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SECTION T

Introduction

When one begins to investigate non-linear functionals end
mappings there are several natural restrictions that one can
place on the mappings under examinationf One of the sharpest and
most fruitful of these concepts is that of a monotone operator
from a Banach space X to its dual space X*. The theory of
monotone operators has particular application to the existence
theory for non-linear partial differential equations and boundary
value problems, and to the theory of integrel equations.

It is the purpose of this survey to describe some useful
results on the existence of solutions for non~linear functional
equations and in particular to describe the fundamental theory of
monotone operators. This will be done with emphasis on the most
useful proof methods that have been employed and on the type of
problems they solve - both abstract and practical -~ culminating
in an example from integral equations theory.

Although we have chosen to give an example from integral
equations theory because less terminoclogy and machinery is needed,
almost all the results that are discussed in this paper have been
applied to the theory of partial differential ecuations. The
close relationship between non-linear partial differential

eguations and non-linear functional analysis has, to quote Browder,

"been evident historically starting with the work of Schauder in



the late 1920's on the development and theory of compact non-
linear operators in Banach spaces, culminating in the celebrated
paper of Leray-Schauder of 1934 on the theory of the topological
degree in Banach spaces for compact displacements and its
application to noun-linear elliptical equations of second order."

We will discuss Leray-Schauder degree theory and some of
its modern generalizations and extensions that occur in the work
of* Browder, Nagume, Petryshyn and other both because of its own
interest and because of its repeated use as a proof method in
monotone operator theory. It is worth notingjas Browder does)
that part of the attraction of monotone operator theory depends
on its applicability in absence of a prior estimates on the size
of possible solutions. This stands in very strong
contradistinction to the application of Leray-Schauder degree
theory. We will also look briefly at a fixed point theorem for
non expansive operators and remark that 8 is monotone if 1 ~ 8§
is non expansive.

Pinally, the bibliography has been arranged by section with
works that have been refered to in more than one section listed
in that section in which they have been used most fullys.

We begin by giving the definition of monotone1 and non

expansive operators in a real reflexive Banach Space X with dual X

lThe explicit definition of a monotone operator was first given
by R.J.Kacuruski (1960).



We denote y(x) by (y,x) where y€X+ and xe€X .

Definition 1: We say an operator T, with domain D contained in

¥ and range in X*, is monotone over D if
(T (u) = T(v), u-v) > 0,
whenever u and v belong to D.

Definition 2: We say an operator T, with domain D contained in

X and range in Y, another Banach space, is non expansive over D 1f

L4

[2(u)-2(v) ¥ € Nu=v|
whenever u and v belong to D.

If we replace (y,x) by Re (y,x) the spaces in question may
also be complex. In general, results stated below for (y,x)
will often remain valid for Re (y,x).

With these definitions in mind, we turn to Minty's
development of the fundamental theory of monotone operators in

a Hilbert space.



SECTION 2

Monotone Operatorsin Hilbert Space

Both Browder (1963) and Minty (1962) develop theorems on
the existence of (I+F}—1. Browder's method is perhaps more
compact than Minty's but the following string of results leading
to ¥inty's Theorem ), and corollary are most revealing of the

relationship between expansiveness and monotonicity.

The M and L Relations: We let S be a set snd R be a relation on

5, We call (S,R) a relation spice and say that two relation

spaces (S,R) and (s',R") are isomorphic if there is a 1-1 map @
of S onto ', such that for x,y6S3 xRY — @(X)R'é(y). If ACS

is such that x,ycA-) xRy we say A is totally R-related and we

say A is a maximal totally-R-related set if it is not properly

contained in another totally-R-related sets

We define two specific relations on H4ll where His a
Hilbert Space and H+ 1s its product with itzelfs

We say (xl,yl)m(xg,yz) if Re (xl—xz,ylwyz) %0 .

feo sey  (xpsyp L(xp¥p) | x5l 3 1yl
Armed with these definitions we have immediatelys

Temma 13 @(x,y) = ( %E%, éi% ) is a unitary, self inverse,
2

Hermitian operator mapping (H+H,¥) onto (H+H,L) isomorphicallye

and thens



Lemma 2: Let P:H-H by P(x,v)=x. If F is totally-L- related
and P! is P restricted to F then P' is & homeomorphism between

F oand P' (F). If F is maximal totally-L- related P' is onto.
i) o o : = =
o TQOf’ :[f (X13y1) and (Xgﬁyz)e*“ then X}. Xz} yl“yZ

(vy L-relatedness e Hence ¥ can be regarded as the graph of a
nonexpansive function. Pt is clearly 1-1 and is continuous
since the metric on ¥ is given by

& (ayp3y)s Cgp) Vo = ligmg o vyl % 2l
This assures P' is metric decreasing ands since (P‘)nl increases
the metric by 2 at most, it is also continuous. The {inel

contention follows from the next theorem.

Theorem 1: If F is a non expansive map from DCX to X then F has

a non expansive extension from X to X.

Proof: Both Minty and Browder prove this using a Zorn's Lemma
argument applied to a theorem of Kirsbreun and Valentine.

(generalized by Mickle (1949) and Shoenberg).

Theorem 2: (¥ickle and Shoenberg).  If {Ski‘xﬁA and gs';} we
are families of spheres with (1){\&3-#Q»(2) rad (8,) = red (8'.)
and (3)5(5.,8,) 28(sL, 8% ) then1S' # ¢ (by $(5.,85) we

mean the distance between the respective centres).

Proof: The proof is straightforterd relying only on the wesk
compactness of the S and the truth of the theorem in finite

dimensions. Browder develops the argument in great detalls



Theorem 33 Let F be a totally-M-relatec set in H+H.  Then the map
Q}E“%X by @(x,y):x+y is a homeomorphism, mMOre0OVer, if Fis a

meximal totally-M-related set, §4is onto.

P

Proof: %(x,y) =V2P' o Q(X,y) and if F is (maximal) totelly-M-

related then O(F) is maximal) totally-L-related.

Theorem L: Let FiD 3X be continuous and monotone with open domaine
If F is maximal (has no proper ronotone extension) then the graph
of F, G(¥), is a maximal totally-M-related set.

Proof: Suppose (xo,yo)M(X,FR», €D, F)= ¥ . Then 1550 so

that ﬁx»xoﬁ<ig implies xe£D and (1)i§F(x)—F(xb)f{f§ %&§yO~F(Xo)%®

We now set x equel o t (v F()) x_ with t sufficiently smell
for (1) to hold., oW (szO, F(X)~yo)§3 0 by assumption which,by

(2
our choice of x and t,reduces to (yO~F(xO), F(x)—”(xo) E;QyomF(xo)ﬂ
in contradiction with (1)

s . \""l
Corollary: If F is a continuous monotone operator, then (I+F)
exists, is continuous on its domain and monotone. If in adoition

. . . . . -1 . .
F is maximal with open domain, then (148) " is everywhere defined.

Proof: Let F have domain D and let F':D>H+H be the map x (%, F(x) )
we let 0 and F' be as above then 14F = 2?%@0? of which as we know
from zbove has inverse é%~P0§o(P‘)~l. 411 functions concerned are
kxnown to be continuous and monotonicity can be veriiied. The

preceding 2 theorems zive the remainders



Remarks 1t is instructive to evamine the corollary in the case
that H=R and monotonicity becomes xﬁzy-;f(x)?;f(y).

We can see now the way in which the sptroduction of M- and
L-relatedness enables us to reduce the existence of solutions to
x+FFu to the extendability of nonexpansive mapse

Brovder proves the same result by essentially the came

methods and then strengthens it as followse

Theorem 5: If G is continuous and Re(@(x)-@(xl), x—xl) b
clmex( i xl s ﬂxlié) ) {§x—xlﬂ2 where C(r) is positive non-
decreasing and\foic(r}z + 00 then.G_l is everywhere defined and
continuous. (Setting C = T and F=G-I, we obtain ¥Winty's result

{for the case D(F):H).

proof: On each open ball in H G may be written as G=X (I+F) with
¥ monotone andX 20 and depending on the balle Using linty's
result G is open and hence has open Tangee G is clearly 1-1 and
will have a continuous inverse defined on its range Re Suppose
y & H=R with il yll the ipfimum over yeH=R. Sipnce R is open there 18
a line segment y(t) in R approaching ¥y &8 t approaches 1. Since
y4R end Gﬂl is continuous x(t)zGﬁl(y(t)) does not tend to a limit
as t tends to 1 and indeed is unboundeds  We can Find a seguence
Tl s ty € b, L with x() =k e Sk.. Hencelly (#3#l) -
y(epl 2c(k + 1) | ox( s + V)-x( )| 2 C(k + 1),y and ch(k) <

Ei“Y(tk#1>“Y(tk)ﬂ < oo which contradicts J‘looc(r>=00.

