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ABSTRACT
The thesis is primarily concerned with

optimization problems which have objective functions which

-

do not take values on the resal line.
In chapter one.convexity'properties are

investigated for functions in partially ordered vectorn

spaces.

In chapter two the concéﬁt of & tangent cone is
introduced.and the previously little used notion of a wesk
tangent cone is defined;. Properties of these cones are
investigated and various differentisl relationships are
proved.

Chapter three establishes several transposition
theorems and Farkas lemmas both for linear and non-linear
systems.  These results have some applications in later
chapters.

In bhapter four the concept of a subgradient is
extended and related to the tasngent cone results of chapter.
two.

The rifth chapter establishes Kuhn-Tucker and
Fritz John type necessary and sufficient conditioﬁs Tor
general nénwlinear programming problems to have solutions
with respect to various notions of minimizstion. These
conditions are given in tangent cone terms. They include
one sided derivative and'subgradient results.

Chapter six includes a variety of multiplier

theorems for convex and quasiconvex progresmmes in partially



ordered spaces. A minimax theorem is included.

Chapter seven uses tangent cones 1o generali:ze

xnown second order conditions to more general pfoblems and

spaces. N ) |
| Finally, in chapter eight, the results of

chapter five are Specialized to Hilbert space using
The chapt

ey cetao
ey seLs.

”
5 ©on conv

pseudolnverses and projeciion n

glso contains a section on varistional inequalities which

centres around the non-lilnear complementarity problem.

er
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INTRODUCTION

-In the thesis I have asttempted to eitend many of
the standard results of nonlinear programming theory in the
following directions:

(i} The objactive,funcfioﬁs are not generally

' supposed reél valued,

(2) The various convexity assumptions usually
associated’with sufficlency conditions have
been generaslized and weaker.cd,

(3) The notion of a tangent cone, and of
constraint gualifications given in tangent

- cone terms, has been extended.
Using these thrée ¢xtensions I have attempted to

both unify and enlarge what theory does exist for

optimization with respect to partial orderings. I have

found it gdssible to state and prove a number of fairly
general theorems,

The two notions of minimization that are used have
both been studieg befbre, but not within the mainstream of
abstract optimization thebry as represented by the tangent
cone investigations of Varaiya, Guignard and others. I hope
that T have partially rectified this situation.

Some remarks on format seem in order. The

chapters are arranged so that almost =211 the preliminary

‘results are proved in chapters one through four and are

8pplied and investigated further in chapters five through

elght.  The chapters are divided internally into numbered



paragraphs, which are also used for purposes of cross

reference. I have tried to keep the notation as uniform

as possible. For example bilinear forms are used only

in chapter eight where 1t seemed unavoidable. Otherwise

+
the velue of & linear functional x at a point x has been

+ +
denoted x (x) not (x ,x).

Finally, the bibliography i8 arrsnged chronologicselly

-

within each. author's listing and all references sre referred

to simply by name and date,



_ Chapter One

CONVEX TYPE FUNCTIONS




This chapter 1s devoted_to a survey and ex‘be_nsion of results
on convex type fmﬁctions. ~ In the literature these functions
are, except in the case of c(ons‘train“b functions, usually taken to
be real {alued.’ CAs will bé éeen this i‘estriction is often un—
necessary.-

Ceriaiﬁ pr-elimir%rj definitions are necessary. . For the sake
of convenience all spaces a_re; asgumed 10 be real vecior spaces.
A1l general‘ topological' and fﬁnctiqnal anzlytic definitions are
used as in. Robertson andf Robertson (1964) if they are not defined

explicitly.

[1] A set C in X is convex if ’Axl-f-(l —k)xz € C whenever

X, X, € Cend 02X < 1.

[2] A topological vector space is a vector space with an associated

topology in which the vector operations are continuocus. Such

a topology is sald to be compatible.

[3] A (locally) convex (topological vector) space is a topological

vector space in which there is a base of neighbourhcods of the

origin consistent of convex sets.




[4] A cone S in X is a set with the property that Ax €S
when;aver x €S and A7 O, S is a convex cone if it is

convex In addit_ion.

[5} Partial orderings

Rach convex cone S in X determines a relation ! Z. 1

which is fransitive and reflexive and which is given by
x z ¥y if x-73€S.
When there is no am‘qiguify _>__- s will be denoted simply by 2.
This relationship is compatiblé with the vector structure.
That is R
(1) x>o0emdy> o"implies x+y>o.
(2) x> oand ) >o implies Ax >o0.

The relation determined by the conme S is celled the vector (partial)

ordering of X and the sald (x,8) or (¥,>) is & partially ordered

vector space.

[6] Conversely if > is a symmetric and transitive relation
gatisfying (1) end (2) then 8 = {x]x €X and x > O} is
a convex cone in S and > is exactly the ordering on X

induced by S.

[7:] In some cases only (2) is reguired of the cone which need
not then be convex. If 50-S = Jo} then S is aid to be
pointed or proper. It is clear that S is pointed if and

only if the induced ordering is anti-symmetric, that is if

x>0 and x L0 (- >0) then x = 0.
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[22)

With these definitions it is possible to turn to an
investigation df_ the elemen;tary properties of convex
type ﬁmc‘bicﬁs. It will be useful to list the eight
function types of pr-imary_interest. |
£ 'X 7‘—--_} Y is convex with respect to S a convex cone in
Yif

£ (Ax+ (1-4) y) < JAz(x) + (1-2) 2(y)

%, y€X; 0 <)\ 1o
If is convex f is saﬁid"co be concave. Similar remarks

apply to the following definitions.

£: X -3 Y is quasiconvex with respect to S, if for o <¢ 1.

2(Ax + (1-A) 7) s_-f(y) whenever £(x) < £(y) x, y€X.

£t X -}Y is strongly quasiconvex with respect to S if

S(z) = {xl f(xj < g z}is a convex set for each z in Y.

s(z) 1s called a level set of £ with respect to S.

£f:1X—>Yis absolﬁtelv guasiconvex with respect to S if

whenever
£ (Ax+ (1 -2) 7)) >20()
for some 0 <) < 1, one has

2(x) > 2(y),

If S is a2 cone in a topological vector space and s® k% it is

possible %o define a strict inequality (denoted by >.) by

x>, ¥y if end only if x - y€ s®.  Clearly x>y implies
X > ¥y. Equally clearly if S = R+, the nomnegative real

axisthen x)s o has the usual meaning.

(914
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(4]

(23]

{26}

_if whenever o< A < 1, x + y, and £(x) < z,f(y) £ z then

N

With this extra definition to sharpen the previous ones:

£ : X —>Y is strictly convex wiih respeet to S if i
2(Ax+ (1 -2) y)<Ae(x) + (1 -A) 2(y)  =y€X;5 0oxQ& 1o |

£ ¢+ X =Y is strictly ouasiconvex with respéct to S if

2(Ax + {1 -X) y)< 2(y) whenever 2{(x} < £(y) = 4 y and o<

£ : X ->Y is strongly stricitly quasiconvex with respect to S

(hx + (1 -X)y)<z.

Ponstein (1967) has introduced, in the real cese, a property

which will be called (P) strict gquasiconvexity and which is

weaker than EM] or [15] but suffices for some basic propositions.
£ : XY is (P) strictly quasiconvex with respect to S if

£(Qx + (1-0)) )< £(3) whenever £(x)< £(y) and 0 < A & 1.

Relationships between the above definitions

The properties will be referred to by their respective numbers
since these are directly above. All the relationships follow

directly from the definitions.

1) 3] > ) - [d ->[s] i
(2) [15] -s0s] -» [34] —» 2l
(3) [33] —»k5] -»[3d — {97 ' -f
(4) [8) —>[1), [8] — [16]




The next proposition will be useful in the sequel,

Proposition: If 8 is closed and 5° # \g_,shong quasiconvexity

is equivalent.to T{(z) = {xlf(x)( z} be_:’Lng convex ¥z €Y.
Proof: ?Lét N be a convex neighbourhood in S.  Suppose that
x,yé_@(z). Then f(x) -7 €= SO; f(y) -z €~ SO or
equivalently, for aﬁy‘_a‘él{ one has

£(x) <z ~=a, £y} <z ~a,

Since £ is strongly quasiconvex £ (Ax+ (L -} y) 42 - =
for all a €N and this is the same as

f(Ax+ (1 -2A) ylez

& 1f T(z) is convex and £(x) < 2z, £(y) £ z then when .
ag€s® za,/nG.S0 for any né N and

£ (x)<z + a/n, £{y)<z + a,/n .
By the convexity of (z) V¥ z,

t {(Ax+ (1 -A) ylcz+a/

and taking limits

El9] Proposition: Strong quasiconve:d.fy and quasiconvexity coincide,

(mhat is [9] &> [10]).

Proof: [10] =7[9]is general. Conversely if £(x) < z and

f(Axt+ (1 —})_y),—'z €-5° = S.E

.+
When (Y,S) = (R,R ) or more generally any linearly ordered space

more can be said about the definitions.

{y) <.z then z > Z, = max (£(x), £{y)). By E9__} one has

f(?ﬁx + (1 —‘A)y) < Z < z as reguired. l

S B
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[20_] In a linearily ordered space the cone generally has no interior,

One can, however, define x 1eés than but not equal y by
_ x_?&ifxf_yandx:[:y.
This definitionis good for any cone and in the case of

a linear orc‘i.ering it can be used to glve meaning o strict

inequality. Replacing < by 4 one has:

[2] >Proposition: If .(Y, S) is linearly ordered
(1) Strict quasiconvexity '_['14] end strong strict quasiconvexity
D.SJ coincide. ,
(2) Absolute quasiconvexity [11] and (P) strict quasiconvexity
[16] agree.
Proog: [15] >[14] ana [16] > [11] follow airectiy from the relevant
getinitions and [20] . [14] = [15] #ollows as does [9] 2 [i0] in [29].]
In rgene:r‘al, thé s;Erbrig quasiconvex types are actually stronger

than the corresponding quasiconvex types. As an example one has

the following.

[27] Fremple: Tet f: R - R with the ordering in % the orthant

ordering (xi, x2) > (yl, y2) if % 2y, and X, 2 y,. Iet

1) = {M o
0,1} x< -1
Suppose £(x) £ £(y) .
(l) y;>_l, the.ﬁ f(x) < (1,0) and x& {rllg_ r< Oa}
(2) Iyl < 1, then £(x) £ (2,2) and x€ frR

(3) y< -1, then £(x) < (0,1) ena x€3r |~o0lr < A}




T

[ed]

[28]

In each case {xs £(x) _-c_.f(y)} is Vcorlwex end thus £ is
éuasiconve;c with respect to the orthent ordering.  However,

if z = (1,1),' S(z) = {x ] f(x) < (_1,1)} is not convex and

£ is not strongly quasiconvex. |

Mbre' sophisficated éxamples couid be given but the above serves ‘
to indicate the reason for the divergence of definitions in
generdl .

A though (P) strict quasiconvexity does not in general imply
quasiconvexity, es is shown by £ : R 3R with £{o) = 1 and

f(ﬁc) = 0o, x ¥ 0, only the ﬁlildest of continuity conditions

'if
is necessary for the implication to hold wken (Y,8) = (R,R )

Definition: £ X = Y has the one point exclusion property with -

respect to 3 if £ (xo) 4 z whenever f(x) < % for all x in &
line segment ]:xl, xgl containing x and not equal %o X .

A continuity condition which is clearly stronger is:

Definition: £ : X 3 Y is lower semicontinuous with respect

to 5 if S(z) = {x l f(x) £ z} is closed ‘V/z &Y.
Upper semicontinuity is defined similarily. On the

line this reduces to the ususl definition. In general,

however, one also hagt

Definition: £ : X 3Y 1s fully lower semicontinuous with respect

to 8, a cone with :‘mte:é-ior-, if for 21l z in ¥
F(z) ={x lf(x) > z? is an open set.

These notions are related by the following proposition.

1
3
7
H




[26] Proposition: Suppose S .is a closed convex cone with interior

in a convex space Y. Then £ : X Y is lower semicontinuous

whenever £ is fﬁlly lower semicontimious. _

zr_g_g_:_f;:' Suppose xoe?(;')". Let {xt ]t?T} be & net in S(z)

with limit ]‘{o‘ Let s€S° and let m€EN. Since f(xo)>i‘(xo) - s/m
and f25] holcis there is 'sqme t, €% such that :f:‘(xt)>:t’(xo) - s/m
v}hen t > ‘to. Since Y is;. a c-(mvex. -spa.ce s/m tends to zero in ¥
as m tends %o infinity and one has

:z ?_f(x'to)>i'j(xo) - s/n1 -

and f(xo) <z, Thus S(z) is closed.l
: : is needed
It becomes apparent that some mechanism for relating the

order-bounded sets, those {x] T <X < z} , and the original

topology. The following which is taken from Kelley and Namioks

(1963) i1s sufficient for present purposes.

[2’7_1 Definition: A convex cone S in a pseudo normed space with

pseudonorm p, is said 4o be normal if vhenever x and y belong to

8 and have pseudo nonﬁs greater than or equal to 1 one has

P (x + y) > ¢ where e is some fixed positive number.
Equivaltently one has the requirement that the set

(B + 5)N (B - 5) 1s bounded where B =§x[p(x) <17.

