J.M. Borwein and J.D. Vanderwerff, Convex Functions, Cambridge University Press, 2010.
[25] J.M. Borwein and Qiji Zhu, Techniques of Variational Analysis, CMS/Springer, 2005.
[26] Christopher J. Bose and Rua Murray, “Duality and the computation of approximate invariant

densities for nonsingular transformations,” SIAM J. Optim, 18 (2007), 691-707.
[27] Christopher J. Bose and Rua Murray, “Maximum entropy estimates for risk-neutral probability

measures with non-strictly-convex data,” preprint, 2011.
[28] S. Boyd, and L. Vandenberghe, Convex Optimization, 317, Cambridge University Pres, 2004.
[29] M.N. Limber, A. Celler, J.S. Barney, M.A. Limber, J.M. Borwein, “Direct Reconstruction

of Functional Parameters for Dynamic SPECT,” IEEE Transactions on Nuclear Science, 42
(1995), 1249–1256.

[30] F. H. Clarke, Yu. S. Ledyaev, R.J. Stern,and P. R. Wolenski, Nonsmooth analysis and control
theory, Graduate Texts in Mathematics, 178, Springer-Verlag, 1998.

[31] George Dantzig, “Reminiscences about the origins of linear programming, 1 and 2”, Oper. Res.
Letters, April 1982, p. 47.
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