Thus R=H and the theorem is provede

|
|
;
|
j



Remark: 1f we suppose thet G has & continuous #rechet derivative
LX though H we obtain
. . 2
Re (L, (y)y) +o(1) 7 Cllyl " a5 €€
in place of
. .2
Re (G(x)—(}(xl),x«xl) 7 Clxmxgl

Thus
ciyl © = Re (L(¥)s¥) <y iyl
implying that ‘;\yiﬁiﬁc’l i Lx(y)j{ . Thus R(LX) is closed, L is H
with continuous inverse, and R(LX) is the orthogonal complement
of N(L#)s Since Re (L;(y),y) > Chyl 2 s N(Lxﬁ)z o and
R(LX) = H,
Hence Lx has corntinuous inverse defined as all of H, and by
the implicit funetion theorem G is open and the theorem valld.
This remark raises the question of when one can approximate
by meps with continuous Trechet derivatives. We have also, in
passing, established the linear case of Theorem 4 which is e ssentially
the Lax-Nilgram Lemma.
Minty hes given two simple sufficiency conditions for a
mapping F over a domain D to be monotone. These are:
1. D is convex and F is a monotone over D () fxi\lx~xaﬁ<5'§
for all x & D and some S>o0.
2, D is convex and x,xl& D

d \
=, ‘e (h, F(x+th) M =07

for real t and h = X;=Xe (1) is straishtforward and (2) is



|
|
:
é
?
1

proven by applying the Mean Value Theorem 1O

g(s) = Re (xlwxz, F(sx1+(l~£)>¢2) )

He also notes that if the Gateaux derivative exists and is
linear, then F is monotone over D when its derivative F'(x>h> is
dissipativee That is if':

(7' (x,0)y,5) 7 © -

Since a linear operator is its own gifierential tois sheds
light on the fact that dissipativeness and monotoricity coincide
for linear operatorse

Tn another paper Minty (1961) hes shown that in & finite
dimensional Hilbert Space the gomain of a maximal monotone function
must contain the interior of its convex nulle This forces the
domein to be very nearly comvex (indeed Ninty calls this property

almost convexity)e The proof using various results from

convexity theory, is not particularly central to our discussion.

The result, however, serves to ;1lustrate the essential nature of

convexity requirements of some kinde.
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SECTION 3

Monotone Mappings in Banach Spuce

[

The importance of dissipativenesshborn out in papers by
Minty (1963) end Browder (1965) which investigate the existence
of solutions %o £(x)=0 for monotone maps in reflexive Banach
Spaces, under a variety of continulty conditions.

We say & pair in XxY is N-related if Re (x1~x2,yl~y2) where
¢ , > 1is now the conjugate bilinear form on & reflexive Banach
space X and its dual Y. With this change 511 the relevant
definitions from the previous section are 5till applicablee

o
3
£.3eXsY is said to hemicontinuou&kx558 if, for every line

segmenti’with endpoint X s £ ia continuous considered as & napping
from TAB to ¥ with the wcak LOPOLlogYe

we say B surrounds X (densely) if every 1ine segment through
x contains points (arbitrarily closely) on sither side of X e
The symbol 1(B) denotes the closed convex hull of B.

The following theorem of Hinty serves to introduce &
projection method end & technique Minty calls a tyonotonicity
Method! both of which are dsed again and again in the literaturee.
Theorem 1t Let DCX be bounded and surround. 0, Let BCY surround
K(D) denselys et fsB>Y be monotonic and hemicontimious
throughout K(D), and suppose

x¢D implies (x,£(x) )7 ©.

10
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Then there exists xeK(D) such that Fx)=0%.

Leading up to the proof we haves

Lemma 1: Let xé;BCX with B surrounding X densely. Let £:B3Y
be hemicontinuous at X e Let (xo,yo) he Me-related to every

point of G(f).  Then yazf(xo)o

Proof: Choose Z such that (z, f(xm)ﬁyo)?%gﬁz H{ff(xo)~y0ﬁ .
There exists t such that XothéZB and (Z,f (ngt2)~f(xo}) <
Wz “ﬂf(xc)-yoﬁ , since (xo,ya)ﬁ(w,f(w) ), we have

. wt d Y > 7 -,

(7..,}‘.‘(}{0 t&) i<x0) ) o (‘f':f(XO) JO)

which leads %o a contradiction unless f(xo>-yo-

Temma 2: The theorem holds if ¥ is finite dimensional.

Proof: We can, as is often the case , assube X is a Hilbert
Spaces For all positive integers n, W€ consider Gn the graph
of the function nf(x). Now G 18 totally-M-related and, by the
usual Zorn's Lemma argument, can be extended to & marimal
totally-M-related set G; By Theorem 3 of the previous section
(x,y ) x+y maps G; onto X. Thus, there exist (xn;yn) € Gg
such that xnfyn:O. We shall show that xnﬁ K(D). Assume the
contrary.
Then there is &7, €D and A,»> with an‘kran (this is

possible since D surrounds 0 and XnQ K(D)}. Either xnzo or

X, 2, (xn,yn) =0 and (xn,yn)<o, and hence (Z.n,ijn> 40
Sume(ihﬂﬁﬁa))ho

e (2 ) < Dm0 (2 H200)

TSI TSR
# Thig theorem and many 1ike it are applicable to non-reflexive Banach space

Y with dual X providing the weak topology is replaced by the weak-star
tamelnow throughout.
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which rearranges to3
(xn-zngyﬁ-*nf(ln) )<0

which contradicts (x ,¥ )CEG’ . Hence x_€ X(D).
n’/n’ " n n

By Lemma 23 yn=nf(%) and

[em—

n

X E e
n + f (xn) =0,

e now appeal to the compactness of VK(D) , which relies on the
finite~dimensionality of X, to a convergent subsequence Xni
with limit x. By the monotonicity of f
-X_. f - f(x .)) %
(rmm s T(xg) = 2;)) %0
hence

(XO X4 f(xo)) + (Xo,xni) /ni “i&xnigk%ni 7 0.

Taking limits and applying Lemma 1, we have £(x)=0.
The finite dimensionality of ¥ is, in fact, only invoked

to ensure the existence of & convergent subscquence.

HE ° - - kY
Proof of ‘heorem One: Since B contains and surroundas %(D) densely,

it suffices by Lemma 1 to show that

N x & B E‘x: (xo~x, £(x,) ) 20, %€ .Z’i('D)% £ 0.
Since X(D) is weakly compact we need only show that any finite
subeollection has non empty intersection. Ye let X,%,, X

belong to B and let E be the subspace spanned by Xis s Fpne

%
wWe let JE be the projection map of 7 into ¥ with adjoint J B and

set £3U = Jp* (ijU), UepnB. Then Lemma 2 can be applied to E,fh
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5B and K(EnD) and establishes the existence of x in K(®AD) with
fB(X)mO in B¢, Hence

(x5 £5(1) = £5(0) ) = (gD £(5g5i) = (i) )
and since xj and #@E, for i =1, Me

(x-x, £(x3) - £(x)) 70
as desired.

We will see the projection method in & more fully analysed
form in some later papers by Browcers In a somewhat different
guise it is also basic to the generalised theory of topological
degree.

Browder has extended the definition of mongtonicity to
muﬁtivalued maps as followss We let T:K92xﬁ then we say T is

a multivalued monotone map if

L o y, 0 ) S : .
(ul V5 V7o 2 0 vhenever vf:T(ul) end v, €& T {uz)

He has zlso extended the concept of hemicontinuity and calls

T vaguely continuous if B(T) = ¥ and for uo,u1€D(T) there exists

a scquence Ty, tending to 0 as n tends to 00 and there exists a

vléKKT(uk) ) such that if un=tnu+(l~tn)uo there exists a VQEK(T(un) )
such that v tends weakly to v, in xx, By convention p(T) is the
set of u belonging to X for which T(u) = 0.
T has the following properties, if T is maximals
(1) T(u) is a closed convex set in X%.
(ii) Let w>> ug strongly in X and v, 2V weaxly in X, I anT(uk)

k
then v0€ T(uo).



(iii) Let D(T) be linear and dense. If for cach line scgments
SO in E(T) there exists a bounded set Sl in X% with
(u)0S, = 0 for uin§ , then T is vaguely continuouss
The proof relies on the wealk compactnsss of the unit ball
in reflexive Banach Spaces.

As a partial converse to (iii) we have:

(iv) Tf T is monotone and vaguely continuous with D(T)ZX, and
7(u) a closed convex sct for each u in X, then T is
maximal monotone.

The proof uses the atrict Separation Theorem applied to the
closed convex set T(u) and any point ¥ exterior to it.

These properties allow Browder to derive.

Theorem 23 Let T setisfy (1i1) and let 7(u) be bounded for all weXeo
It (T(u),u) 2,0 for all u€d, where S is some bounded set surrounding

0, then there exists Uo €K(8)> oc (Vo).

Proof: The proof is analogous to Minty's proof of Theorem le
Tt appears that Lemma 1 must be replaced by (iv) and that the
relationship between vague continuity and maximal monotonicity
is a very subtle one.

We can replace the hypothesis of (iii) by its conclusion in
the statement of Theorem 5, e thus obtain a cleaner, if less
revealing, theorem which reduces, when T is single valued, to

Theorem 1 with B=X.
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Remark: A single valucd monotone operator can be maximel as &
single valued operator without being meximal among multivalued
operators. If E(T) is linesr and dense and T is hemicontinuous

this is not possible.

Proof: Suppose (vO-T(u), Ub—u)JZO for ued(r). IF uQQ;D(T)

we can fin¢ a monotone extension in contradiction to hypothesis.

Hence u, € D(T) and, using Lemma 1 of Section 5, V = T(u).
Theorem 2 leads to results on anihiletors including the

following gen&ralizationAof o theorem of Beurling and Livingston

(1961).

Theorem 3: Let T be & multivalued monotone map satisfying Theoran
o without (T(u),u) necessarily non negative, but satisfying instead
the condition that

(T(u),u)z cCirut ) Cout o+ o(u)ll) for ue¥ a
closed subspace of D(T) and ¢(r) a continucus extended real valued
function such that c(r)~>00 when r-> 00,

Then for all VOW\X and L in X#
™y +v )Aw <+ Yl % Q
o] 0 :
Proof: Let K(u) = j* (T(u+Vo)-wo) where j:¥ »X is the projection.