The following theorem holds in a pseudo normed space.

E?B] Theorem: (Kelley and Nemioke 23.7). If S is normal each
order-bowunded set is bounded. I x, € 8% then S is normal

:.f and only 3.f{y] - X, 47 53(93 is boundt'ad.l
One has for cloged cones and finite dimensional spaces

the following:




[29] Proposition: If X is a finlte dimensional pseudonormed

Hausdorff space (and hence nomable)‘ 3 is poin'ted i.2.f.

S iz normal. -

Proof:<= If S iz not i:\o:!_nted there is some x with x € SN-8
and {|. x | = 1 and, hence, H x + (- x) ” = 0 and S is not
normal. =§‘ Tet {xnz ' {yng be sequences in S with H xn“ >1
! ynl\.;— | end, in contradiction of normality, with

\\.xn + yn“ = l/n. Lgt_kn—= xn/Hxn\\ then since X is finite
dimensional one can suppose kn is convergent to ko which will
be non zero. Now, since uxn ft >1,

W, + 3 M= W5 < 2/ 1/,

L
hY
W5 W\
: . -1 .
and this means that kn + uxn H Y, -3 5. Since lcn—a' k:o F o
=1 : .
-.“xn \ ¥, —>-k, £ 0. Since the cone is closed and x ,¥_ € s
both —-koé,s end k_ €5 contradiciing pointedness.!

This result does not hold true in general Banach spaces.

(0] Exemple: Define the come S inl_ by
s={{me3l 2o xpetn,, >0 ko]
S is pointed since x €SN -5 imples that X, = 0 and

X+ Feypp = O _Tha'h is {xk}f= 0.
S is not normal. . Suppose e 1ls the constant of definition

[2ﬂ « Let {xk? y {yk-i bav_e

] {(-—1)‘}l+l |
X, = n kK = 3,.00y20t3

{ o otherwlse

and




eal

53
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(2);
1),
_ / k= 2,00.g nt2
Tk 0 g o.'therwise.
én+3 Yt - -
en = > l(“—u— ' /. . an x
Th.uflszn %:_3, = 7 1 a{=xles
‘, \{ n_ 2n+e l(:]j' > )
l :Ylg = ;“/;;_ x % .1 and {yk-}('-_s
“{% * Wk}” = VY

Taking n sufficiently large i/ﬂ( e. }

Proposition: If both £ and -f are fully lower semicontinuous
with respect to a normal cone S with S closed and with interior

then £ is continuous.

—
6
]

roofe et

IN]

7

| SR
{x } 2,4 ({x)& z27]

is open. Since S is normel and has interior the norm bounded

l
I

- By hypothesis the set

sets in Y éenerate the norm topology. Thus the inverse images

of open sets are open and f is continuous.l Since any finite
dimensional pointed cone is normal this result is a true extension
of the siandard relationship.

Returning now to the discussion of guasiconvexity in [22]:

Proposition: If £ : X DR is (P) strict gquasiconvex [16]8115.
satisfies E23_] then f 1s gquasiconvex E9].
Proof: Suppose f(x) < £(y). If f(x}(f(y) then

s(Qx+ (1 -2) y) «2(y) vy 26l

B, 5 1
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£ £(x) = t(y) suppose that s I16 EXJ] with

f(xo)> £(x) and f(x1)>:f.’(x). Then either x, € fxo,y] or

x & [x‘,xov] » In either case by [16__{ one has
,f(ﬁ)?fcxo) . . _ N

_ Symmetrically :E’(xo)-( :f.’(xl) since xc; € [—xl,y—_] or L_L,x.;’

which gives f(xo)< f(xo). Thus there cen only be one

exceptional point on the line segment I_-x,yj. This is

excluded by hypothesis. Thus f(Ax + (L -Aly) < £ (x)

In similar vein to Proposition E}2j is:

Proposition: If £ : X SR is (P) strictly quasiconvex and
satigfies the one point exclusiom px_'operty then if f(x) £ ¢ end
?{y)<ei #(Ax + (I-A)y)<e o< ALl

Proof: Sgppose f(y)(c and f(x) < Ca g f(y)(f(x)

then £ (Ax+ (1 -A) y)<2(x) < ¢ vy [16], while if

£(x) ££( y) one has £(A x + (1 -A)y) & 2(y)<ec it

04 A<l since, by [32__.’,;1‘ is quasiconvex.l

The next few results are concerned with properties of convex

funetions which for the most part do not generalise to quasiconvex

-ones.

Since the sums of quasiconvex functions are generally not
quasiconvex (even if one is convex) it seems worth noting some
of the quasiconvexity maintaining operations befOTe turning

to convex functions.




§
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[33;[ Proposition: If £ : X 9 R is quasiconvex and g ¢ X DR is the

wm
o]

indicator function of a convex set ¢ (that is g{x) = o if xec
and g(x) =0 if XEC) then £ + g is quasiconvex.

Proof: .S(r) =-¥x ]i’(x) + g‘(x)_@_r} ={xlf(x) ér}ﬂcel

* Sinece both € and {x ‘ f(x) £ r} are convex £ + g is quasiconvex.l

The pointwise supremm of a family of real valued guasiconvex

Punctions is guasiconvex.

A function M mapping (Y,S) into(Z,T) such that x - y €S if

and only if M(x) - M{y) €& T will be called cone monotone.

Propogsition: (1) If £ : X 2Y is quasiconvex with respect to
S CY¥and M : Y 2»7% 1s cone monotone then g = Mf is quasiconvex
with respect $0 T ¢ Z.

(2) If £ is strongly quasiconvex with respect to S
and M is cone monotone and surjective then Mf is strongly
quagiconvex v}iﬁl respect to T.

Proof: Tet g = MFf .,

(W= e <, e} ={xlute =) )< uz GH}
=§x|2(x) £ 4 2(y)} since M is

cone monctone. Since £ is quasiconvex with respect to S this

last set is convex.

(2){3{ lg(x) < z}={x ‘ M(£(x)) 4 . M(y)} since M is assumed

surjective. Then as in (1) {x\ M(f(x) < T M(y)g is equal to

$x | £(x) < y} which is convex \?/y(EY since £ is strongly

-

quasiconvex, i

14
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[37] It A L Y DY is linesr and £ : Y 3 Z is quasiconvex with
respect to S then (£ A) (x) = £ (Ax) defines a function
£4 : X 5Z which is quesiconvex with respect to 3. if
in =2ddition A iz surjective and f is strongly quasiconvex '

‘so is TA.

Bg It A:X Y. ig lineer and £ : X 9 R is quasiconvex then

AP ¢ X 3R defined by (Af)(x) =-inf{ (x) ] y}ls
quasiconvex. 7

Rockafellar (l97Qa) gives an exhaustive list of convexity
presermg operatlons for real wvalued :f‘lmcts.ons. Note that
if £ is taken t0 be convex in [37] or [38], the composite
mapping ls alsoc conveX.

The following characterization of convex fype functions

ig very useful.

[39] Proposition: £ : X DY is strongly guasiconvex with respect
to a closed cone S if £ is lower semicontinuous and
f(gx-i" y)<2wheneverf(x)-(za.ndf(y)(z

Proof: Assume inductively that for o< m < 2%~ and n 5_ n, -1

“cne has

W e (= + (15 )y )<z wmen2(x) <25 £2(y) & 2. _
.2 > f

For n = 2 this is true by hypothesis. Now

oy e (nr2? [l medet ]
\ + A n -~ 7 [ 7 a7
20 276

=f(%;x-_i~%; ]:El_mn-—-l)y+mnd—l x])
: <

S e e




By the hypothesis of the theorem this last tem is £ 2
it (1) holds. Exchanging x and y in (2) ome sees that
for o< k < 2
X . -k .
3)2 (Znx+ (175 Jy)ezirz(x) <2,2(y) <2,

2Il
Using the semicontinu -—.1ty of £ with respect to S and the

fact that the diadic rationals are demse In [—0,1:] one obtains

the desired result. | Similarly:

@.@ Proposition: £ : X Y is convex with respect to S if f is
lower semicontinuous with respect to S and satisfies

r(3x+3y)<telx) + 51yt

The analagous resulits hold for strict convex type functions.

[i1] If X' denotes the topological dual of X then the dual conme
st is qefined by :
gt = {x+e Xt I x+(x) >0 Vx es},

+
s* i3 & closed convex cone even if $ is an arbitrary set.

G‘Th.e gecond dual (S+)+ is defined ’py

(S+)+ =§'x€X \ x+(x) >0 Vx+E,S+} .
If S is a closed convex cone a standard separation arguement
A(for cones ) shows that (S“L)+ = §. The dual cone can be used

to give the following importent characterization of convexity.

E‘,a Proposition: £ ¢ X 3 Y is convex with respect to a closed
o R ' .
convex cone S if and only if w £ : X >R is convex for every

u+e S+.




[43] Exemple: TLet £ : R R

[+

43

17

Proof: = If f is ._c_:onvex with respect to S,then for o £ )« i,
and. - for vest . ’ |
W [ar) ¢ @ -N) 2]z owt e 03]
which asserts the convexiiy o§ u+f a

& It u'f is convex Vu'es’ then

o Dael) + (@ -0 2(y) - £z + (0 -2) 1] zo
amat (Ax+ (1-A) y) ~Petx) @ -2 2} € (=T

which since S is a closed convex cone means that £ is convex with

respect to § = (S+)+._I . Unfortunately the same characterization

of strongly quasiconvex functions breaks down,

2 be defined by f(x) = (x, —xs)

with the orthant ordering P. Then f is strongly quaslconvex
+ ' +
but if w = (1,1) €2 =P

which is clearly not gquasiconvex,

Mother property of convex functions (or sets) is +that of

local convexrity. A set A € X is sald to be locglly convex
if for cach x €A there is a neighbourhood N of x with AOK |
convex. A result of Kelley znd Namioka (1963) says that
in g HausdorPf topological vector space a closed connected

locally convex set is conveX.

Defining the epigraph of £ : X 2> Y with respect o B by

Epigf = {(x,y)l ¥y - £(x) € B} one has:




[44]

Proposition: £ : X 2 Y 12 convex with respect 40 S if and
only if Epi f is a convex set.
Proof: = Suppose. (xl, yl) and(xe, yz) € Epi_f.
Then f(xl) < Y1 ,' f(XQ)V:S Tp and since £ is convex
2z, + (L=2) %) < Azlx) + Q-2) 2(5) £ Ay, + 1 =Dy,
and (Ax; + (1 -2) x,, kyl + (1-2) v,) € Epi £ which mst
be convex. - _
& (g, f(xl)) and (=, f(xz) belong to Epi_f which being

convex means that

(Ax + (1 =A) %y As(x) + (1 -A) 2(x,)) € Bpi g,
By he definition of Epi f '
£(Ax + (1 -A) x,) < Ar(x) + (-2 2(x,)

Using the above propesitlon and the result of Xelley and

Namioka quoted in [44] one derives:

- Proposition: £ : X=»7Y is convex with respect to S if and

!

oniy if T satisfies .

2(Ax + (L =A) %) ¢ AL(e) + (1 - A) 2(x,)

whenever ¥ and x belong to scme neighbourhood N.

2
Proof: The condition is equivalent to the local convexity

of Eplsf.‘

This result is ¢learly not true for quasiconvex functions as

is seen by £(x) = 5‘1—};2: ‘_x‘.>i
Lo . _ixi-_{_l

In fact with N = {x f I x \ f_.’.l} f is locally guasiconvex

but it is not quasiconvex.
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[49]

[59

1

The definition in [45] could be rephrased to include a
regtricted domain C, Since this can equally well be dane

by redefining £, it seems simpler to leave it as 1t is.

Proposition: £ : X 3 Y is strongly quasiconvex if and only
if Epl f hes the following property: -
\ ’ 3 P e 4 Y . - \ \
1t (y,% ) and (y,%,) € Bpif then (y, Ax; + (1 -AUx,)
does for o .5__)5_ 1.

Proof: This is immediate from the definitions of the epigraph

and quasiconvexity.i

A zet B Y is said to minimizable :with respect to a cone

S if there is some z¢Ywith b - z €5 Yb €3.

Meximizability is defined dually.

Proposition: If S is a.' cone with non empty interior in a
convex space then all bounded setbs .a.re miﬁimizable a.nd‘
maximizable with réspect to S. The maximizing and

minimizing points can be taken intS. |

Proof: Since B is bounded it is absorbéd by all neighbourhoods.
In particular if séso, theré is an ‘open set N with R07o and

s+}\oBc's+Ncs

where the first containment follows from the boundedness of
B and the second from & € 5°.  Since S is a cone
-1 : .
+ <
Ay s+BCS |
. . ) -1 '
which rewritten says b > - R o S whenever b € B.
Applying the same argument to -B one sees that B is

maxinizable .I

19
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The resultis of [27] and [_-52] can be used to generalise
the standard result (Iuenderger (1969)) that a convex
function on R is continuous throughout the relative interior

of its domain if 1t i1s continuous anywhere. TFor simplicity

¥ and Y ai'e ass{med normed. By the relative interior of a
set C,(deélote;i TiC) one means the interior with respect to
ine smallest closed affine subspace containing C. It 1s
a standard result that fo;- a finite dimensional convex seb
c,riC # & |

Propogition: Iet £ : X =Y be convex with respect to S
which is noxmal with interior. Ther if C is & convex set

in domf and £ is continuous at xoG_ riC £ is continuous

throughout riC.

. Proof: Suppose without loss that £(@) = 0, x_= 0

and riC = €% Tet 6050 be given. Then 350 such that

| x \W< & implies that \| 2(x) l{< € since £ is continuous

" at o.

Tet yec. 3 B>1 with By €c%
hz -y W < 1- 6-1)50 then z = y_ + (1 —p—l) x with
Wxll §,, x€0 ma 2 (2) < B 2(By,) + (0 -B™) 2,
Since,

£ ()1l =€ vhen|x ||« § , there is, using 52},
some 4 such that £ (x) <d ¥V x witkllx 1< §, and

2(z) = B 2(Br) + (1 - B a = alyy)
it \\3?0 -z 2_(1 - (3“1)50. For o< £ <1 one has

(2 + 7)) = Elo+ €T 2) + (1 -€) yo




(54]

53]

and by,convexit‘y _
2(z +y,) - f(:?o) < € [i”(e"l z +y,) - f(yo)] .
so 1z flzlle € -B )%

1) 2z + 7,) - 2(,) <efaly,) - 2(3,)] = €a.
1

. 1 : -1
Noreover, since ¥, =T7g (z + yo) + {1 - 5.-47:’_) (~e™ z + yo)

-1
ely, + 2 ) -2(r,) >- €y, ~€72) - 2(3,)]
which as before gives
(2) £ (v, +2) -2(y)) >~ €=
Combining (1) and (2) gives - a€g f(yo +z) - f(yo) < ac
whenever | zll < e(1 - B"l)é'd By the result of [28]

the set A = {x ]— I a}is bounded because S is normal and

one has
£y, + ) - £(z,)€ eamen (alee @ -F,

and £ is continuous . throughout ric. |

By the result in [-29__) any pointed cone In R? is normal and in
particular [ESBj generalises 'I:uenb'erger's proposition. Also
the condition that s° & | is needed for [52] and it plus the

boundedness of A are, by [28] equivalent to normality of S.

The next proposition' relates continulty off and interior points

of Episi’ when X and Y are ncrmed spaces. |
Proposition: If S is a nommal cone with interdor and ri(dom )4 X%
then £ is continuous at x if and on_j_y if (xo,yo) Eri Epi f for

some ¥ .

o poat




Proof: & Without loss x = o = £(o) and replacing X by
- v(C) the variety (affine subspace) spanning domf ome can
gassume that (domf)o £ b. Suppoese (O, yd) E£xri Episf, then
since
v(Bpif) = V() x ¥

('O’YA) may be supposed interior to Epi_f.

Thus, §; end £, >o exist with (x,5) EFpi_f when
g [{x - ofl < 5] ana ”yo—y\\z.JQ.

| as in [53] |

AT ) 2 (AT

7 Also

i
g

£(x) 27 vhen |[y ~y lle I, enallx [l<d; .
Since neigbbourhoolds in normed spaces are bounded and s°
+ §,0 = {yi'ﬁ y , Ml _{.g"é%ig maximizable and there is some
a, with £ (x) <ag it llxl<d7,
mms if {{x|¢AJ7
~A a, < £(x) ‘—C‘)-ao .
Since § is normal the same argument as in [_—5’37_1 shows that

£ is comtinuous at 0. = Let & >o be given and suppose I is

conbinmous at o &(aome)®. Thenllzll< S implies that
\ r{xfi< 6/2 and by [52] there iz sone SZQS with

-8, < £7]{x) < 8,0 _

o . : . '

Let s, €5 with ¥ ¢ such that s, + N ¢ €8 then

f(x)<sl + :SOGS v:;'ilenl[x \Vléd-.

%
e lly - 501\56/2 then
2(x) -y = (2(z) = s} + (s, - ¥)

. _ + : [l T - ‘-.-..
CNg, =S, +Ng EX¥ =8, C-5
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mhus it l|x - x| <dand lly - o126/, (z,y)€Ep1 2

and (xo, so)é ri Epi ? as desired.}

The continuity results above can be use.ad to generalilse a '
theorern of Rockafellar's (1970).

Theorem: ILet £ : X 3 Y. be convex with respect to a convex
cone S with §° Y. ILet X, Y ibe normed spaces with X
i'eflexive and let B be a weakly compact subset of the
relative interior of domf (W) in the weak topology. If

£ is 'wea.kly coﬁtinuous_on W then £ is Lipshitzian relative
to B. In particular if X is finite dimensional and f is
continuous at scme point of ri(domf) the result holds.
Proof: By restricting atiention ‘co the variety spammed by
domf one can asgsume that W 1s the weak interior of domf.
et U C X be the unit ball; then U is WeaMy compact since

X is reflexive and hence g0 is

%U#B Vné.N.Moreover
N (—Il-l-U+:B)ﬂW=&.
né&N

This is the intersection of weakly compact sets so there

some n with B+%§ vCw,

Since £ ig assumed continuous on domf and B + % U is
weakly compact £{B + ;];- U)‘ is wéa}ﬂ.y bounded and tlms both
minimizable and maximizable, since s® 4 x.

. 1
Tet bléf(BJriU)g_b and let z,y€Bx ¥ y. Then

2
7 = y+%l]y-—xu—l (y -x)éB-i-%l- Uand y::Az + (l —-})x
with A= lly - x ||/ %1. +]ly - x|, Since £is convex with respect

to S




aea!

2(y) « 1 - £2(x) +A2(z)
and _
£(y) ~ £(x) < Alv, - by)-
Since x, y are interchangable .
2(y) - 2(x) €5u| Ao, - B) 2w L A, - b))
Thié lest set is contained in.D where D is

1,

- Coi m +
D= 1wi—ux - ylxe welx - yl}xc}

and X = n(b, - by),

By a result of Keliey end Namioka (1963) thert; isg
L >0 (since § is normal)with |
sllwll€ ez -y Il Vwew,
In par'ti.cular for x,y&3B

follows from K

[13.05%
T Lows L2

e second conclugion
Rockafellar's initial result was the cese X = B
+ .

(1,8) = (R,R'). IT£X =R and Y= R with S any pointed

cone with interior then it is clear that £ is Lipshitz on

any closed bounded set in ri(dom? ),

Examples of discontinuous behaviour
(1) Tet D = {x¢c [o, 1] | a %/ E€C [0,1]} and

Tet A : DDC [0,1] be defined by Ax = dx/ . A is

discontinuous but is convex with respect to any cone S.

(2 £ : R -)Loo(mth the orthant ordering) given by
£(r) ={r2n} is convex with domf = 5;1' Pl < 1.}, In this
case T is continuous if lr} <1 but is discontinuous at 1 since

e (1 - %1) - f(lmz:s;p e —}I; Y2 L 1 which is 1.

R D S SR B S s e

T S Tt




[58] Although comvex functions share the property of [53) with linear

Leo]

functions a convex function can be contimuous at a point and not
weakly continuous,
Lét f;lz") L2 (with the orthant orderings) be given by
£( gxn —} ) 2{_32n"§ . f1is cléarly conv'ex with domf = L .
It is reasonably simple to verif‘y continuity especially at the

origin. .fis not we..lﬂv contimcus since Qxﬂi} gg‘ S ?2‘
'{{(2531{)2 }} is not

]

is weakly convergent but {f({ nk'.f 3
since u* = ij_'gé LZ = Lz and
n

ut.r ({.xnk%) =2%(2gm{)29 = ﬂf’)‘; —3 ©Q.,

}
(s

Note that S is normal but has no interior,

- The following partial analogues of the linear situation do hold:

Proposition: If £ = K;*Y is gtrongly quasiconvex with respect to

S and lower semicontinuous over C, a closed convex set then f is
weakly lower semicontimious over C. - _

Proof: { ;x\ f(x) € Z.g (\.C- is a closed convex set and thus weakly

closed. ‘

More intereastingly one has

Propoaition: If £ = X2Y is strongly quasiconvex with respect to

S and lower semicontinuous sequentially on any convex set C then f

is weakly lower semicéntinuous on C.

Proof: Leti ‘iC C bhe a sequence with 1limit % £C. Since X
belongs to the weak closure of the convex hull of {x}%}:_ﬂ

for any n, X actually belongs to the closure of the convex hull,
Thus there is for each n a point Z. and scalars >\nk>" O with

SNy A

. -
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- m o n
,z‘_n = ‘ :n'knk? xk-} XO.

Since f is strongly quasiconvex over C

f( Zn) \< max f(xk) .

nekém,

H X : £ ;
Hence if f( k)_ &, -7, end % — X one has z n)\S z  when

n),no-

Because zn-=rfj:o and £ is seguentially semicontinucus one has
f(x.o)\(,,z and f is weakly sequentially lower semicontinuous on c.4
This last result generalizes Daniel (4971) and provides at least
a partial a.naiogue to the equivalence of weak and strong continuity

of linear maps.

Since in the result of [53] it is only to prove that bounded
sets are maximizable that s° # &? is used, one could have required
only the former condition. This condition would not be much weaker
because the following partial converse to [52] helds,
Proposition: If‘ S CY is a generating cone, that is 5 - 35 =Y,
and Y is normed then S° # Y.
_fl‘_i__‘o_gg:r Since Y is normed the unit ball U is bounded. Let y, €Y
be a maximizer for .U. Then
Yo 2u V’ ue U,

1

s, +UC32+Sc_S

so that s, € s°.0

Since 8 =85 =Y y_ =8 -3, 31,52€-Sand

In further reference to [ 53), [55] it is spparent that if S
is not pointed it is unreasonable to expect continuity since in
the nonpointed case ‘there is at least one direction in which the

behaviour of f is not restricted at all. It is also apparent that

S e e R VG
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no sort of simple continuity result should be expected for
quasiconvex mappings even on the line., Certainly dense countable
sets of discontinulties can exist because any monotone real

valued mapping is quasiconvex. On the line this is the worst

that can happen because:

Proposition: (Stoer and Witzgall (1970)) A function f: C=R,

where C is convex, is (quasi)convex if and only if its restriction
to any line segment is {quasi)convex., Moreover, f: R—R is
quasiconvex if and onlylif there is a partition of R into two

(possibly disjoint) intervals (I1, 12) with f non-increasing on

.1

I, and non-decreasing on I2.|
In particular this means that if f: R-R is quasiconvex it
is of bounded variation and has at worst countable discontinuities.

This also implies that the set of discontinuities of any real

valued quasiconvex map has no interior.

Boundedness of level éets"

It is a well known result in R° that any closed unbounded
convex C contains sll half lines of fhe form X + th, t30 where h
is some fixed non zero point and x is any member of C. h is called

a direction of recession. An unbounded convex set in general

need not have any such directions.

Example: Let X be Lcn and let C be the convex set defined by

c = {{a}%\ ta 1€ x, koyq, 2 ... }which is clearly
unbounded and closed. Suppose that a + tb, t » o was a line
segment in.C,aE:C3b f o. Then for some by , by 1s non zero and

for t ¢t la.k + tbd > k which means a + tb is not in C.}

[éé] The next result, which generalizes a proof of Stoer and




(6]

Witzgall (1970) is phrased in R" because it relies on the
‘existence of half lines in unbounded sets.
Pronositic;n: Let f: R'-Y be lower semicontinucus and convex
with respect to a generating closed comvex cone S. Either
all nonvoid lefel sets are bounded or they are all unbounded. .
Proof: Suppose the level sets S(z) = {x lf(x) (zgare such that
S(z,i) is bounded and S(z.z) is unbounded. Since f is supposed
convex and lower semicontinuous all the level sets are closed and
convex in R°. Hence there is h, $ o with x + th,€3(z,)
N xéS(zz) and t 3 o.

Iir z3 is chosen éuch fhat z.3>, zé, 337} z1,which can be done
since S is generating, S( zj) is unbounded because it contains
z,)-

Let x&S(z‘t). Then x€& S( zj) and since h, is a direction of

2
recession for S(zz) it is also one for S(zj) and x + th, € s( zj)

\ft 20« Thus

f{x + t 2 & A(x) + (1-'>\)f(x%i h2)
:_(7\21 + (1-7\)23 if o <A<,
Letting A3 4 |

.f(x + th2)$z1 Vt‘,;.o, since S is closed,
This shows that §( z1) is unbounded and a contradiction has been

established, §

For quasiconvex functions the result in [&] is not true. The
next proposition which generalizes Lemma 4.9.7. of Stoer and

Witzgall {1970) 'is a partial clarification.

Definition: A chain (-1_inear ordering) is order complete if any
subset B of A which can be maximized has a supremum in B, That is,

there exists Zy such that if 2% b Ybv eB then Z>/Z1 and

i
i
]

3
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Proposition: Lét iR Y be lower semicontinubus and strongly
quasiconvex with respect to S, Let A be an order complete chain
in a sequential topological space Y. Suppose that any descending
convergent sequence in A has limit in A, If the level sets

fS( a) laeAri contain both bounded and unbounded sets there is

an B €A with S(a) unbounded exactly when a3 &.