K{u) = O has & solution by Theorem 2 and this is equivalent to the

desired resulte
We complete this section with an example. et O be a

monotonic non decreasing mep from R to R with §(0)=0 and (00 )=00-



We define, T¢ the duality map from ¥ into X* with respect to @ by
7,(2) v [ (ww)= v lita i, 0wl = ¢ Cial D
We have

Lenme 3: The duality map T? is a multivalued monotone map and

1. T. is vaguely continuous ,

2. D(T@) =X,

3o Té(u) is & bounded closed convex subset for all ue.

bo (To(w)5u) - CChud ) C i+ 4701 ), o(r)=bmin (z,¢(x) )
These conditions imply that T is meximal and satisfies Theorem 3

for any closed subspace.

16



SECTION &4

Topological Degree

The theory of Topological degree found its basis "within
combinational topology of the fixed points and degree of continuous
mappings as originated by Brouwer".l Leray and Schauder (1934)
developed the theory for completely continuous displacements in
a Bansch space. I+ has been gen:ralized in two different
directions.  Negumo (1951) Browder (1957) and “othe have sxtended
the results to locally convex topological vector spaces, as indeed
Lersy himself has.  Petryshyn and Browder (1963) have, in
contrast, dealt with a class of non compact operators in Banach
8pace. In each case the theory rests upon approximation by
finitedimensional mappings and appeal to Brouwer's theory.
Jagumo's exposition of the fundamental properties of the degree 1s
very detailed and we proceed to outline his development of the

subjects

The Brouwer Degree: we let £ be a mapping of a bounded open set

GCEm into £ such that each component is continuously
aifferentiable on Ge We say & point x is criticel if the
Jacobian evaluated at X is zero and call the image under of the
critical points the ¢rease of f on Go 1f a belongs nsither to
f(awG) or to the crease ¥e define an integer Ayé,g,fl to be the

pumber of points x for which f(x)=a and the Jacobian is positive

Lprowder (1957)

17



less those for which it is negative. Ve call A Ea,G,f] the degree
of £, at a, over G, A succession of analytic approximations
enables us to extend the degree to any continuous mapping and only
providing aé&f(évG). Ala,G,f] has the following propertiest
(1.)4 [e,6,I] = 1 if 2€G and O if adG.
(ii.)If Al a,6,fl % O then there s a solution to £(x)=a with xtG.
(iii)If G is diviled into open sets G1, Gk (UGLCG,G = UGt
GNG3 = Q (i%3) ), end if a@f‘(@i—@i) for any i, then
aTa,6,f] = 2 ala,ci,f .
(iv.) 1f akf(G-G) and X is the set of roots of £(x)=a in G then
if G0 is any open set with XGGOCG
A{ja,GO,FK = AlUa,6,fl
w.)If ft(x)~x ;s a bounded continuous function of (t,x) in
To,11 X G,K&,a, if a(t) (¢ 8") is continuous and if a(t)
¢ ft(§~G) for o< tsl, then AK:a(t),G,f&] is constant for

ostgis

Nagumo's Extension 1o Convex Spaces: A tran-formation £ of M into

o convex space is completely continuous O compact if f 1s

continuous on M end £(i) is compact in B. By a completely

continuous displacement we mean the transformation

e(x)=x+£(x) with completely continuous.

Theorem 1: Let M be closed in B and f De completely continuous on

M. Then Tf(1) is closed in E.

18



Pheorem 2: Let K be compact in B For any neighbourhood U of
the origin there exists a finite dimensional linear menifold
EOCE and & continuous transformation S of K into 7 such that
S(x)=x€U for x€K.
These results enable us to define the degree in F. Let
a{ I (G-G) and, by Theorem 1, choose U+a not sntersecting TE(G-G)e
We use this neighbourhood U in Theorem 2 and K>F(G) and find 3
and E" as in the Theorem. Then 788 (x)-TE(x)€U, if xEG and 2§
Ts£(G-G).  How TSE (GaE™) CE, 75(x)-x = 8£(x) is bounded on
¢PagqE”, and ad TSE(G -6 )
Tt follows that Efl{a,Gm, TSE} is well defined in .
we then prove that this is indeed independent of 5 and £ and
call this the degree of Tf, with respect to a, over G. It is
casily verified that (i), (ii), (iii) and (iv) remsin valid for
¢, Property (v) can also be cstablished for Tf, if' we require
that £, is continuous in (t,x) and £, (¢) X,K a given compact set.
We prove the result for constant a(t) by applying Theorem 1 to
the mapping g?x,t) = (fet> (x),0)s [<ty= 0, t<o) <= t, ast< 1
and <t)= 1,<l?ij in the convex space E X Ry with G replaced by
Gx (~00,00) and K by K xi@% . This gives us Ux(—g,g)«»(a,”r)
N Tex (Tx-G* )= or equivalently (1) U+a(\Tft(§—G)=Q for ltmT\<Ig .
e use Theorem 2 agein to find § and ™, The definition,
(1) and (v) in the initisl form ellow us to assert the constancy

of the degree for |t «4}<g’and hence throughout the unit interval.



%e can now establish the case in which a(t) is non constant by
examining ft(x)~a(t), since K+ {»a(t){t&[b,l}} is compact. It
is in fact to insure this that we require continuity of a (t).

We need only show that A Ea,G,Tf} = A Eo,G,Tf—aj . Ifag
qyf(é—G). This follows by applying (v) again, in the finlte case,
to F, = rf-ta, a(t)=(1-t)a and using the definition of degree

in Be

The follow theorem on invarisnce of domein hes also been
proven by Browder (1957) for. a more restricted class of
mappings in a general convex space. Leray claims to have proven

it without restriction.

Theorem 33 Let E be a complete metric space G an open set in E
and f a completely continuous transformation of G into E. If
Tf is 1-1 between G and Tf (G), then pe(g) is open and 41 ,6,7f]
=+1 for any b in T£(G). (T£(x)=b will, of course, heve solution
by (3).

Tt is specifically property (v) which is used again and
again in monotone operator theorys Browder (1957) does, however,
develop some estimates for the number of solutions, and the

1literature is extensive.

The Tovological Degree for Non Compact Operators. It is clearly

desirable, within thc monotone operator theory developed thus far,

to extend the applicability of degree methods. This has been done,




for the class of A-proper mappings, by Browder and Petryshyn.

Definition: By an oriented approximation scheme for neppings

from ¥ to ¥ (real Banach spaces)we mean: two sequences {Xm{( }{Yh% of
oriented finite dimensional spaces with dim andimYn for all n
¢ .
; 3 3 § A 3 > 3 3
and two seguences iPnzg and Q’n% of continuous meppings with Pn

mapping Xhinto X and Qn mepping Y into Yn'

Definition: Let G be open in X and T(g)cY. T is said to be
. L B VAN " “ (t

A-proper on c1(G) with respect £o\=( {ang s é\(ni s ﬁPng 5 {Qng )
if and orly if for any saquence{ nj@ of positive integers with
hv‘j*‘z‘ oo and a corresponding segquence %xﬂnj | X“nj & an% with
Pn. Xn. in ¢ such that || Qn TPn Xn -G yli >0 for some y in ¥,

J S B B
there exists an infinite subsequence ‘Xﬂ.nj(k) and x in X such that
Pn, Xn , > x and Tw=y. We denote TP by T o

506) (k) R A n
Lefinition: Let T be an 4-proper continuous mapping from GtoY
with respect tol , let GnﬁPnnl(G) be bounded for all n and
suppose ai}\’l‘(aw(}). We define deg(’i‘,G,a) with respect to Vas

follows

=

deg(T,G,a)= ?Em fﬁ:é'Zu %'i Qﬂ’g, there exists an infinite
sequence %nj@ of positive intergers tending
to oo and AE\ana,an,TnjE tends to R 3 .
This degree has analogous properties to the Leray-Schauder
degree. lioreover, we have
(1) 1f deg(T,6,a) ¥ {o% then T(x)=2 has solution in G, and the

following
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Theorem 43 Let C be compact and H be an A-proper homeomorohism
satisfying several subsidiary conditionse. if P;? (G) is
bounded and a%\ﬁ’ T(E-—G-), then

(1) H+C is A-proper

-1 . -
deg (Tm,Gn,Qn?)x deg(1+CH ) m(G),a), nZn, .

Tn particular the degree 18 single valued and possesses the
previously 1isted five propertiess 1f X is a real Banach space
with Y=, Pn s linear injection of Xn into £ and Qn s linear
projection of X into Xn in the approximatieﬂmﬁheﬂmavﬁ, then the

identity is suitable and compact displacements nave single

valued degrees.

wxamples Let H be & separable iilbert space and T be continuous
From H to H with

"y 2 -
(2(x)-2( )5 %=y) 7 N3 (x,y¢)
Then T is A-proper with respect to V*e
Tt is worth remsricing that in many applications we only

wish to know that O@&deg(T,G,a) and that the multivalued nature

of the degree 18 then irrelevants
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SECTION 5

The Frojection Method

Two papers by Browder (1963), (1965) on non linear elliptic
boundary value problems contain theorems on the surjectivity of
non linear functional equations in reflexive Banach spaces which,
in Browder's words, frresent a new non-linear version of the
orthogonal projection method', The results make zssential use
of both monotonicity and Leray-Schauder degree theory. The
later paper also contains some results for monotone operators in

convex spaces which are glong the lines of Theorem 1 of Section 3.

Theorem 13 bLet ¥ be a separable reflexive Banach Space with dual
v+ and let G map X into ¥ satisfying

(i) G+C is monotone for some fully continuous C.

i.8. from the weak topology on X to the strong
topology on X¥
(i1) Re(G(u),u);&C(%{uiﬁ) lull and c(r)>oe as r00,

(iii) o 4is demicopntinuous. i.e. from the strong topology

on X to the weak topology on X*.

Ther, & maps X onto X¥.

Lemme 1: Let G be & demicontinuous mapping of the open subset
D of X into ¥*. Suppose that for u in D and w in X¥

Re Gﬂ»G(u)ﬂ%;u) o
for all u in a dense subset Y of De

Then w=G{u)e



|
|
|

2l

proofs The proof again relies on the Strict Separation.Theorem
and is essentially the 5ame as that of Lemma 1 of Section Je

o0

=1 beasmmaweofnmﬂﬁi&&ﬂmmsofx

Lemma 23 Let{Fji
of finite dimensiolte Suppose Pl is the projection of X on Flg
Then
(a) There exists a commutative ipecreasing f&mily’%?i{of
projections with PszFj@
(v) If Fj‘ s the range of Pﬁ thenﬁ?%%is s commutative
spneressing famil of projections on g, BCF AL and
g y of proje %J}, SleFyt el
the pairing (w,u) W&Fj' u&Fj yields an 3 somorphism of

e a}fla. F" ®
J

Proof: (&) Suppose recursively Pl’P2”°"'Pr are given and thal
¥, has dimension 1 1n Fj+l, Then the cimension of the nullspace
of Pr restricted to Fr+& is 1 and 1S gonerated by some clement
uge Then therec exists W in X* such that (w,uo):l and

ot 3 o K‘f ; o, \ @ b
(wyu)=0 for u in ¥ e let P 1 (v) Pr(u)+(w,u,uo (b)

follows by‘calculation.

Lemma 3% bet G be demicontinuous from X to X¥, G=G +C 2 with

e e

GO monotone and CD fully contipuouse Let{F;%be a sequance of
increasing subspace (of finite dimension) with UFj dense in Xe
Pet Pj be the orthogonal projection on F3° Let Y% be such

that vy velongs to Py PE G(uk) converges strongly ip ¥ to W

and u  conveys weakly in X to b e
1
k

Then W=G (Ub),



Proof’s Let be fixed and u belong to Fj'
Then Re(uk~Pju, Ga(uk)~Go (Pju)>}o, By rearrangement and taking
1limits we obtain

- L - "
Re(uo u, Wb (uo) Go(u) )2, 0
for all u in UF,- Applying Lemma 1, w-Cg (uo)zGO(uO) and WSG(uO).

Lemma L3 Let G be a continuous map of a finite dimensional
Banach space ¥ to its dual Y* such that Re(Gu,u) 3C(§;u§{)§§uif

with C(r)~ o0 as r=>00. Then G is ontoe

Proof: (This is the finite dimensional version of Theorem 1
without (i) ).  Thers 1s no loss of generality sn suppose Y=Y*=H
o Hilvert space. et weH, GtzI+t(G~I) = t6+(1-t)I.  For u
in H and og t$1

Re(Gt(u)«W,u)ztRe(G(u),u)+(1vt) ﬂu“z - Jwilyal 7z tull
for Yull 7 M.  Thus Gt(u):w for L ull 7 He

We can easily verify that Gr,G satisfies the remalining
conditions of property (v) of the Leray-3chauder degree ror alt)=w

and G=Q¢ = x | =i < Nf%, Hence

Ay

‘éi- W}QQGt} = A\C_W,Q,I?& = l fOI‘ Ogt’slo
Appealing to property (1) we have a solution to Gl(x)xw. (This

s essentially an argument of Visik's (1961) ).

pProof of Theorem 1t Let welx and let Fl' be the vector subspace

generated by w with Pl' the associated projection. Since X is

€&
separable we cal find a sequence fFjﬁ of increasing subspaces such
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that Fj is dense in X. By bemma 5 we can construct an
increasing commutative family of proj&ctions%?j%with Pészj'
Now, if we define Gk(ﬁ)ka*G(u) for u in Fk, we have
Re(Gk(u),u) = Re(?ka(u),u) = Re(G(u),Pk(u) ) =
re(G(u), u)
80 RQ(GK(u),u) zc( fuil ) Wull and G ig certainly continuous
as & map from FK to Fk" which is isomorphic to F@.
Je are in a position to apply Lemma 4 tO produce “kE;F%
such that
Gk(uk)= PK$G(uk):w&Fk' k7le
80
Re(w,uk):ae(PﬁG(uK),uk)xﬁe(G(uk),uk) ZC(ikuki§)§§w,ﬁ .

e

From this we deduce that Wty o 1 Uk )  Since
c(r)>o00 as r->00 We have that{iék% is bounded. Since X is
reflexive the unit ball isvweakly compact and %uk% has a
weakly convergent subsequence whichwe may take to be %MRE N
Since P ¢(u )=w and WU, tends wealkly to u_ we can assert,

using Lemma 3, that G(uo)zw.

Remarks: The general strategy is made very clear. We prove the
result in finite dimension using both the Hilbert space structure
and Leray-Schauder degree theorys e then use the projection
families to produce a sequence of potential solutionse Because
of the coercivity condition (ii) we can get an a priori estimate
on the size of any solution and Dy appealing to compactness

we find a sequence converging to a solution. It is only at this
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point and in Lemma 1 that we uce the monotonicity of G+C.

If we re-cxamine Theorem 1 of Section 3 we see a very
similar pattern.

Tn the second paper Browder (1965) proves the following
theorem in which the interplay of monotonicity, coercivity and

degree theory is again apparent.

Theorem 2: Let X be a separable reflexive Banach space. Let
¥ be a second Banach space such that the injection of X into ¥
is compacte. Let G:YxX-~X* and denote by Gufhe mapping from
% to X* defined by Guv=G(u,v). Ifs
(a) For each positive integer N there is real valued
continuous functionqgr) with CN(r)~>oo as r>oo and
Chgr) is positive when r is such that
Re(Gu(v)«Gu(yJ,v—w} 7 Chg ﬂv—wﬁix) I v-w %
for u in ¥ withiply$N and for all v,w in %
(b) There is a continuous real valued function C(r} with
¢(r)% oo as r-yoo such that for every kil
Re(Gu(ku),u)l¢C(iiuﬁ %) ull x.
(¢) G, is demicontinuous and the mapping from ¥ to X¥
given by U@Gu(v> is strongly continuouss

Then.F(u)mGu(u) maps X onto x¥®



Lemma 53 bet G be @ demicontinuous mavping of X into ¥= such
that () Re(G(u)—:(v),u—v)f%C(uunv“ Y Nu-vli (u,vex) for some
continuous realvalued function C(r) with ¢(r)doo as r=>00
and C(r) positive when ¥ is. Then:
(a) Gﬂl is defined on all of X%, neintsins boundedness and
is strongly continuouse
(b) There is @ realvalued monotone non-decreasing function
n(r) such that n(o)=0, h is continuous from the right, and
(p) 1l H) = ¢l € pCm )

for all w and W, ip %k, h depends only on c(x).

Proof': () gives smmediately
R CCIRRACUIRY I (o)l ) fhwll-
We may conclude from Theorem 1 with C(u)EO that G maps X onto Z¥.
For each R0, let
n(r)= suy%:ri C(r)g'&% .
Then a8 required and (ES) holds, forcing G to be strongly
continuouss Finalb@&fl (w)ﬁihA(\\w i)+ HGﬂl(o)ﬁﬁand(f&

maps bounded scts in XF into bounded sets in X

proof of the Theorem: Let U be an element of Y. Lemma 5 applied

to G gives

)\ G;](ww;jfwlﬁﬁﬁ%ﬁw =l )

for u in ¥ WithiXuﬁéN. Let w be a fixed element of ¥# and let
T:Y+Y be given by T(v):ﬁ;l(w). Then,Gu(u)xu

1f and only if T(u)=u.
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We show the existence of a fixed point by applying Leray-Schauder
theory to T, = 47 + I for os t<1. To this end we must show

(1) T and hence 4T is compact.

(2) For some M7 0 and o<t <1 tT(v) has no fixed point with

\lu \\y = M,

Wie then can assert that A Lo, Wuf <M, th will be constant throughout
lo,1]. Alo, Wui<M, T, = I is clearly 1 and we will know that T(u) -
u = o has solution.

(1) Follows somewhat tediously from (¥) and the continuity
properties of G,

Proof of (ii): ILet t be a real number, o <t<1, and suppose tT(u)=u then

ot (u) = %u

and Gu (%'u) = u
Setting-% = R, ve have (from )b) of Theorem 2)

(6u (ku), w) = (wyu)z C(]1 ull %)l ulix.
Hence C ( fuil x) Slwlx*. It follows that [jul| x (ML for some constant
independent of T. By letting M = oMl and noting that if ¢ = o,To has only
0 as a fixed point, we can satisfy (2).
Remarks: Although the projection method is not used directly, we have appeal
to Theorem I in the proof of Lemma 5 and through Theorem I to the projection
method., We note in passing that we have used the degree theory to find a

fixed point of T rather than a solution of T(u) = a.