Proof: Suppose S( a2) is unbounded and S( a1) is bounded. Let
E =rinf{a\8(a) is unbounded} . Then a, ga-..(az. It remains to
show S(a) is unbounded., Let T(a) denote the directions of
recession of S{a) with norm one. These sets are compact a.nd,'
since T(a)cT{b) if ab, have the finite intersection property

for ay 3. Hence, N S{a) % &g. Let h be in this intersection,
a>a .

For each a3 @ and for x€ S(E) one has {1) f{x + th)€a Yt>o.

The assumptidns on A imply that there is a sequence % B‘n% R an>,§:,
with a &, This with (1) shows S(&) is unbounded.§

Taking f: R>R, f(x) = { ', : ;‘: Z’: one sees that S(r)
is unbounded if and only if r;1. Setting A ={0FS U {x [ x>2§ ,
which is an order complete chain which does not contain its

limit points one has an example in which the propositicon does not

hOldo

Differential characterizations of convex type functions

For the most part differential conditions will be introduced
as they prove necessary. The following few prﬁpositions are given
for the sake of completeness.

Definition: If f: XY is a mapping between iwo convex spaces
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then £ is said to be @-differentiable at X. with respect to a

famil of sets in X if there is a continuous linear transformation
£/(x )t XY with

£ [£(x +th) - f(x)] - f'(xo)(h) S0 as tdo
uniformly in the topology defined by .

f is said to be (1) compactly differentiable if @ is all

sequentially compact sets and (2) boundedly differentiable if 3

is 21l bounded sets, In particular these notions agree in secuential

¥ontel spaces. In normed spaces (2) is just Fréchet differentiation.

Proposition: If f: X"J’fl is boundedly or compactly .differentiablc
then f is quasiconvex if and only if : ' ,

_f‘,(xo)_ (x - xo) £o when f‘(x_) sf(xo).
Froof: This is proved in Ponstein (1967) for X = R® and Fréchet
differentiation. The differences are entirely technical since
any sensible e;.—derivative will suffice in his proof.l From now
on when any reasonable derivative will do it will just be called

differentiable.

Proposition: f: XY is convex with respect to a closed cone 3

"if and only if

f‘l(xo) (x - xo)\<f(x) - f(xo) \Ix, x €X.
Froof: The result when ¥ = R is standard., In the general case
by [42] uff is convex (and differentiable) V u¥ e 57,
By the linear result this is equivalent to
wk (£(x) - (=) Y wie(x)) (x = x)) V' €s®,
Since S is closed this last inequallity gives as eguivalent

f(x) - f(xo) >{3_ f,(xo) (x - XO)-E
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It does not appear that the condition
/
£ (xo) (x - xo) \%_O whenever (x) \<sf(x0) is equivalent to
(strong)quasiconvexity although by a direct derlvative argument

it is implied by quasiconvexity.

A condition which will be of primary importance in cptimization

is - . ‘

f’(xo) (x - xo) € - S implies £(x) - f(xo)e s \QixeA

which is called pseudo-convexity over A at x . It 1s possessed

by convex functions ( [69]). The function £: R-R given by

f(x) = =% x € 0,11 is quasiconvex but not pseudo-convex

o x ¢ Psl]

when the derivatives are taken to be cne sided at o and 4.

A useful relstionship which simplifies proofs given in Guignard
(19638) and Cottle and Ferland (1970) is:
Proposition: TLet f: X-*R be quasiconvex on a convex set C and

' f
differentiable at x_ . Suppose that for some y €c ¥ (xo)(y—xo)) o

‘then £ is pseudo-convex at x, on C.

’
Proof: Suppose f (xo) (x ~- xo)>,o Y x ecC.
F) /
Then (1 =) £ (x ) (x-x) + (x) (v - x.)v o YV xecC.
Since x, yEC x>\=7\y+(1 -A) x, &€ C and
f
big (JCO) (X.-)\"' x0)> Ce
Since f is supposed quasicorrvexr on C

£(x5) > £(x,).
{

The continuity of £ implies that f(x)?,f‘(xo)n

!
Guignard's case was C = X and £ (xo) $ ¢ while Cottle and Ferland

/
had X =R, C = R'§ f (x,) 4 0. It is easy to show that these

are both subsumed,




‘ E]Z] The natural condition

£x) (x=x ) C2(x) = £(x) if £(x)<#(x)) is strong
enough to imply convéxity in most cases. Frecisely one has:
Proposition: Let f:<xélfbe twice Fréchet differentiable with
fIZx) continuous in x.tﬁen the above condition implies that £
is convex.

Proof: Consider X = R. By Taylor's theorem

Oy + (1 =N)x) = 22 = MG -0+ 2N (x50 - 0P
with X = x as A o |

.The condition of the hypothesis implies quasiceonvexitiy
([68]) and thus for o <§\<1 and £{y) € £{x) one has

£(Ny + (1= N))CE(x) and £(xy + (1 =2)x) = 2(x)% £ (x) My-x).
Thus

%3{? f”(x)) (v -x)°% %o, )

On dividing by')? and letting A> o one geis f"(x)(y - x)2; o.
Now, if £(x) 4 inf £(y) there is some y 4 x with #(y) < f(x).
In this case (y - x)_zl)‘b and f”(x) >, 0.

Otherwlise, let {kIJ% be a sequence of poihts with X, 3 x
x — x. By the definition of x ., £(x) $f(xn) and thus
f‘”(xn) (xn - X )2>,0. As before f”(xn) 0. Letting x - x
f%x)bobmmmef” is continuous.

Consider now g(k) = f(x +Ay) for fixed x, y€X. It is
irmediately verifiable that ngatisfieé the conditions and hence
g{™\) = #{x + W y) is convex for any x, y. This, using the first
part of the proposition in [521 s implies that £ is convex. }

Concents of minimizaetion with respeet to cones

There is a profusion of possible extensions to the notion of the
minimum of a real valued function over a set A, The two rost

useful and possibly most natural are defined below. S 1s always




@

(7]

bs)

assumed to be a closed convex cone.

Definition: f: X =Y is said to have a strong minimum (with

respect to S) over A at x if (x) - f(xo) €s Yx e A.

Definition: f: X =Y is said to have a weak mimimm (with
respect to Slover A at X, if f(x) - f{xo) ér- ~8% when x € A.

r s° = § eny point is a weak minimum so from now on the

interior of S will be assumed nonvoid when weak minima are being

discussed,

Proposition (1) Any strong minimum is a weak minimum,
(2) If S is pointed any two strong minima agree in

value.

| (3) If C is convex and x , is a strong minimum f or
f over C and if f is quasiconvex with respect to S, a pointed
cone,then M = {x | £f(x) = f(:&o) = strong min {f(x) \XGC}E
is convex. 7
Proof: Only (3) is not immediate, If X, X, € and o $Ag
then 'Xx1 + {4 = '>\)x2 € C and f()xx,l + (4 -)\)xz) £ f(x1)
by quasiconvexity. By {2) and the definitions

f('>\x1 + (4 —')s)xz) = f(xo)
and )\x“ +'(1'-')s)x2) € M.|

- Propesition: Let £: X 2 Y be fully lower semicontinucus with

respect to S and let A be closzed then the set of weak minima for
f over A with respect to S is closed.

Froof: Suppose {xn In< N} is a net of weak minima with
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xn-) X, Since 4 is closed x, € A implies X, € A. Suppose for ' i
some x in A f(x) < f(xo). By full lower semicontinuity ‘

f{x) < f(xn) if n % n_ Since s® is an open set.This contradicts 5

the minimality of xn.l

Similarily one has:

\—7ﬂ Troposition. If f: X Y is lower semicontinuous with respect

to 8 and A 1s closed the set of strong minima for f over A is

R g s

closed. §

3 i bl i,

E]Ea If one wishes to guarantee the convexity of the set of weak
v minima over. a convex set quasiconveﬁcity is too week. The
condition stated below seems artificial but it is eguivalent to
quasiconvexity when (¥,8) = (R,R").
Proposition: The set of weak minima over C is convex if f: X > X
satisfies? Wheﬁever X, ¥y X, € C and for some o < A < 1

f(rx +(1 =Ry < f‘(xo) then f(x) < f(xo) or fly) < f(xo).!

E{’ﬂ If X is a topological space then X, is called a local minimum

for £ over A with respect to 3 if x is & minimum over A1 N for
some neighbourhood No If A = X = N the minimum is called global.
Ponstein's (1967) result that every local minimum of a real

valued (P} strictly quasiconvex mapping is global has the

following extensions.

E&o] Theorem: If f: X —Y is (P) strictly quasiconvex with respect
to S then every local weak minimum with respect to S is global.

Proof: Suppose x, is a local non global minimum. Then there is

some XZGX' with f’(xz) - f(x1) € - 8% Let X o =')\x2 + (4 - A )xz.
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For A sufficiently small X~ will belong to the neighbourhood
over which x1 is a wesk minimum,
o
 Thus £{x~) = f(x1) ¢ -s” foro <'>\<'>\o.
But by (P) strict quasiconvexity ([16])
o
£(x5) - i‘(x1) €-5
since
£(x,) - £(x,) € - s°
and a contradiction has been derived. i

For strong local minima one has {dually)

Theorem: If £ is absoluiely quasiconvex ([‘H]) with respect to
S then every strong local minimum is global. |

Proof: Let x1 be a locel minimum and let xoe X, For o<)\<7\0

f(h\x, + (4 =N)x)) Z1(x,).

By [11]  f(x,) % £(x;) end x, is a globel mindrmum, §

1r (¥,3) = (R,R*) then by [21] both [80] and [81] agree with
Ponstein's result., Vhen this is the case one can in fact show
that if every local minimum of 2 gquasiconvex function is global

the f is (P) strictly gquasiconvex.

More generally for any convex space X one has

Proposition: If f: X~ Y is quasiconvex with respect to a pointed

cone S, and X5 is any nonglobal but local strong minimum then

f(x)} is constant on I{ €) = {x \x = )\Jc1 MDY )XZ,O $->~$€}

where x, is any global minimum and € is some positive number.

Proof': Since x2 is a local minimum there is € > o with

f(")\x1 + (1 -X)xz) P f(xz) if o £ €. Sirce
f(x1) £ f(xz) and f is quasiconvex

f(’)\x1 + (1 = A) x2) £ f‘(xz) if o $AE 1.

i
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Thus for x € L{(€) f£(x) = £(x,) since S is pointed. i

Weak and strong maximization ere defined dually to

mninization. Any convex minimization result ylelds a dual

maximization result for concave type functions. Thus it is

usually unnecessary to consider both maximization and minimization
problems. The next results, however, give information about

maxima of guasiconvex functions.

Theorem: If f: X —>Y satisfies
(1) 1r £(x) £ f{z) and f{y) £ f{z) then
f{nx + (1 =N)y) £ £(z) for o<\ € 1,
then if f achieves its strong maxdmum over C, a comnvex set
contéined in domf, at x, & riC then £ is constant on C.

Proof: Let zeriC with £(z) > f(y) YyeC and let xeC. Then

“there is some y € C and o < >\°<‘1 with =z '='>~0x + {1 -)\O )y.

" (Otherwise z would be a boundary point). Now, if f(y) € f(z)

and £(x) $ f(z) one ﬁas, since £(x) éf(z),that
f(hx + (1 =2)y) & f(z)-. This is impossible for A\ = ')\o and

f(x) must, therefore be equal to f{z). Thus f is constant on c.k

Corollary: If f: X —Y is such that either

(4) £ is convex _
or

(2) (¥,8) = (R,R") and f is (P) strictly gquasiconvex and
satisfies the one point exclusion property thgn the result holds.
Proof: For (1) it is easily verified that any convex f satisfies
(1) of [83], while for (2) the proposition of [33] proves that the

property is satisfied. i

36
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The proof method of [83] is derived from a result of
Rockafellar (197(’;&) which is in fact the corollary of [&] in
case (1) with (¥,8) = (R,R").
For any quésiconvex function it is simple to show the

following result,

Fropesition: If £t X =Y is quaéiconvex with respecf to S and if
A is any set over which £ has a strong maximum at X, then N is
a strong maximum for f over the convex hull, C, of A.
Froof: - & © {x {£(x) € £(x))] = s(e(x))).
Since f is quasiconvex S(f(xo)) is convex and thus

c < s(x )
Equivalently £(x) < £(x ) Yxec.i

Definitions have been made of convex like conditions which do not
require that one be in a vector space. In particular, a function

f: X~ R is called pathwise connected if whenever x, y €X

there is an arc p(t) with plo) = x and p{1) =y and with

P{p(t)) & max(£(x),f(y). Strict pathwise connectedness is

defined similarily. Many of the previous results hold for strict
pathwisé connectness, For example local minima are still globkal,
The properties defined in [8] through [16] could all be extended
analogously but the difficulty in verifying the connectedness of
a function and its relative inutility because of this suggest

that the effort is not worthwhile,

If £ is both guasiconvex and quasiconcave with respect to S
f is celled guasiaffine while if it is both (P) strictly

quasiconcave and quasiconvex as well it is called strictly guassiafline.
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1r (Y,S) = (R,R*) then Stoer and Witzgall (1970) have
shown that the set gf maxima for f over a convex set C consists
exclusively of ez‘-ctreme points, The result can be seen to hold
for any strictlj quasiaffine function with respect to a rointed
cone. Note that on the line if f is (F) strictly quasiconvex
and P strictly quasiconcave‘ it is automatically strictly

quasiaffine.

Yultivalued convex and quasiconvex functions

In another direction to the notions previously discussed
lies the idea of zﬁultivalued quasiconvexity and convexity. As
will be éeen later many standard multiplier theorems can be
painlessly extended to cover multivalued functions.,

The sequel gives the definitions which will be used and

some propositions.

Definition: F: X Y is said to be a multivalued convex function

with respect to 8 if F(x) is a subset of ¥ for each x&X(F: X+ 1)
and if whenever vy ¢ F(x‘l 1, y2er(x2) and o £ A £ 1 there is

some ¥y € F(')u':_1 + (4 -7\)3(2) with y~ - £™ ¥y ot (_1 -My,] €- s,

Definition: ¥: X -»>Y is multivalued (P) strictly quasiconvex

with respect to S if whenever o <A<1, v, € F(x1), Yo GF‘(XZ)
with y, < ¥y, there is some ¥+ € F('Rx1 + (4 -‘,\)xz) and with

Definition: F: X~> Y is multivalued guasiconvex with respect to

8 if vhenever y, € F(x1), Iy E_F(xz) with y, £ ¥, there is a
y)é ( )\x1 + (1 -))xz) with 7o € ¥pe

The following list of facts, collected as a theorem, follow
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from the definitions or from the same type of arguments as in

the single valued cases.

Theorem: (1) If 31 X =Y is quasiconvex, (P) strictly quasiconvex,
or convex with respect to S it is muitivélued of the same type.
(2) F is multivalued convex with respect to S if and only
if Ep’isF = %(x,z)!a y& Fx) z7% y-_g is convex.
(3). Convexlty in the multivalued sense implies both

multivalued quasicomvexity and (P) strict quasiconvexity.l

Definition: x_ is a weak (local) minimum for F over A if there
is some y,€ F(x) such that whenever y & F(x) and y - y_¢& -s°

x ¢ A (x4 NNA).

Proposition: If F is multivalued (P) strict quasiconvex with
respect to S every local minimum is global.
FProof: Suppose X, is a local minimum, then there is a
neighbourhood N and y € F(xo) such that when x € N_(xo) and
y & Fx) y -yoé - 5%,

Suppose that Yy ~ Y, € - s° and ¥, & F(x_:). Then for
o< Ne™, r>\ch1 + (1 -")\)xo & N(xc), Since F is multivalued
(P) strictly guasiconvex there is some y. € F‘('XXJI + (4 -})xo)
with y. < Yy because . y, < _yd. : /T his contradicts the
local minimality of Yo Whi.ch asserts that no such ¥y, can exist

for }‘{}‘0' 1

If F:¥-> R is multivalued'('quasi)convex and for each x F{x) is

a nonempty compact set then

f{x) = min i rir € F(x)’IS

39
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is a (quasi)convex retraction f € F. However, even on the line
examples exist of multivalued convex and quasiconvex functions

with no single valued fetractions.

@5] Examples: (1) F: R—R defined by

(r) = §{[3] +nlneng,
where.[r] is the greatest integer less than T, is a multivalued
convex function which has no everywhere defined single valued

_ convex restriction because the graph of F is not connected.

(2) Any multivalued maximal monotone mapping (see the
final chapter) f mapping R inte R is multivalued quasiconvex but
won't necessarily contain a maximal monotone single valued

restriction.
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Pangent cones and psesudotangent cones

The elementary observation in calculus that a function has
gerivative o at an extreme value is in many ways the keystone of
all 0ptimizati'on results. The following standard proposition

from Luenberger (1969) is the motivation for the developments in

" this section,

Propesition: Let £ be the real valued functional defined on
a vector space X, ‘Suppose ‘that X o minimizes £ on a convex set
C €X and that £ is Gateaux differentiable at X Then
: f,(xo)(x-xo)),o - Y¥xec.l
Essentially it was in order to generalize this result to
nonconvex sets, with the corresponding implications for more general
minimization problems, that the notions of tangent cones were

introduced by Varsiya (1967), Guignard (1969) and others,

The set T(E,x) consisting of all limits of the form h = lim Tkn(xn - x)
with x € E CX, Txn'z.o and x_->X in the topology on X is called

the tangent cone to E at x. It is largely irrelevant whether

the convergence' is defined in terms .of‘ nets or sequences. For

the purposes of simplicity all spaces will be assumed to be
Hausdorf{ and locally convex from now on. Convergence in the
given topology w_ill be denoted by — while convergence in the weak

topology, denoted G‘(X,X’) s will be denoted by — or by "wlim".

The set wI(E,x) éonsisting of all h which are limits in the weak




(5]

(6]

topology of nets of the form xn(xn - x) with .)\n*,;, 0,x € E

and xxlﬂ* X will be celled the weak tangent cone to £ at x,
This definition, which was announced by Nashed {(1971), but which
does not seem to have appeared in published articles, is extremely

useful in optimization.

T(E,x) and wT(E,x) are, respectively, closed and weakly closed
cones but need not be convex. This motivates the next definitions.
The closures of the convex hulls of T(E,x) and wI(E,x)

are called the pseudotengent and weak pseudotangent cones,

respectively, and are denoted by P{(E,x) and wF(E,x).

A set B €X will be said to pseudoconvex at x with respect to
R~

a set FCXifrE - x, © E(F,xo). Weak pseudoconvexity is defined
analogously. Guignard (1969) defined a set to be pseudoconvex

at x if E -x P(E,xo) which coincides with this definition
in the case E = F, When this is so E will merely be called

pseudoconvex at go.

This chapter.is devoted to a development of the properties

of tangent cones which are useful for framing optimization

" conditions but includes some results whose interest is intrinsic.

The next theorem lists some properties of tangent cones given

by Guignard (1569).

Theorem: If I is any index set then

(1) o (N a5 C () 2(a,x)

iel iel
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(2 ® () aL%) € (| Ha %)
iel

iel

() U n(a,0 ¢ nU Aj»X)
el 0 iel

(2) U Ra,x) CH U 4%

ieI ieT
Proof': fhese.all follow from the definitions and the properties
of closed convexrcones.l
The result holds also for weak cones, For the rest of the

chapter results which hold by the same argument for both tangent

“cones and weak tangent cones will be marked simply by ' (W) also '

at the conclusion.

A set A is said to be starshaped at x € A if whenever Y€ A and
o€ A& A Ax o+ (4 -)\)yE'A. Clearly any convex set is

starshaped at all its members,

Proposition: (1) A C'B =>-T(-A,xo) CT(B,xo); if x & E, oc T(A,xo').

(2) T(A,xo)'CwT(A,xo); P(A,xo) C,_w‘P(A,xo).

(}) The union of sets each pseﬁdoconvex at 5:0 is
pseudoconvex at x_. (Guignard (1969))

(4) If x e A%, (4,x ) =X,

(5) If A is starshaped at X, A is pseudoconvex at X
Proof: (1), (2), (3) follow directly from the definitions.
(4) Let x € X. Since x € A° there is &n n & N such that for
nzn, X =X/ +x €A, Setting ->\n = n, .>\n(xz'1 - xo) = X
and since X->x  x€ T(A,x ).
(5) Let xe A then x = -:—19: + (1 - i)xo e A sinc;e A is starshaped
at X . Setting Tkn = n again

lim n(xn - xo) =x-x € T(A,xo) and £ - x C T(A,xo).

Thus A is pseudoconvex at X i
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(%) also.l

Proposition: If X is a metrizable convex space T(A,xo) = T(K,xo).
Proof: If suffices to show that T(K,xo) C T(A,xo). Hence let
N (%, - x,) > hwith x €k, N> o. Ifh =o thenh € N4a,x).
If h 4 o then g’kn’% is unbounded and without loss of generality
can be taken to be positive with limit oo, Since x € A there is
| .
a point y €4 withy = x e')n N (where N_ is a nested countable
base for the topology). Then
- = - N -
)n(yn J{o) >r\x(xn xo) + Wy xn)
and ')n(yn - J%) - -kn(xn - xo) CN. Thus
~ - v ]
1im f\n(yn - {O} = h. i
(W) also.l

This proposition allows cone for the most part to examine

only closed sets,

Proposition: If there is some set E with ACECB and E pseudoconvex
at x_ then A is pseudoconvex at x_ with respect to B.
Froof: 4 - x CE «x C P(E,xo) - P(B,xo_),l
(W) also.l
In particular this holds if there is some convex set C with

ACCcB,

An example of a set with a trivial tangent cone end a nontrivial

weak tangent cone is given below.

Example: Let X = L2 and let ACX be the set comprising of the o
. ; y I - -

elementlnl;zand ‘[{‘Xn’g\ Tx =g ifk=1ornandx, =o

otherwise } .

(1) 2(A,0) = 0. Clearly :-En“>o. Suprose ?\nfn—-‘r a % o.

Then H?\n:?.nn} €y oif nyn_,
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A X 1 =_‘LJ_2_'X s0 lndoes not tend to o.

Now

' .2 22 z
(A% - DX =[@-{’-—-}-—M o+ k—ﬂw +L-ﬂ) ]),)‘

n m

:il:i

which means that iknin does not converge and T{A,0) = o,

(2} {4,0,0 eas) & w T(A,0) since if }n =n

’)nf_} = (1 ,0,0 LE N WY 0’1 ,0 co‘.)_\ (130_,0_. a.a) nl

¥hen S is a convex set alternative characterizations of T(S,xo)

~

are possible.

Proposition: (Varsiya (196%)) Vhen S is convex

UXS - x) =1S,x.) = F{(S,x ) Yo 65.
N> 2 o o] O
Proof: If he¥>§ S-x)h=lmnX(x ~=x),A o, x €S,

The proof of [8] (5) shows that S - % C (S,x_) so that

h =')h(xn -.xo) e T(S,xo). Since T(S,xo) is a closed cone

h e T(S,xo). The converse containment is immediate. It is also

clear that when S is convex T(S,xo) is convex and thus equals
P(S,xo).l

(%) also.l

Proposition: If S is convex T(S,xo) = “-T(S,xo).

Proof: By {12} T(S,xo) = \}"XES—xO) and

w T(S,xo) = (S - xo) (the closure in the weak topology).

However, \JO)(S - xo) is a convex set and has the same weak and

initial closures (Taylor (1958)).§

The above propositien allows another characterization of

pseudoconvexity. [a] will be used to denote the convex hull of

A

1
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| Proposition: A is pseudoconvex at X, if and only if
o([Alx,) = F(4,x ).

Proof: = If A is pseudoconvex at x, one has

A-x,C P(A,rxo)
and since F(4,x ) is a closed comvex cons
Wlalx) = (AT - %) € ®ax).
Since A ¢ [A] the other containment follows from
CB(a,x ) ¢ P(lal,x) = T([4],x ) by l12].
 1r 7([a],x ) = Pa,x )
A -x C [a] = < T([A],xo)t P(A,x_) using [B] (5) and 2l

(1 5] The previous results also give the bound
P(A,Xo) Cw P(A’xo) < B [A] :xo) _
and

Froposition: If A is pseudoconvex at X, then WP(A,XO) = P(A,xo).l

f16] " The next theorem llsts various translation properties of cones.
Theorem: (1) T(A,xo) = (A - x_,0).
Let g(x) = f{x + xo) - f(x) then
(2) o(£(a),1(x)) = Mgla - x ), glo))
(3) Mg (B),0) = M2 (B + £(x ), %),
Proof: These all follow by calculation from the definitionsl

(W) also.l

[17] Eroposition: KA,x ) + B(B,y_) cP(4 + B,x_ +y_) with equality
if A and B are pseudoconvex at xO(:A and Yo &€ B respectively,
Froof: P(A,xo) = P(A + YorXy + yo) c P(A + B,xo + yo) if Y & B,

’ P(B,yo) = KB K G %y +y0) ¢ F(A + B,xo + yo) if x G A,

Since P(A + B,x  + yo) is a closed convex cone




P(A,Xo)+ P(Blyo) C P(A + B,XO + ‘YO)°

If A is pseudoconvex at X and B is at Yo then
a1 - x ¢ P(A,x ) end [B] ~ ¥, € B(Byy,)-

Thus [A] + [BJ - (xo + yo) c P(A,xo) + P(B,yo).

Since EA] + [B] is a convex set one derives

P(A + B,xo + yo) c 7([A] + [B:l, X o+ yo) C }‘(A,xo) + P(B,yo).!
(W) also.l
A more interesting and much more useful result is proved next.
It gives conditions under which [_6] (1) can be replaced by

equality.

Theorem: Suppose A and B satisfy the following cond:.t*' ons.

8l

(1) [ala[5] = [AHB]
(2) Tal° N [B]° # ], (or in fect ri[a] N rifB] 4 b ).
(3) ANBis pseudocoz;vex at X .

Then P(4,x,) N P(B,x ) = P(4 | B,x_)e
 Proof: By [6] (1) it suffices to show P{A N B,x_) > P(4,x ) NB(B,x_)

Since A <{al, B <[B]
B(4,x ) N P(B,x,) ¢ ¥ [A},xo)f\ P( [B],xo)-

By a theorem of Rockafellar's (1970a) which is proved in R™

but holds in any convex space
H{al,x ) O\ ([3l,x ) = K [A] r\[BJ,x ) when (2) holds.