4 General Theorem of Monotone Operators.

The next result indicates the degree 1o which one can generalize monotone
operator theory to arbitrary convex spaces without having to modify either
proof methods or hypothesis extensively.
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Let (Elgﬁz) be & dual pair of Hauséef convex spaces and let (u,v)
denote the associated bilinear form. Within this rramework the

previous definition of monotonlicity are still meaningfule

i

T is said to be finitely continuous if it is continuous

¢

considered as & mapping fprom eny Tinite subsplce El into Ezu

C 48 said to be completely continuous with respect 10

(El,Ez) ;¢ C is continuous and the mapping u 5(u,Cu) is
continuous On compact subsets of El°
h subset S of By is cid to envelop u € K(8)-8 if for

every finite dimensional variety containing ¥ the boundary of

<(s)nF is contained in SoF,

Treorem 3 (Browder (1965) J: Let (Eﬁﬁz> be duel and T:ERE, such
that T = To + C where To is finitely continuous and monotone and

C is completely continuous with respect to (Elyﬁ2)° Tet & be

e subset and W, a point of B, such that ¥(s) is compact and

€8]

envelops Wye Suppose that for o given w in E2 we have
(w = u_, r(a) - w) 7y 0

For all u in 3.  Then there exists Uy in K(8) with Tul = We

Preliminary Remerk: There is no loss of generality in assuning

that ug = 0 and W = O. To see this one sets T; (u) = T Ug)- W
and replaces S by Sl = 5§ - U, and verifies that the assertions
of the theorem are invariant. I+t ig apparent that the same

remarks apply to the theorems of Hection 3 with the proviso that

the domain of T must he linears



Lemma 63 Let Ty De & finitely continpuous map of El into 329 uﬁ&ﬁk
u€E_ . Suppose that (ulg up) is ¥ related to (u, Tg(u) ) for all
%

s o — Pl
u in B Tnen~u2 = §4ﬁa

Proof: This is a corollary of Lempma 1 of Section 3.

Lemma 73 The theorem holds if B, has finite dimension.

e

Proof: There is again no reason not to retopologise El’ so that
it is a Hilbert spece H, H =E; = E,. We now set T, = (1~t)T+tI
and colculate the cegree of Tt on D, the interior of 7(8), with
respect to O.

Since S envelops O (the remark) o &D and hence Tl has degree L.

On D we have

2

(0,7¢(s) ) = (1=t) (w,D(w) ) + ¢ qul® 7t
for u€ 9D COK(8)eS.,  Thus, if t>o, T(u) bag 0o zero on ap
If T u =0 on D we are finished, otherwise the degree of T, over
D with respect to 0 is the same &as the degree of T, which is 1.
Hence there is a u,& D with T(ul} = 0. To apply the degree
theory we needed to know that T was continuous and that Tt(K(S)>
C¥X, K compact for okt £1. Thus we need only the boundedness

of § and the continuity of T as hypothesis.

Proof of Theorem 3: For fixed u in 31, let

3(u) = K(8) n gv i(uvv,Té(u) + C(v) zc>f

31
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By the complete continuity of C, B(u) is a closed subset of the
compact set X(S). e show that the B(u), u¢B, , bave the finite
intersection property and it will follow that there is some Vg
in K(8) with

(w = vo, To(u) + C(vg) ) 20 forall uink,.
Lemma 6: Now cives the desirved resulte 4 standard projection
argument estaeblishes the Ifinite intersection property It is in

this proof that we use the monotonicity of T e
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SECTION 6

wWT vy * . 3 il = v o
Non “xpanslve Wappings and Fixed Point Iheorems

Solutions of functional equutions can often De found by using
fixed-point theoremss Thig metiod was used in the proof of
Theorem 2 Of the previous section and we will encounter both the

® , ° * " @ 3 s
Brouwer and Polncare pixed-point theorems ip our discussion of
variational ipnequalitiese Tor the moment we restrict purselves

to some results for non expansive mappings 1n Banach Spocee

EN

Lemma 1: I Ut v X% is a non expansive napping then I-U is

ponotonice
Proofs
A 2
(U(X)-Uy,x-'y)‘fm\\U(X)"U(‘y)“ byl S hxyl = (x=y,%-Y)
snd hence

\ H )

((z= v(x) ) - (= a(y) Vs x¥) 20

The fundamental theorem proven indepemdently by Browder {1&65)
and &irk (1965) is

Theorem L (Erowder): Let X De a upiformly convex Bamach SPace,

U a non expansive mapping of & given closed pounded convex subset
¢ of X into C. Then U has & fixed point in Co

proofs Let Q'be the family of nonemnnty closed convex subsets of C
which are inveriant under U &,has s minimal member Cﬁ)since G

ie weakly compacts By minimelity Ce” (U (Cq) B



S

Suppose My and X, &re 2istinct and bpelong 1O c . Letdy

be the diameter of C and assume thati{x, - XZH 7 d“/Z' Let X =

Xl+x21 e )
e GO X belongs to Cge By the uniform convexity of X there

is & comnstant 420 such that for any ¥ in G o

Box-yie (-9) =4 £ d,
(since i} x5 - y) - (xg - ) s da/g}e Mow let

c, = NyeC, § wi weos fu = 7l < a4,

Cl 35 closed and convex and is non empty since X lies in C2a
c, is properly contained in C, since d1<d®¢ Finally U(Cq) € Cov
Suppose u & 82, gy ¢ Coo Tor any & »o we can find a convex lineal
combinstion of U('Zjﬁ), z,¢Cos such thet

Wy - ZAU (Q)Wé (ZA=17 0 <)1)

Thus

I oa) = vl < ) -2 A U%)\i s 20 lw)-uizy N+ €
while

L uls) - U(z,j)\\ cw-z g
and

i Cu) - vl < a; end g)lies in C .  This contradicts

the minimality of Cg which must, therefore, be a single point X,

and S(xd) = Kyo

Remarkss (1) Uniformly convex spaces are reflexive and stric stly
convex and all L and ﬁ spaces (l<p<oo) are upiforzly conveXe
(2) apn example by Beals shows that the result is not

true in a zeneral Banach spuoce. Let X = Cys C Do the unit ball in



%
i

the moxencri. Then (%) = (1, xl,xz.o,) is & non expanslve map
of C into itself with no fixed point.
(3) It would be s nreresting to know if the result is

true in strictly convex SPaCESe

Inwhat is essentially a corollary Browder proves a non
linear extension of a theorem of Markov and Kagutani which states
that if{il)% is a commutative family of mappings satisfying
Theorem 1, then the i.U'A% have & common f£ixed pointe

A peper by Bdelstein (196L.) contains a numoer of vesults
valid in any reflevive Bapach spaces This rgenerallty is,
nhowever, only achieved by the imposition of & great many conditions
on the mappings which appear 80O gifficult to verify as to rule
out applicetion of the theorels. Kirk-Browder's theorei in
contrast is easily utilized as 1is seen from the following four
results due 1o Srinivascharyulu (1967}, gimilar results may be
found in pepers DY Granas (1965> and Krasnoselskil (196@),

lLet ¥ be a Banach spece and f2 X X & non 1inear menping;

£ is said to be linearly wooer bounded if there exist numLers

c<,\{> o such that \[f (X)}l$§¥{2X§ for W xlj 2 X o If
e SUp g £(x)!
‘f‘«lnf /HX({%

o 4«<ool i X1 X

is finite, then £ is linesrly upper bounded, the number i£1 is

called the 3uasin0rn;01 £



Theorem 13 DLet £ be a mapping of a uiformly convex Bgnach =pace
¥ into X which is every here GateauX differentiables Let T be
an invertible linear transiormation on X and set ¥ = T = Tfe
assume that || F/(X)i{é'l throughout X. If 1Fl<l then ¥(x) =¥

has atb least one solution x for each ¥ in X.

Proofs Let w belong 1o . £(x) = (W) has solution if and only if

o(x) = F(x) + 7(w) hes a fixed pointe By the Mean Velue Theorem
160) = 66N = 1 2 = Felhm@ i sl

and by hypothesis & is non expansive. T+ remeins to find & closed,

bounded convex set B invariant under G.  Since \F{<3,“1:{X)ﬁ<§md{

if wx ity 31 and W Gl € (ixl i x> 62.,
e iixﬁ<;gé the Gateaux ai fferentiebility properties give
i el <0 Tl + R+ =l

Tt is clear that ifwe toke a sufficiently lavge gisc B we will

nave G(B)C Band we may apply the Browder—Kirk Theorems

Theorem 23 ~et T be a 1inear mapping with domain D a subset of 4

imto ¥ and with a bounded inverse. Tet f be everywhere Gateaux

P . - ' P “1 f'\,/ i -

gifferentisble andlet Lim il () /=i = 0. If hr 4 ()ll< 1
L o]

for all x in & then (T + ) x =y has solution for any ¥

belonging to X

- . . . 7 S
Proof: Since T 18 asymptotically close to 0, T Q is 2lso and We
FEAA

m
may procaed as in theorem 1o

36
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Theorem 3: Let £3 XX be an everywhere Gateaux differentiable
mapping with f(o0) = 0 and with 4 Frbehet differentiable ot O.
Let T: X2X be a bounded linesr mepping of X onto X having an
inverse, and let ¥ = I = Tfj assume further that ﬂon}H<11 and
that || F/(X)‘\X £ 1 for all x in X. Lete&ro be such that €<1 =

¢ -
i F (o)l ; then there exists a a»o such that for any J with liytl

s (1-a) Tml{\ , whers 4 = &\F’(o){“ s, £(x) =y has at least one

solution in B = %K[ i ‘;«ﬂég § .