By (1), therefore,
P(a,x) N ¥(B,x ) « K[l O [3],x )

and since (3) holds [4 k| shows that
B(4,x ) 0 HB,x_ ) < H([AnN 3] %) = (a0 B,x).|

(W) also.l

= H([an B],x )

Eﬂ A set K is said to be polyhedrally convex if

-«




(20}

K = {xex\x;(x)) a;, 1=4,..1 x;éX/}_

The next result lists various properties of polyhedral

"sets in RI?. Many of these are valid more generally.

Theorem: {1) If K is polyhedrally convex and ¥ is a subspace of
E® then | ’
P(K,x,) V¥ = B(K ﬂM,xo) .
| (2) If X is polyhedrally ccnvex P(K,xc) is polyhedral.
(3) The sums and dualls of polyhedral sets are polyhedral.
(4) If B is polyhedrally convex and A is comvex and
ri{A)\ B ¢ o then P(A,xo) N 2(3,x ) = B(AN B,xo).
(5) If R and A are polyhedrally convex then
P(A,xo) N P(B,xo) = P(a N B,xo).
Proof: These results, in R, all follow from the definitions

with the exception of (4) which is proved in Rockafellar (19?0&).[

This paragraph gives various examples of tangent cones which in

particular show reasons why the conditions in [1 7] and EISJ are

imposed. , :
1 .
N — L — +—- r '
(1) L =R; A -{_r&i. U {O—g s X

B = ("OO:_Z"] Yo = -z .

1
)

]

P(A,xo) = o since % is an isolated point.
P(B,xo) = (~o0,0] = P(A,xo) +P(B,xo) while
A + B,xo + yO)D P(A + 0,X, +yo) = F(4,0) = R-l
A i3 an example of a closed set which is pseudoconvex at o but
is not starshaped there.
(2) X_= B; A is the rationals in [0,1]; B is the irrationals in
[:0,1] plus {0,1"i » X, =03 then A, B fail only to satisfy [1 7} (3)

and P{A,0) = P(B,0) = [o,m); A NB,o) = 0.!
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(3) X= R A = i(x,y)l xzé_y% , B ={(x,y) { =y - y%,(xo,yo) = {0,0).
P(A,(x,,¥,) = {(x,y)l v of 5 BB,(x,,7,) =°E(x,y)\ ¥ < of
bt (& N B,(x_,5,) = (0,0).k

Tn this case only [ﬁ 8](2) is violated.

(li-) K_E_EE.; A= {(x:y”x?/d.!y?/b?& Y {(X,_YD lx =oory = OAS
B o= {(x,y)]x}o,_ ¥ o% Ué(x,y)!x =y or X = =y
and (x_,y,) = (o50).

(A, (x7,)) = B(B,(x,,7,)) = &
while P(A 1B, (x,¥,)) = {9 =70, ¥ JN
In this case _ [1 8](1) is violated.
(5) X =R; A = C, the Cantor set info,1], x € C.
Then P(C,xo) is either R, R~ or R dependent on whether
the ternary expression of X contains finitely many iwos or

finitely many zercs or infinitely many of both.!

As a partial converse to [18] one has:
Proposition: If AN B,xo) = P(A,xo) ﬂP(B,xo) and both A and B
are pseudoconvex at X, 80 is A\ B, ‘
Proof: (3N4) -x =(B- xo)ﬂ(A - x_)
- P(B,xo) N P(A,xo) (by pseudoconvexity)
< pal B,x,) (by hypothesis)

and. B\ 4 is pseudoconvex at ‘xo. E

An apparently open question is whether the condition that a
closed set be pseudoconvex at all its points is equivalent to
convexity. A partial answer to this is provided by the next
propositions.

Proposition: Suppose f: X— R is Préchet differentiable then

Epif is pseudoconvex et 2ll its points exactly when f 1is convex.
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Proof: =% The proof relies on the geometrically evident assertion

that B(2p12,(x,, 202 ))) = §e)| 3 7 £ (2 )(x ) | whsen 1o

straightforward but slightly tedious to prove and is thus omitted.

Suppoée that Epif is pseudoconvex at (xo,f(xo)) for all X e
Then

Epif < (x,f(x ) + P(Epif;(x_,1(x)))
or (x = x_,£(0)-fx)) ¢ P(Epif,(x ,#(x)) Yxex
which, using the assertion above, shows that

7/

f{x) - f(xo) b f (xo)(x - xo) Vx,xoe X.

This is egquivalent, using 5.69}, to convexity of f.

<= 'This follows immediately from [8] and [‘1 .46} A

The next result links tangent cones directly with the results of

‘chapter 1 for the first time,

Theorem: (1) If £ is (P) strictly quasiconvex and fully upper
semicontinuous with respect to S then any weak minimum X, for £
over A is a weak minimm over x_ + _T(A,xo). :

(2) If £ is absolutely quasiconvex and upper semicontinuous
with respect to 5 then any strong minimum X, for f over A is a
strong minimum over x_ + T(A,xo).
Proof: Lety € x  + T(A,xo). Then y_ = limy_ + xS
yn = 'Xn(xn - xo), >‘n>/° xn'e A and xn——? xo.
(1) Suppose f‘(yo') - f(xo) e -s°.
By |4 .25_] f‘(xo + yn) <f(x0) for n sufficiently large.

RN -1 _
#lso x_ = (1 b ) X, + ’)n (:nc0 + —>\:1(xn xo)) so that

Y . 2N -1

f(x) =@ - X)) =, + Nx, +y)) <£(x)

since f is assumed (P) strictly quasiconvex and since

f(x, +y,) <1x).

(Note that one may assume O < r}\: £ 4 for n sufficiently large




[2:]

since X 4 yolf(xn) <ff(xo) contradicts the assumed minimality

of X, over A so that no such y, can exist and the result is

true.

(2) The second case follows similarily but under the weaker

continuity assumption of_[ﬁ;Zh].l

Corollary: If in (2) the hypothesis that £ is quasiconcave with
respect to S is added, X, + T(@],xb) can be used to reclace

x, + T(A,%,) '

Proof: The quasiconcave version of [1.851 allows A to be extended
to EA].'

These resulfs extend, from éontinuous real {rélued convex mappings,

s theorem of Norris (1971 ).

Derivatives and tanzent cones

The nétions previously discussed are now related to differential
properties since it is in this form that they are of most use in

optimization.

Theorem: Let f: X Y be compactly differentiable and suppose X,
is a strong minimum for f over A with respect to a closed convex
cone 5 then
/ :
£ (x )n) €s  Yne Hax).
Proof: Zlobec (1973) Prbves the result when (¥,S) = (R,R+).
There is no difficulty in using the properties of cones and

the definition of a strong minimum ([1.73]) to extend it

For a weak minimum the following theorem holds.

Theorem: Let f: X—Y be compactly differentiable at X and

9




*

.

1
]

suppose X is a weak minimum for £ over A with respect to a closed

convex cone with interior, then there is some w £ S+/ {o} with
Fe(x ) € Pasx).

Proof: Let E = {y\ dne T(A,xo) such that (f’(xo))(h)syE

Suppose h € T(A,x_) with _(f'(xo))(h) ¢ o. Now

h

1im >\n(xn - xo) x € A,xn-% X }n>’ .
Let h = »(x -x)
fl(xo)(h) = 1im ?Xn{?(xb + 3\;1hn) - f(xo)]

since f is compactly differentiable. Hence for n zfno
D lets, + 37t - s, <o

and since -S° is a cone

f‘(xn) = f(xo + \:hn) < f'(xo).
This contradicts the minimality of X as x_ & A. Thus E N s =y
E is clgarly a convex set and the Hahn-Banach theorem implies the
existence of a non—zern.linear functional with

u(y) %0 VYyer uls)go Vse-s.
So ‘ |

Cozutest ana  oMe (= ))n) o Vhe ™ax).

By continuit& and linearity of f'sz) ﬂli(f/(xo))éi P+(A,xo).[

While, as Zlobec, remarks the compact derivative is the
natural derivative to use when dealing with tangent cones it is
the bounded &rivative which playsthe comparable role for weak

tangent cones.

Theorem: If £ is taken to be boundedly differentiable the
results of [ZLJand [25] remain true with wP(A,xo) replacing
P(A,xo). In [25] it is necessary for f’(xo) to be completely
continuous. (Sece the remarks on complete continuity =t the cnd

of the chapter). X is assumed to be sequential,




Proof: To mirror the previous proofs it is only necessery to
observe that when hn = ‘)\n(xn - xo),xn—? X 7\n A o,xné A and
b, h_ one can assume that {hn% is weakly bounded since X is
sequential. Since the same sets are bounded in any topology of
the dual pair (Robertson and R(Z.mbertlson (1964)) it is bounded.
-The definition of the bounded derivative enables one to assert
that
')h[f(xo'+ ');1hn) - f(xo)J——> f’(xo)(h)

and the proofs proceed as before.l

To see that [26] is a genuine sharpening of [214.} it is only
necessary to consider the exémple in [11] . With A and x a3

in [14] and f:LZ'_} R, Zlobec’s theorem says that f"(-xo)éP""(A,xo) = LZ

whilé L26] requires f’(xo) to have first coordinate non negative.

Note that since L is a Banach space the bounded derivative is in

2
fact Frechet.

[2?] Guignard's (1969) sufficiency condition also has extensions fo
weak cones and (Y,S).
Theorem: Let £: X > Y be @ - differentiable at X, Suppose that
(1) f/(xo)(h) s Yn eP(A,xo) ; (2} A is pseudoconvex at x_,
(3) £ is pseudoconvex at x, with respect to S; then x_ is a
strong minimum for f over A.
Proof: Since A is pseudc;convex at X X - xoﬁ P(A,xo) -Vx € A.

Thus f/(xo) x - xo) es Vxe 4,

and since f is supposed pseudoconvex at X,

£(x) >/3f(xo) Xx e A l

r

1 ¢ 7
225_\\ Theorem: Suppose in [2?1 that (1) becomes (1) £ (xo)(h) €8

L

Yhew P(.A.,xo) and {2) becomes (2), A is weakly pseudoconvex at




[29]

[39]

x then the result still holds.
o]

Proof: The proof is independent of the nature of the cones,l

A sufficiency c?mdition of a sort can be proven for weak
minima., The result guaranteéa a real valued equivalent problem,
Theorem: Suppose that for some ut © S+/{o}

wT (e ()M 2 0 Ve Bax)
and thét :é+f is pseudoconvex at x  and A i§ pseudoconvex at
x, then |

':u;*"f(x) )/ .u’*—f(xo) Vx € A,
Proof: This is contained in [27].]
The analogous result for wesk cones is contained in [28] .]

The pseudocdnvexity of yi:gf is not implied by the pseudo-
convexity of f with respect to S it is howevér implied by the

convexity of f with respect to S ([1.42], [1.43]).

That f29} act;.xally adds to ones knowledge can be seen from the
follévr.ing example of a-f‘unc‘t.ion which is gquasiconvex with respect
to the orthant.in R2 but has no equivalent real valued map.
Example: Let f: R~ Rz, with S the coordinate cone, be given by
f(x) = (x3 +1,-x). f is quasiconvéx and every x is a weak
minimum for f over Ssince

fx) <£(y) » x=y. |
Let u b = (J:*1 ,r2) £ S, that is T, % 0,Ty % 0 (I‘1 ,r2) t o,
Then

ut -f(x) = r_x3 = TX + T,
which is unbounded on R, For any X, therefore, there is some

x with u T£(x) < u +f‘(xo) and f has no real valued equivalent

Iap,

T

e e B sl
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[32)

(33]

In keeping with the definition of Zlobec (1573), the set
() € = {Elre ny) Mo e™(3),x)) € x2,6(x )

is called the local cone (of derivatives) where g: X > Y.

(1) w€ = 3E[E € B(x,1) : £(wb(g” (8),x,)) € x«rP(E,g(xo))§

will correspondingly be called the weak local cone.

Zlobec introduced the terminology of [31] (1) to allow the
formulation of optimaiitj conditions when g is not differentisble.
Massam (1973) has shown that E.is a closed convex cone in the
topology of convergence on bounded sets. It is clear that this
holds f‘or w € -, More information on cone containments can be

found in Ritter (1969a, b).

Froposition: [Zlobe.c (1973)] If g is compactly differentiable
’
at X, then g (xo)é 8 -

Proof: The proof is similar to that of the next proposition. |

Proposition: Let g: X = Y be boundedly differeritisble at X,

and let X be sequential;then g’(xo) € wi .

Eroof: Set €>o. Let hew T(g™ (B),x ). Then

h = ')\n(xn - xo),g(xn) € Byx, >x, A > o and h = h.

Let u1+, ves uk* ¢ X7 and let N be any neighbourhood in X with
U;(N) <€ for i = 1500.;ke Because hn—l- ho in a sequential space
one can assume that {hng is in fact a secuence {relabelling if
necessary). Then ’{hrg is a bounded set because it weakly
bounded. By the definition of the bounded derivative

(1) un[g(xo + );hn) - g(xo)] - g’(xo)(hn)—‘;o as in [26:[.
Note that ): can be assumed convergent to zero by choosing

a subsequence if necessary since otherwise h = o, From (1)

one has for n 7,n1

(914

et




[34)

[35)

o
o

(2) Nlelx) - alx)] -&'(x)(n)enx.