Proof As before F ig non expansive and is Gatesux differentisble
everywhere and Fréchet differventiable at Coe Hence

#(x) = P(o) + F(o)x + &(0,%)
where || glo,x)lls elixll  when lfj< ] for some > o0e Thus

\ki E‘(x\?%i <38 for Nzl< g . Tefine G:X?X by a(x) =

F(x) + T(y) where y 1s @ Pixed element with Il ¥l {L(l-—»d)g\ﬂﬂ’!fl
then
| ey €lEC) ]+ Iy )< S ror lixl<?d,
¢ is non expansive and ¢(2) € B, By the theorem of Trovwder-XKirk
we have a fired point in B and a solution to f(x) = y follows.
¥inally we present the following result which uses the

Schsuder fixed point Theorem in lieu of Brovider's result.

Theorem L Tet f be a weakly continuous mapping of X into X
2SR

o
Under the same conditions as in Thoorem 3, excepting that ¥ (x)

need pot exist, we may still aestil the conclusion.

Remarks If £ is linear, then Gateaux differentiability implies

weak continuitye



SECTION 7

VARTATTIONATL THEQUALITIES
functicnal

amined the solution of various non iinear
1ities and in particular,

Having exa
e turn now to variationsl inequa

convex

equalities, w
T .
setse he thsory thus

to monotone operator inequalities over
elliptic operator theory.

developed has particular goplication to
with dual X#, A be a
e

lLet ¥ be a reflexive Banach space
and R a subset of 2.

from + to X*,f an elemsnt of I#¥

mapping
B such that

pas

look for u in
(1) (a(u), v=u) B (£,v-u)

. : A% R . .
for all v in R, and call&g)a verictional inecuality.
965) have proved the follow existence

Lyons znd Stampacchia (1
a bounded lineer mapping in Hilvert spaces
a real Hilbhert

K

theorem for A
If 4 is a bounded linear mapping in

Theorem 138

space X satisfying

(2) (a(v), v) UVl , x>0
and R is a closed convex subset of X, then there is a unig
of (1). Moreover the mapping f2u is continuous X to X
Lemmal: For o< p <2mf“A%§2 there exists Wo<® <1l with
Wou - sl € VYl
2 _4ul? + 2 0l 2wl - 2epliol® < 6 gl

Proof's R u - pémﬁ

2
for o<p < 02/9 A“Z

ue solution
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The following lemmarelies on the stancard projection theorefe.

Temma 23 The theorem holds for A = T,

th (u~f, u-v) /0 for all v

Proof's T+ is necessaly o find u wi
in Re Now
2 2 2
2(u-f, u-v) + N peall® =0v-fll la=v il
Hence
.2

2(u-f, u-v) % i v«f\ig -u = £
Tf we set Uo to De the projection of £ on R, we know from
the pr@jecﬁio&.theorem that{§v~f§i7b“Uo~fl§ throughout R and
vy 50 since R is closed and convexe Thus

that Uo 1s uniquel
for all v in R.

(Uo-1, Uo-v) 7, ©
define @(u) by

vroof of the theorems with p as in Lemma 1,

@(";‘) =u = P A(U) + pfs Now
Yl g 6l u-To \ ,

\1@(“) - QQO>Q = “ (w - Jo) - pA(quO/
there is a unigue ¥ in R such that

by Lemma L. By Lemma 2,

(o, v=u) 2 (g (8), v

i the projection of Q(M} on R.  ©Call this W R(u)e

and this

Then
o) | < Ww=Uoll (04@<1 )

\&(u) - r(uo)| & f &a) - Qo) |

eorem,R has & unique fixed point Uo and

(Rua, R'("\fo}- vg) = (Vo ‘&O -V) Z (Q (’UO)iU@»—va

(Uo,Uo-v) - o(a(Uo) - £,

ey -
By Poincares Th

.s.\/) )

since pro we have the resulte Upntimuity snd upmlqueness both

follow easilys



.
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nemarkss (1) If R is X then the ineguality becomes equality and

we agaln have the Lex-¥ilgram Lemma which is a special case of
Theorem 1 of Section S
(z) It does not appear possible to weaken the

condition.(Z) and to follow the same proofe

(3) Tn the proof of Lemma 1 it is essential that the

The Theorem can De extended to & more general results
mheorem 2: et A be as in Theorem 1.  Let ¢ mapping X into
&0%061 be such that for 211 Areand all bounded linear functionals
B on X there is a U in X with

(u,u) F(a) + B(w) <(u,v) +\F(v) + B(v) ﬁfvﬁix ,
then there 1s a unique solution to

(A(w), v-u) Ty Flu) - ?(v) for all v in X.
rroof's Condition (2} is specifically what is needed to prove an
analogue to Lemma 1o

nemarkss (1) Eyons and Stempacchia show that 1f F is a convex lower

semicontinuous mapping of X into E«oo,oa] which is finite somewhere

%

and never takes the value = oo, then F will satisfy condition 3
(2) Letting ?v) =~ (£,v) for v in C and equal + 00
everywhere else, reduces Theorem 2 1O Theorem le
Lyons and qtempacchia proceed to DpIOVE the existence by'elliptic

regularization“ of solutions when 4 satisfies only (gu,u)?ao and

where R is assumed bounded. They also procuce & sufficiency



condition for solutions 1o exist if R is not bounded. These results
otiveted the work of Browder (1965),(1965&);(1966b) with which we
complete this section, and we will examine them within that contexto
The next result generallizes Theorem 1 to a reflexive Banach
space and to monotone functions. The proof method mirrors that of

Theovem 1, Section 3 (which it includes in the case that B =YX

Theoren 3 (Browder) (1965): Let C be a closed convex subset of &

reflexive Banach space X Let T we monotone and hemicontinuous

from X to X* and let (T(u),u) > e 1y ufl Vil , o(r)» 0o as r 00,

then for all W in X* we can find vy in C such that for all v in ¢
(1)(2(ug) = Wos VU6) 20

The next lemma, due to Minty, is used repeatedly in the theory of

monotone tnegqualitiese
Lemma 33 (1) is equivalent %o (r(v) - Wa, V~Up) 20 for all uin C,

Proof: This is a siraight fPorward application of the definition of

monotonicity and of henicontinuity.

Lemma L: There is constant M devending only on W, and C(r) such
that any solution, Vo, of (1) will have Qull & M
Proof: This relies on the coercivity of T.
TLemma 5% If under the hypothesis of Theorem 3 © is an internal
point of C,then the set G defined by
G = % L ou,w } \ ué G, we T(u)+z and (‘Z»,u-—v) 70 \g‘v‘EC}

ie maximal monotone.

L1



L2

Proofs s onotonicity follows Dy calculation. Suppose (US,VQ)M
(u,w) for all (u,w) in Go  If Ugk C we can £'nd Vo guch that
(To, V,=v) 2o lor all v in ¥ where Ug = SVp, Voo - 571 and (2,5Vs)
7 0. (We way apply the strict separation theorem since OQCO)
Hence for all A»o IR T(vo) &)Vzéﬁé G and.

0€ (o = (T(ve) + N28)s Uo=Vg) = (5-1) (WorT(¥e) =Azo o)
or for allA” o

3L ) = N (R0, Vo) 7 (%0, V)7 0

which is impossible.  Thus W0 end (Ue,T(ug) ) €6« By hypothesis
(7o) Wio uo—m) is pon negative sosapplying Temme 1 and setting

2= W (Yo )s ( Mo, Wo) Delongs to Ge

Lemma 63 If X has finite dimensiom’fheorem % holdsse

Proof': There is no loss of generality in assuming that X is a
Hilbert space, that the dimension of C is the seme as the dimension
of X and that Ot‘COe With G as in Lemma 5 we apply much the same
nethod as in Theorem 1 of Section 3 4o find a sequence S(ungwn)§fof 777777
points with

UW\* nwy = 8, W, T(uﬂ) + 7n, <2Ma Mm—v) 70 for v inC
thus

(-% U, Ua-v) = (Wa darV) = (T(un), Un-¥) + (Tn,Uarv)

7 € (i) Hundl «

Rearranging, cstimating and agiying Lemme L, one deduces that'{ﬂng

15 bounded. Sipce ¥ has finite dimension we can assume that §Vn§

convef%?to%Uu%an& this means that%hv@tends to Q.



Now

(2(a)=pu) = (2(0) n(u ), umw) + (Folhy ~u)7 0
and taking limits, We have, for all u in C

(T(u)s u"’“{)) 7 Qe

ippeal to Lemma 1 produces the Cesired conclusione

proof of the theorems ~The stentard pro jection argument and Lemna L

establish the general resulle

Remerk: =imilar results have been<esﬁablished by Hartman and
tampacchia (1966 ).
. . - i
It is most natural to consiGer monotone operator theory, &8
an oxtension to non variational problems of the basic ideas of the
. ; o - N1 ;
direct method of the calculus of variatlonSe perhaps the most
vasic application of the theory 1s to & class of non linear
glliptic differential e guations, hich extends the class of
equationse. lioreover, we have the following Lemmna due to
. R Yy Lo
Kacurouski (1960 )e
Temma 73 1T T is the (lateaux derivative of a real valued functional
£ on X then T 4 g monotone if and only 3¢ f is conveXe
This condition on fis cssentially thet upon,mhich one bases
the calculus of variations. Tor operators T as in the Lemma the
existence of solution to TW = 0 is eguivalent to the ewistence of
Qhﬁmﬁk points for the associated function Lo S0 one sees that
poth with regard to application and theory, the caleulus of

variations and monotone operator theory are closely relatede

Lprowder (1966a)



The following three Theorems of Browder (1966a) unify to a large
extent the calculus of variations with the theory of monotone operator
equations discussed in sections and with the theory of monotone operator
inequalities over convex gets.

Theorem 4: let T be a monotone hémicontinuous operator defined in

a reflexive Banach space X with values in X*, f a lower semi-continuous
funetion from X to (-oo,ooj with f(o)= 0. Suppose that for a given w
in X*, there exists RJo such that

(1) (2(u)- wyu) + £(u)>0
for all u with ffuj) = R,

Then there exists u_ in Bp = {u [ full< R {such thet

(2) (T(uo) - W, v—uo) > fu ) - £(v) veX,

Theorem 5: Under the hypothesis of Theorem 4, the set A(u) of solutions
v, of the system of equalities (2) is a closed convex gubset of X, If T
is strictly montone (i.e. (T(u)- T(v), u-v) >0 for ut vs u, v in X) then
A(w) is a simple point.

Theorem 6: If in addition to the hypothesis of Theorem 4, we add the

condition that

(3) (P(w),m) + £(u) = cCi wi ) full
where c(r)=m ag r>e0, the A(w) is never empiy.

Remarks: (1) if f(u) is jdentically O, Theorem 4 becomes Theorem 1 of
Section 3, in the case B = Xo
(2) Iff£f=0 onC and +co elsewhere, Theorem 4 bvecomes Theorem B

(3) if T = o, f has & minimum at u, and Theorems 4,5,6 are

results in the calculus of variations.

The next results generalizes Lemma 3.



Lemmg 8: I TeD(T) : X »X* 1s hemicontimuous, { & convex function

from X to (Jw,ooj vhich is somewhere finite, & sufficient
condition thet an element U  of p(T) solve.
(1) - w0y (e - £, ve ),
is that U, also golve
(2(v)-w, v-Up) 3 g = £(v), ved(T).
Tf T is also monotone then the two systems of inecqualitles are

equivalent.

Proof: Suppose the later inecuality holds. Let x be any member
of © and consider V, = (1-t) Uy + tx, 0 €T 1. If Y4 is substituted
for v in the inequelity one finds
1y, )- W, x - Ue) 7 (£(ug) - £(x))
since £ is convex. Cancelling t and letting t 0 one has, since
T is hemicontinuous, the previous inequalitye \
T¢ T is monotone the converse follows casilye

+ is now a simple matter to prove Theorem 5»

Proofs “y Lemma 8 A(w) has the following explicit forme.
s = Qg fule, <0

where gv(u) is the convex lower semicontinuous function defined by

g, (2)

Thus 4(w) is closed and conveX. T T ig sirictly monotone and Uy

#

£u) - £(v) - (o(v) - w, y-u )

and G, are clements in A(w) one has
(T(Ul)w W, W, mikl) > £luy) - f(ug)

()-8 g =ty) ¥ £ag) - Huy)

L8



Adding these equaliticz results in

which is only poscible if Uy = Uge

I

As o rirst step towards proving the finite cimensional case

o » . 2 Lol
of +heorem k,Prowder proves the following very elegant Lemma which

Stampacchlds

TLemma 9: Let X be a finite dimensional Panach space,T a
continuous mapping from X to X¥, £ a lower semicontinuous function
from T to (- co,00 with £(o) = 0. Let R>0 be given, B (%) =
%u fwex, lul € R
Ihen there exists U, in BR{X) such thate

(T (uo) - W, v«»uo) 2 f(b\b) -f(v), VE BR(:{),
Proof: There is no loss of generality in setting w = C. If the
conclusion of the bemma were false, then for each u in BE<X> there
would exist a Vv in BR(X) such that

(7(u), v=u) < () - £(v),

The set of u in BR(K) for which the strict inequality holds for

n fized v is open since T ie lower semicontinuous. BR(Y) is
. s Cor B A -
compact so one can find a finite set §¢1, w‘fn} in BR(A)ﬁ such

that the sets

Klj = %ui uéBR(X), (T(U&),v‘j - u)< £(u) - f(uj) ?



&

form a covering of BR(X)M Let T B, ,Bn{ be a partition of unity
corresnonding to the covering, such that ZEJ(J) =1, o0<B.(u)€1
o
for u in BR(X)., Define
R . ) T 1 e \
q(u) = LB,(u) 7 ueB (1) .
cx is continuous marping of BR(T-{) into itself since the Bj are
continuous,and by Rrouwer's fixed-polnt theorem there is & fixed point
vy with C{(t&'g) = W,  Dow
< - <
(r(u)s @ Wu) = 285w ((u),v,-u) <8 (v) (£(u) -
v, mﬁ;ﬁx }} u) v,
(v ) =B £0vy)
and by the convexity of T
(@) € Z2y(a) £0vy)-
J o
Hence for all u in :»3%{(}{)
{o(w)s q(a)-a) < £(u) - f(q(’u) )
which is patently impos sible for Uge Thus Lemm 9 must holde.
This arvgument neatly disgulses, in the form of Brouwer's theorem,
211 the topological theory which is apparent in Hartmanmi:itampsﬁcchia'3

rroofe

Lemme 10: Tet T be e mapping from & convex domain D(T) in X to X%,
¢ a convex function from X to (-00,00] with f(o) = 0. Let 11'®QBRf\D(T}
be a solution to

((u,) - w=tho) 2 I{ug) = £(V)s v € B(T)N By
1, for u in p(T) with Wl u {f\ = R.

(T(w)= w,u) + £(w) > 0,

then “\’\0 I\ <R and the insquality holds through out D(T).
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Proof: By hypothesis

i

- (2w )-w, Vo) 7 () - £(9) £(u,)
which is only possible if%hAOﬁQ 7. Tet v be any element of (T).
For some T7 0 Vt = (1w1§ Uy + tv lies in.BR€1D(T>3 the inequality
of the hynothesis gives
t(T(MO) - v~uo) > f(ub) - Es - %) f(ub) + % f(v)]z
v [e(w) - f(v)?i

Cancelling t70, we obtein the desired inequality.

Nm 3 FTE ¥ e 2]
proof of theorem 43 without loss of generality w may be assumed to

equal O. The proof again proceeds by using a projection agreement.
In the finite dimensional case we appral to Lamnma 9 and then to Lemma
10 The ssquence of potential soluticns thus obtained is shown to

4 <

N - 3. N . . s oz
be wealkly convergent and the figpit is verified to be a splutions

. s @ i . « s ) < - :
Proof of ‘theorem §: For a given w 1D T, condition 2) yields
O b 7

(o(u) - mw) + £(u) 2 (C (all ) - fwiwit 7 o
¥or fjull 7 K By Theorem 4 sw) # @ for emch W in Z¥.
T4 is apparent that Lemmas 8 and 10 are more general than is
necessary for the proceeding theoremse. They can be used to prove

an extension of Theorem L to derisely defined monotone operatorse

QUAS TMONOTONE AND PAIDO-~ MO NOTONE OPTRATORS 2

Two wider classes of operators for which many of the theorems of
monotone operator theory can be proved are the classes of ruasimonotone

and Psucdomonotone Operatorse



A mapping T from X into v is said to be guasimonotone if there

is a mapping S of X x X intoc ¥* such that T(u) = S(u,u) for W in X with
(a) TFor each fixszd v s(¢+,v) is a hemicontinuous monotone mapping

() TFor each fixed u s(u,.) is a compact marping

(c) Ifﬁwuj§ is a secuence conv%ging veakly to u in X, and if (8 (ug,uj)

- S(u,uj) ujwu) 50 then S(v,u) convergs wealkly to S(v,u) for
each v in X
ruasimonotone operators have the following important conVergence

propertye

Temma 11: DLet X be reflexive Banach space, T a quasimonotone mapping

of X into ¥Xx, £ a lower semicontinuous convex function, from X to

(”00900)0 ﬁet%m%%be s sequence in X¥ conve%?ng to w and let KbézA (Wj).
J

If the sequence %ﬂj% comyenfﬁto u then ue A(w)e

Proof: The proof follows from the definitions and Lemme 8. For

nonotone operators (i.e. setting S(u,v) = T(u) it is an immediate

consecuance of that Lemm@.

The Lemms enanles one to prove the next theorem which generalizes
theorems by Lyons and Stgmpacchia and introduces the process of elliptic
reguiﬁhwzmjﬂuﬁ» The following definition of nrowder's (1966b) is
essentisl to the theorem.

Definttion: X is sald to be improvable if ther: exists a hemicontinuous
monotone map ¥ of X into Xe with (%(u) u) 7”0, ufo, which maintains

poundedness and such that

N



(1) (M(u) u) > C(XXQQ ) Jlull where C(r)2c as r¥ 00, uex
(2) for each v in X and w, in X%, (ﬂ(u)»wl,\k—bi)«@ oo as (ulj7+ oo,
(3) If-?u}% is & bounded sequence in X, ueX and if (M(g? - %(u),uiw u)

-» o then W, converlges strongly to u in X.
o .