By the definition of differentiation g'is a cont inuous map and

is, therefore, e (%,X) - F(IQY,) continuous {Robertson and
Robertsoﬁ (196#». There is then some n, with |
(3) & x N -u e x D) <& 1-1,2,0x
for n % ny. From (2),(3) and the choice of N
W L us Ty lale) - alx )] = (27 ()| < 26
when nr') max(n1,n ,nj) and (4) implies the weak convergence of
Alelx) - alx)] to (g(x))(n).
Since g is continuous and x - X g(xﬁ)-—}g(xo) and
g’ (x )(n) € wi(B,a(x)). |
The linearity and continuity of g’(xo) suffice to derive
g (x)(wr(g ™ (8),x)) € we(3,e(x )]
If the continuity assumptions on g are strengthened the conclusion

can be improved,

Definition: f: X->Y is said to be completely continuous if it
is continuous from the weak topology on X to the given topology

on Y.

Proposition. If glsz) is completely continuous then the

conclusion of [35} can be strengthened to
(g'(x,))(w2(g7(3),x,)) ¢ B(B,8(x ).

Froof: Examining the proof of [35] one sees that (3) can be

replaced by (3) (g'(x,))(n,) = (g'(x))(n) €N for n Y n,

X 4
where N is now any nejghbourhood. One then coxbines (3) and
(2) and proceeds as in the proposition.{

. / . . . . .
Since g (xb) is automatically continuous it suffices in

- - - I a
addition to reguire that g (xo) map bounded sets into compact




[36)

7]

4]
-3

' with
sets, In normed spaces this last condition coincides/co‘ﬂactncss

ot g/(xo). More generallf'compactness is stronger, K Nashed (4971)

: I's
has that a sufficient condition in a normed space for g (xo) to

be completely continuous is the complete continuity of g itself,

For é. mepping B € £ Zlobec (1973) has defined the set
x(8) = {n | B(n) € (5,8 )]
For a zﬁapping Eewl. w(E) is defined analogously by
_w(E) =th | En)e wP(B,g(xc'J))}
The following theorems give some conditions for
Bg (B),x ) to equal K = K(g(x_))). Clearly, by [32] ana
[33], this reduces to showing that
g’(:vco)"1 [P(B,g(xb))] C f(gdi(B),xo)-
The reéults are all framed in normed spaces since they all
rely at some level on the implicit function theorem (Luenberger

(1969)) or on similar resulis.

Theorem: (Halkin (1972b)) Let X and Y be Banach spaces and

TcX a closed subspace. Suppose

(1) £ is continuously differentiable in a neighbourhood U

of x_, |
Lo}
I

(2) r (xo) is a bijection of T onto Y.
Then there is some neighbourhood N of X, with a eontinuously
differentiable marping j of N into X with

4
(1) £(x + 5(x)) = I-‘(xo) + f (_xo)(x-xo) Yxe ¥

(11) 2im sup H3(x)pe = o 1}
p¥o [ftx-x lI<p P
[}




[39]

9

Suppose
(1) £ is differentiable in a neighbourhood U of X

- (2) f‘_l(xo) is surjective,
Then the conclusions of [37] hold except that j need not

be continuously dif‘ferentiable.l

These two results can be used to give sufficient conditions

for K = P(gq(B),xo) when B is a closed subspace.

Proposition: Suppose g: X > Y satisfies the hypotheses of [37}
or [38] and that B CY is a closed subspace. Then
k= g (8),x) = 2(g7(8),x ).
Froof: Suppose g’(xo) (h) Q_P(B,g(xb)) = B, Set x_ = o.
For n >/'no h/n €N and thus by (i)
g(xy + 5/ 3V0) = Telx)(0) v glx) €3,
Thus | |

x, + /v 3 ) € a7(B) ana

un Y/ -3(V) e meTe) ).

bl e

Using (1i) this limit is just h. The theorem now follows from
the fact that K always contains T(gﬂ(B),xo)sl

Flett (1966) has proved [59] by a rather complicated implicit
function theorem only using = g '(xo) is onto Y. Ke does not

need T to exist in [37].

s . . -~ . .
Definition: When K = P(g '(E) ,xo) g will be said to be regular

at x . If wP(g_JI(B),xO) = wK g will be called weakly regular
at x .
o

These definitions generalize the standard notion of regularity




[u2]

(Iuenbergér (1963)). The subject will be discussed again later,

-

[3u])

Remarks on complete continuity of derivatives ([26],

. , ,
The complete continuity of f (xo) is necessary in any argument
such as a separation argument in which one wishes to deduce from
he mE{A,xo) and

ho= D (x

n
that (1) (f (x ))(h ) € -8° implies f(x ) - f(x ye -s°

- x )—A h
, n bfno.
This relies on the fact that
Vs
, [#x) = 2x)] - (e (x,))(h ) >o

vhich in conjunction with h —>h_ and £ x,) completely continucus
. | _ i o
glVés Nkn [f(xn)_ f(xoﬂ — (f (xo))(ho) & -8". Thenn B,

implies, since s° is open in the topology in which one has

can define minimization in the weak topoloazy

Alternatively one

by requiring that S has an interior s"° in the weak topology,

and by defining £ to have a weak minimum in the weak topdogy

at xD over A if

£(x) - f(xo))&r -g¥o

With this notion complete contimuity isunnecessary since now

when X € A,

>n[f(xn) - f(xo)] S f ’(xo)(ho) € ~S"° implies that

f(xn) - f(xo)éi -s™ for n 2,n° a8 the cone now has interior in

the topdlogy in which '}h[%(xn) - f(xo)] converges.

These considerations lead to the following general proposition,
Frovosition: If S is supposed to have weak interior then any

separation argument which holds for (strong) tangent cones and




compact derivatives remains valid for weak tangent cones and
bounded derivatives without complete continuity: provided that

X, is required to be a minimum in the weak tOpology.l

Tt must be emphasised that most applications of weak tangent
conés will rely on [26] and [35] which require X to be sequential,
Tor this reason any bounded derivative will from now on be assumed

to have a sequential domain space and the hypothesis will not be

1listed separately.




Chapter Three

2
:
Q
2
8
3
:
5]
[
2
S
3
9
g
2




Farkas Lemmas and Transposition Theorems.

Two of the most useful optimization methods (other than direct

arguments which usually involve the Hzhn-Banach theorem) are the

application of Farkas Temmas and Transposition or Alternative

Theorems. Thig chapter proves various results of this nature

some of which will be applied subsequently. The following definitions

ere needed. They are taken from Berge (1959) which is a good general

reference text for multivalued maps. Recall that F : X >Y is

multivalued if F maps points in X onto subsets of Y.

——
- |
—

Definitions: (1) P : X »Y is said %o be upper semicontinuous

as a muitivelued mapping between topological spaces if for any

neighbourhood V<Y with F(x_) €V there is a neighbourhood UcX

of x_ with F(x)év when x €U. (2} P is called lower semicontinuous

as a multivalued mapping if for any neighbourhood VeY with

P(x )NV} Y there is a neighbourhood UeX of x, with P(x)NV 3§
when xeU.
It is apparent that these concepts coincide when f is single

valued.

Theorem: TLet f : X 3»Y g : X >Z be arbitrary (single valued)
mappings, Let UcY, Vi be any sets such that UeR(f).
Then the following are equivalent:

(W) 2x)ev = g(x) €v
(2) g(x) C he? (x) {h(U)}<:V where he is a multivalued

mapping of Y into Z.




4]

3

proot: == Tet h(u) = {g(x) | 2(x) = u}.
Tn multivalued terms h = g,f"l. Suppose u€U then, since

£(x) for some x and x&f_l(u).

)

UCR(f), u
g u)) C v oy (1) .

T+ is clear that g{x) ¢ hef (x) and that (2) ().}

h(u)

Proposition:h is singlevalued if and only if £(x) = #(y)
implies g(x) = g(y). |
Proof : b (£(x)) = {ely) | 2(x) = 2()} .|

Theorem: (1)If gis cohtjnuoﬁs and 27T is upper (lower)
semicontinuous h is upper (loﬁer) semicontinuous.

(2) If g is convex with respect t0 S and £ is linear
then his multivalued convex with respect o S( [1.88:1 )

(3) If z and £ are linear h satisfies thix
h(y) ¢ h(t x + y) Zor t€R %, y€Y. (This property is called

multivalued linearity).

Proof : (1) Follows by a result of Berge (1969) or directly,
(2), (3) follow from the observation that the inverse of a
linear mapis multivalued linear snd from h:gf;]:l

It is a property ;of mltivalued upper semicontinuous mappings
F that $¥(x)} is compact. (Berge (1959)). It is apparent that
the previous results could have been rephrased Tfor f and g
multivalued. In this case the continuity conditions in [4)(1)
would ask only for g to be semicontinuous. |

Craven (1972) has proved that h is continuous when g is

continuous and £ is continuous, open and surjective. He




[5]

(6]

. was only considering maps satisfying B] « The next proposition

chows that even in this case [4] (1) generalises his result.

Proposition: If £ : X 3 Y is an open map then ™% is lower
semicontinuous as & muwltivalued map from ¥ inbo X.
Proof: Suppose there is z neighbourhood V ¢ X such that
£ ()N E N,
Tet U = f(V).‘ U is open in Y since £ is open. Also, since
£ (3, )0V # 3, there is some n €V with #(x) = y_ and
yoé U. Ifry'eU then y = £(x) for some x€V since U = £(v).
For this x one has
xequyﬁiv.
Thus for aﬁy YV there 1s a neighbourhood U of Y, such that
f“l(y)ﬂv % g if yEU. This is just definition [1] (2).]
Combining [5] ana [4) (1) one mas that h is lower semicontinuous
when £ is open and g is continuous. This in turn implies that
h is continuous when it is singlevalued and everywhere defined.

This does not need Craven's hypothesis that £ is continuous.

As a corollary one has the following linear Farkas lemma.

Theorem: Let X, Y,lZ be_éonvex spaces with X fully complete
and Y separated and barrelled. Let Sc¥Y and Q<Z be cones with
Q peinted. Suppose A : X Y and B 1 X 3 Y are continuous linear
mappings with R(4) = Y. The following are equivalent:
(1) AxeS = BxeQ |
(2) B = T4 for some continuous linear T : Y 57
with 7(s) C Q. |

Proof: 9ax = &y > Alx-y) = 0eSO 5. 3y (1) Bly=x)eqn- = {0}




3

Thug the condition of [%]is gatisfied and by_[é] there is a
single valued map T with B = T+A and 7(S) C Q. [4] (3) shows

that T is linear. Finally T is continuocus. This is +tTue

.because A is open (the hypothesis of the open mapping theorem

are satisfied) and one may apply the preceeding remark. <=
Tﬁis is immediate. | |

with R{a) NS replacing S the theorem can be proven for
R(A) a fully complete subspace since A will be open onto
R(A). It is also worth noting thaf'if A is assumed open the

theorem holds in general (convex) spaces.

b R(A) is notrassumed closed there appears to be no
satisfactory continuity result in the literature. The best
one might hope for is the equivalence of [6] (1) with (2)!
B=1im T 4, Tn(S) C Q, T, continuous.,

Since the only results I have obteined in this direction
are restricted and weaker, they are not included herein, Such

results would be useful in optimization.

The next result gives a convex extension to [63 .

Theorem: Let £ : X 3Y and g ¢+ X D% be differentiable at a

point x_ with R(f'(xo)) = Y. Suppoée further that © is convex
with respect to S and g is convex with respect to Q with Q
pointed. Suppose that ¥ is fully complete and ¥ is barfelled,
i (1) 2(x) = 7 (=) dglx) £ CACH

there is some conbinuous T maﬁping Y into Z with T(S)!Z Q and
such thai

(2) gbe) + 1 2(x) > &lx)) + T 2(x) .




o)

¢ Proof: Since T and g are differentiable and convex
(3) £(x) - i’(xo) P :E"(xo) (x—xo)
(4) gx) - elx) > g &' (%) (x-x,) vy [1.69] .
Using (1), (3) and (4) one seées that

f'(xo) (x—xo)e 5 implies g! (:xo) (x~x0)€_—- Q

Since R(f! (xo)) = Y the Farkas Lemma, [6] ; can be applied
to £'(x,) and g‘(xo) giving T : Y 3%, T continuous with
2(8) € Q and

(5) T2 (x,) + g'(x,) = 0.
Using (3) and T(S) € Q one seces that

(1) 22t (xg) ez )) g 2(e(x) = 2(x)).
Combining (7).with (4) and (5) one has

ax) - g(x,) =, 87(xy) (wx) = = 2¥(x) (xx) > .
- (£{x) - f(xo)) .as desired.t
If £ and g are rlinear this reduc-es to ES] since continuous

linear mappings are their own derivatives. Setting X, =0

glx) + 17 e(x)eaflq = {o} ag before,

If one wishes to extend the result of [ 6] to

AleSl, AXES,y iy AxeS = BxeQ
it is necessary to impose further restrictions on the cones
Ritter (1969 ,b) has poﬁd the following result which is
guoted for fulure use.
Theorem: Suppose ArX —)Yi i=21,.00yn, B: X 37 are
continuous linear mappings betﬁeen Banach spaces and that

Z is reflexive. Suppose also that




|

[10]

(1)A% > A Res, i=Leeen

(2) QcZ is a closed normal cone

then the following are equivalent:

(3) Alxesl,...,‘ AXES = BxeQ

(4) There are continuous linear mappings T.0X, 2% i =1,...,n

with .mi (si)c Qand B= T4 + ...+ TnAn.l
Craven (1972) seems t use thisg result without proving
it or imposing conditions (1) and (2), in that he tries to

deduce the result directly from the basic lemma by looking at

A= (ﬁ:'."yAn)c

Transposition Theorems for comvex and linear mappings

The first result of this section generalises a Transposition
theorem proved by Craven and Mond (1973) to multivelued

convex functions.