Remarks: (1) In any Hilvert space we may set M(u) = W
(2) Any uaiformly convex space is improvsble with respect
to any mapping M obtained as a duality mapping of X into X* for a

strictly increasing continuous gauge function Qa

Theorem 7: Let X be an improvable reflexive Banach space with M the
corresnonding map of the improvability definition. Let T be a
monotone operator from X to X#, £ a lower semicontinuous function
from X to (“Q%Dd] with“f(o) = 0. LetVgand Wbelong to X¥.
Suppose 4(w) is non empty. Then
() If, for ¢yo, we set Te = T+ €M the vari-tional
inequality
(T (u) - w » voue) > f£lug ) - £v) VX,
has exsctly one solution Ug, Wb@f@'ﬁﬁéﬂib04wé%y
(p) As ¢ o UYeconverges s”f:rcncdly to uo(r" A(w), In Alw),
“b is characterizes as the unigue solution of the
variational inequality.
(;:g(ué) ~No, v-ie)z 0 Ve Alw),
Proof: There is some constent k such that £(v) 2~ kllvlj. Hence
(T (u)yu) + £(u) > € (u(u), u) + (2(alu) +

£(u) 7, L€ cliwu) = NI -k il
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which together with the strict monotonicity of T implics thut
there is exactly one solution Ue to the inequulity of (s)
(Theoren 6).
Let vy be any element in A{w). One has
(Fi‘é%) - (w o+ ey )y Ye - w) 7 £(uy) - £(ug)
(7.(we) - W + €V ,%q " Ue) 7 (ue) - tla)
Adding and resrranging, one has
(1) € (ae) = ) Uem ) + (2(Ue) = T ) s ~ )
&€ (u (ug) - Vos Ue Uy )
Since T is monotone, and using property (2) of the impr rovabllity
definition, the family ?(lfé is uniformly poundedo if U?O ig the
unique solution to the inecuality in (v) (which exists because
a{w) is convex and I satisfies Theorem 5) it is sufiicient to show
that any weakly convergent subscquence of the J.am_ly, Jf (6 90),
is strongly convergent to i&oa
Let Uy be the weak limit of uja For each uj
('E(u. - lu+€ “*’o - € m(u\}} , v‘-u):i zf(u) - F(v), vEie
cing limits, and arplylng Lemma 11, yields u %A(W Also,
inequelity (1) with Vl replaced by W, gives
(1) - Hag)s u;) < (5Ug) - W(ve)s U=
(#(0e) = Vo, % ; - W 3 (1(e) = Ve, Uy ~ua) .
The first summand on the right converges to O since \A convmrﬁl
weakly to My, ¢nd the second summand is always negative by the

characterizations of U\l end (ko Hence (M@zj}- gy Uj»‘U\O> 20 and



by property (3) of the improvability dcfinition.uﬁ converges
strongly tolg.

The following fixed point theorem is an immediate corollary
of Theorem 7.
Theorem S: Let U be a non expansive mapping in a Hilbert space Il such

that U(C) €C for some closed bounded non empty convex subset of He

)

For each B with 0<B<l and & fixed Ve 1n C let UB(u) = BU(u) + (1-B)WVe-
Then (a) For each B&l U?:is o strict contraction mapning of G into
itsslf and has g unigue fized point.

(b) is B> 1 UB Conveﬁys s trongly to a fixed point Mg of U in Ce
Wp is uniquely characterized as that fixed point of U in C nearest

to Vg

pProofs By Lemma 1 of Seotion 6, T =1 - U ils a monotone mapping.
ARSI k

Theorem 7 applied to T produces Theorem 8o

nemark: The existence of a fixed point w for U in C is Theorem 1
of Section 6.

It is possible to prove necessary and sufficient conditions
for .A(w) to be non empty for T a quasimonotone mapping, ani to
extend Theorem L to such manpings.  The generalization of Theovem &
given in the linsar case by Tyons and Stampacchia, 15 proved for a

more restricted class of convex functions fo
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We complote this section by defining wnother cless of
monotone type cperators on

~hich consicerable work has heen done.
The definition is due to Brezis (1968).
Definition:

A mapping T Ifrom

o Banach space X to its dual space #
issaid to be pseudo-monotone if for any sequ@nce{uj% in & with
%uj§ converging weakly to W in X such that

Himsuwp ('l?uj;uwu:) <0,
J
it follows that for any v in X'hﬂﬁnf(T(uj), uj»V)) {1(u),
As the followin

be psuedo-monotone.

ng examnle shows, & monotone operator

A
U."'V}ﬁ
need nob
i ® I T ) 54 b m P e
Wrample: Let Tik = R be defined by Mx)y =14 xyo; and ay=0,
) y 1 s - .
X 0s Let d} = ‘/r for sach positive integer, &na laet v = 1.
i 4
Then \f msup (T(ujxuw%yo, but
. 1
I3 v "
(D<°13)3 ‘}“:X - l

\ J,/
i ,
which

~ 1

n

converges to ~1 while, since uJ converges to u = Oy
( T(u), u-l) =0
Thus
-1 = liminf (‘L‘(uj)s ujwl:} < (T(u), u-1l)= 0
.

and T is monotone but not psuedo-monotone.

e do, however, have

Theorem 9¢

16 T s w
T i

cakly continuous, then 1f T ig monotone
s peuedo-monotone.

Troof: =uppose T is monotone and

u, Vhen

the
£

€ R
3t{1ﬂ{§comverges veakly tuo



Lminf (2(u,)- T(a) juymve 7 Bmiaf (T(u.) = ®(u) u ~u)
s

s

J
+ limn g (T(u}> - P(u), u-v)

which is non negative since T is monotone ah&% T(u, Y% converges

weakly to T(u).  Thus

[iming (T(uj) }ujwv}\Z» ‘ﬁwS””(T(u§ .-V ) “'(E{U} u=v)

. 5..:7 . : . .
since ?ug% converges weakly to u, anc T is psuedo=-monotone.

Remerk: When T is monotone, Imsup (F(u }, u- u 1< 0 for all weakly

convergent 6@0“@&@68 § with limit u.



SECTION 8

AN ExAuPLE (Browder and Gupta) (1969)
4 non linear integral equation of Hapn@rstein type is one

of the form

Q) w(x) s J o K ) £ O u)e =0
vhere G is & 6-finite measurc space and the unknown function u(y)
is defined on Ge The problem of finding & solution U the
equation (1) with u lying in & given Banach spuce Y of functions
on G can be framed as

(2) u+hWu) =0
.ith the linear mapping 4 given by

(5) A = [2Gey) v () &
and the non linear mavping N given by

) Wu(x) = £ (mulx).

Definition 1: If 4 is a bounded monotone linear mapping of X into b

then A is said to be angle~bounded with constant ¢% o if for all

u,v in X
1

p .

)~ £ e fa@wt F Femt

®

Definition 2¢ If 4 is a bounded linear mapping of X into X, 4 ds

said to be Symmetric 14 for a1l u and v in X
<}>(u>9v> = (ACV%U)’

The main result is



Theorem 1: Let X be a réal Bonach space with dual XL+ Let &4 be a
continuous, monotone, angle bounded lincer mapping with constant
of angle boundedness ¢, from X to X¥*.
Let N be a demicontimious mapping of ¥¢ into £ such that for a
given constant k2.0

(5) (v=wvy M(v) - wvy) ) - k|| v=vy 2
for all v and Vl, in X%, Suppose finally there exists a constant
R with k(1 + 02)R< 1 guch that for all u in X.

(6) (a(w)y) % R [Julf’,
Then there exists exactly one solution w,in X#, of equation (2).

The next two lemmas allow the theorems of Cection 3 to be

employeds

Lemma 1: ‘there exists a Hilvert space H, a bounded linesr mapping
Sof X onto H with S% injective and a bounded skew- symmetric
1inear mapping B of H into H such that A = S% (I#3)3 and the
following two inegqualities holds

(1) ||Bll £C, the constant of engle boundedness of & .

o,
(1) sl £ R if and only if for all u in %, (a(u),u) .érR{tu\}%

Lemma 2: Let H be a given Hilbert space, B a skew-symmetric bounded

linear mapping of H into He Then the bounded linear mapping, T+ 8,

is a bs ch}ug monotone mapping of H onto He Rurther, for any u 1in
3 Ap 8 b

H we have

((1+3)0 () v) =




1
XN

The proof of Leuma o is straight forwerd while the proof of Lemma 1

relies on a fair amount of Hilbert space theory.

Proof of Theorem 1: Suppose w in X* solves egquation (2). By Lemma 1

A =9 (1 +B)S, and since 5* is injective, equation (2) has exactly
one solution in X if and only it

u + (I +B) Sks# (u)
has =xectly one solution in Ho By Lemma 2 this ig equivalent to
; s _ o : \ . N
the existence of & solution to Tuj= 0 where T = (I +B)  + SHB*.
For u,v in H

mif < N - ™ -1
(T@) - 2(v), u-v) = ( (T +3) (u=v), u-v )+

(398+ (u) - sus# (v ) u-v).
Using the approximations in Lemmas 1 and 2 leads to
\ y > (L 2 2 o
(p(u)- ?(v}, u-v} 7 (“/iL+ c5-kR) | u-v | 7 = clﬁ\u~vﬂ
and ¢y is positive(k (1 + c2> R<L by nypothesisy, Thus T is a
monotons demicontinuous injective mapping of H into He. Moreover,
for u in H, we have
(2(u),u) = (2(u) - 2(0), u-0) + (2(0)su)
> Cequll= g ) 1)l
so that T is cocrcive and satisfies the hypothesis of ‘heorem 1 of
Section 5. Hence we have a solution to Tw = 0, which is unigque

sines T is injective and hence &lso & unicue solution to w + AF(w) = O
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