Theorem: Let X, X, Z be._éonvex gpaces. Let P : X >Y be a
miltivalued convex functlon with respect to S, a closed convex
cone with interior. Tet h : X »Z be affine and open and
suppose that P is muliivalued lower semicontimicus on Ccx, a
convex set with interior.‘ If there is no solution to

(1) n(x) = o, x€C and F(x)N -5 £ ™

then

+

{2) there is some p+€ S+, q+EZ' with (p ? q+) # 0 and

p" (F(x)) + a© (n(z)) > o ¥ xec.




Proof: TLet A = g(w,z)\;_]x_ec, hix) = =z and]yéF(ﬁ-}w? sy}
Then (1) A is convex since C is convex, h is affine and
P ois miditivalued convex.

(i1) Lets s€8°. There is some balenced neighboui-hood N,
with s + N e s®. Tet xoaco and 2z = h(xo) then there is
some yce s° with a =y, - ylé s° where 7y is any given point
in F(xo). (This could be dome for any yl).

Choose a balanced open set Nl with a + 2 Nl c s° and another
open set N, € X with x_+ N, C C. Since P is lower semicontinuous
.. and F(xo)ﬂ(Nl + yl) % § there is some open N C N, with

PN +7,) £ 8
when x€N.

Choose ¥ €F(x) and ?E,I\Tl& ¥y for any x€N + x, .
Let yENl T Yo Then

y-F=-5)+ (3 ~7) +tac2m +acC s
Moreover, since h is affine and open, h{N + xo) is open and
if (y, 2)€(N, + y,, b (¥ + x_)) one has

z = h(x), x€C and y>7 er{x).

Thus. (y, 2)€ A which implies tlat (yo, h (xo))EAo'

(i11) Tet M = { (w, o)| we-s}
M is clearly convex. If there is no solution to (1) then
MMA =R . |

Mn application of the Hahn Banach theorem allows one to
agssert the existence of a llinear Tunctional a'+ = (p+, q+) ‘-; 0
with

P (w) + q'(z) =0 if (w,2)CA.




[nj

1 o}
If one letsy =y + 7 s for & fixed seS and any yEF(x),
x€C; one has (y.n., X)E A and
+ +
(iv) p (7)) + ¢ (a(=x)) 2 0 \/xzec.
Taldng limits as n » &

p¥(y) +dF ((x)) >0 Y=xec, yeRr(x),

+
Further p €S , since if y€8° (ty,h(x)) €A when t is sufficiently

large (as in {ii)) and ir p+(y)<o (iv) could not hold.l

By EL.SBJ the continulty assumptions are fulfilled vhen

S is a normal cone and ¥ is single valued and continuous at some

point of € C(domf)o. A Purther generalisation is given below.

Theorem: DLet B be a closed convex cone in Z and suppose
the hypotheses of [10] hold. Then:
(1) T™ere is a solution to F{x)N =s® 4 o, n(x)e -B, x€c.
or (2) There are p+é gt q+€ QJ", not both zero, with
' (F(x))
Proof: Let X

A A i
yéF(x)z. Since A of [le is a subsed of A, A has interior,
A

d" (B(x)) > o Yxec.

+

‘E(w,z) ] x€0, z-h(x) €B, w-yes°® for some

A i3 convex _in much the same way zs A was.

Let ﬁ = g\(w,z)‘ we -5, zE—B} .
Suppose {1) has no solution then A0M = Y. Again, using the
Hahm Banach theorem, there are p+, q+ not both zero with

(5) p7(w) + q*(2) 2 97(e) + 4" (0)
when (w,z)€A and s€-5 be -B. In particular, as befoie,
p*(y) + g7 (B(x)) > o if xEC ana y€ F(x).

p e85 and €38 or (3) is impossible.l

This includes ElO]as the case B = 0. The next %wo

results are corollaries to [11] .




[12) Corollary: Tet X, Y, Z, ¥, h, S and B be as in [11] . The
Lfollowing strict alternative holds.
(1) There is some p + oes, ¢ B with
p" (F(x)) + ¢ (a(x)) 20 Yxex
or (2) There is a solutim X to

h(x)e—_B Flx)N-8% &%,

Proof: ‘<= I£ {2) has no solution there is by [1I] a solution %o
(1). It remains to verify that p° % o If p* = o then
q+(h(x) >0 \j/x X,
Since h is open R(h) =Y and q+ = 0. This forces p+
to be non' zero which is a contradiction.
=2 Conversely if % solves (2) ana p+e s !{o} ; q+€ B'
there is some y € F(xo)ﬂ—so and h‘(xo)e;-B. Then

+

'n+(1r 3y ..:-E-% D (yo}’_/‘_c.’

(v \
P AT,) t 4 “\AO,)

PA

and there is no solution %o (l).l

[_‘13] Corollary: Suppose C is a closed convex cone with interior
and that £ = Ax + 4 is continuous and affine with §&£-S,
Suppose that B = 0, h is linear and there is 31 with

f(xl)é—- s°. Then, when [11] (1) has no solution, p+ and
q+ of {11] (2) are such that pt(a) = 0,end o + o implies
q" % o.
gr_gm_f:_ jSe“b‘bing x, = 0&C 2nd using
p (A x +a) + q_+ (h(x))’ >0 xEC
one has p (a) > o+ Tis with p'€S’, a€-S gives p'(a) = 0.

Since f(ﬁ)(o,,j_f p+ F 0 one has q+ (h(xl)) >

-p" (f(x__L)) >o.

andq-i_#o.l'

69
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Remarks: (1) This last result is very much like Lemma

L2:3} of Ritter (1969,‘0). Again there is no reason why A

should not be miltivelued linear [4) with the condition

f(xl)ﬂ—so + .

{2) ™ese resulis ([10] - [13] ) extend many
in Mangemrian (1969).

(3) Craven and Mona (1973) prove [1é} with B = 0
and F single valued. They invoke an extra, and redundant
hypothesls that h have an injective {ranspose h¥*. This '’
is implied by the hypothesis that h is open.

Proof: Suppose n*(y!) = o yteyr,

Since ®*(y') (x) = h(x)(y'") Yxex

one sees that h(x) (y') = o ¥Yx€X. TIn any to;polrogical vector
spaces L open imﬁlies R(k) = Y =0 that hix){y?) = o for all

x €X means that y‘E_Y+ = o.l

Linear transposition theorems

The convex transposition theorems of the previous section
suffer from the fact that when linear problems such as
Ax >0, Bx2zo, Cx=o0
have no solution one can deduce that
a+A+b+B+c+C=o a+>lo b+>o
but not a' % o.
The following generai linear alternative theorem deals
with this problem and is used to derive as corollaries most

of Mengemrianls (1969) aliernative theorems in a more general

setting. The next paragraphs are a necessary preliminary.
Tual spaces will from now on always be supposed o be endowed
with the strong topology B(X',X) uniess 1t is stated othervise.
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[17]

_Propositior;: (1) I C amd D é.re closed convex cones in s
locally convex space X
(cnp)" = ¢ + o",
(2) I£ in addition X is nommed and c°0D # Yy
(enp)t = ¢t 5+ ot
Proof: This is essentizlly proved in Ritter (1969,2).1
Another condition wnder which(c 0D)" = ¢* + p* ig given

by the following result.

Definition: A set C C X is said to be radial to X, (xoérad C)
if for each X€X there is some ’so>o such that (1-t) x, + t xecC

when o <t -4'1:0. A convex set is radial at any interior point.

Proposition: et X be a barrelled,/sequential), Hausdorff, convex
space.  Let C, DCX be closed convex cones such that Xerad{CND.
Then

(cnp) = ¢t + 2"

Proof: It suffices to show that C+ + D+ is closed;suppose tha;tgb;}

is a sequence in ¢* + D" with b; — b+, b; = c; + d;,
c;gcf’ and a;egf. Since X €CND
v (R » or (%) >o.
ixlso, since b; — b+, ib; (Sf)} is a bomded sek. Suppose
X €X. = Since C is a convex cone with X€rad ¢ there is scme
b= t(x) with T+ 4z 2nd % - tx in C.  This means +that
G @ 2t =~ (3)
This shows that E = {c;-? is o( X X) bounded. The hypothesis
of barrelledness means that § is equicontinuous which in turn

implies ‘that_E*isG‘(X‘,X) compact. (Robinson and Robinson (1962)).




Thus one has a subsequence (not distinguished notationally)

with c;——> ¢'. Since 5cC ¢* ard C' is weakly closed
e ¢ |
' Similarly d;: — be _—y which must belong to D', Thus
I (b+ __-c+) c ot . ot

[18]

and ¢ + D' is a closed set.§

Ritter's proof of [15] (2) relies on the existence of a
point in c° D. Cones can exis?; in normed spaces, which have
no interior but have. a radial point. Since a normed space need
not be barrelled when it is incomplete one sees that [‘?5] (2)

and [1 7] are not strictly comparable, In Banach spaces,

though, [17] wiil include [15].

The general linear theorem can now be proved., It is stategd

in normed spaces for simpliecity.

Teorem: Let X; 1=0,...,4 be normed speces with A€ B[XO,XJ .

Suppoese XO and each R(Ai) is @ Banach space aznd that there are

closed convex cones Si 'a X, 1215...,4 with Sioﬂ R(Ai) A ¢

It

i 2y 3 and 3, = 0, Suppose 82 is pointed and that

4

(%) A2-1 (32)+ + A3m1 (83)+ + PI(_A.4)J"' is closed.

Then elther there is a solution to

(1) 4y xe 8,° , a,zes, /fof Ax€ 5., 2% =0,

or to + + + +

-+ +- =
(2) =8 A‘; P A tAg Ayt 420,

where & € S : i:?,.;.;4' and el ther (_é)a1+ £ 0 or (b) for exy

+ + +
Tixed s 6 S ' a2 can be chosen with a2 --S2 € 52

c

+ .
1t (s, )’ £ £ the alternative is grict.

Iroof: =3 Suppose (1) has no solubion..

Set B, = {3‘1(»‘&1?(? O}; L, = S‘;_:-: ‘112:-: 20; fsx 2 0, A,x = 0.

rl
H
44
+4
£
14
15}
I
i
o]

Coseld E1 = #; Using a stendard separavion argunen

14 Lo . L [ SN Y e T = (}
(:u'._:_;lCU.l LY IXl SsatisTtyoano 2(3) Wi O£ = = __ = o —




(ii) ‘ . . + ..
- Case (i1 :E2 = b; This can be written, for a fixed 52682,

as

' _Azxznz,%leo, A4x:o %iZAfx_go.
= = c = -
Then E; = A, (52)(1 Ay (SB)QN(A4) (s, 43 (-52). Using (*)

'and [15] (1) one has
IR -1 + e NP L +
(3) = 8,7 e ay (5,) + a7 (5)4w(a, ) = (B)".
Farkas Lemma [_6__1 can be used, since each R(Ai) is a Banach
TomL oo YV Tt St 5

space, to derive that u, € A,” \Si" implies a = di A, and

+
a; €(R(8;))18;)7. The condition R(A)0S] £ ¥ 1 = 2,3 enabiles
one 1o use [15:[ (2) and write |
+ ¥ + + + .
d; =a; *+ b =a/€S, , biER(A) i=7273
while di can be replaced by a: by an application of the

+
Haln—Banach theorem. Clearly a;; Ai = di Ai 1=2,3,4,

Taing (3) one has

+ + o+ + + + +
(4)-—s2 A2=u2+uz+u4=agA2+a3Ax+a4A4
v),

-~ -~

Setting a; = 0, oOne has a solution to (2)(
Case {iii): E, % X, E, % X.
By assumption Elﬂ E, = . E is clearly convex with interior

The convexity of -E2 follows from the pointedness of 82. The

Hahn—-Banach theorem asserts the existence of ut € E; and EI.

+r--

Tt is easy to show that E. = E. and then, as in (4), to write

2 3
+ + + +
- = + +
(5) - u 2, A2 ay A3 a, A4.
Moreover, since we Ei )y A x>0 D u+(z) > 0. Since there
is some x; with A X, >0 one has in fact that A) x > o implies

u (x) > 0. (To see this let x = x +>\>_KO ,>\>o. Then

A

Al(x}\)>o. Hence u+(_xh) > 0 and u+(x) > 0). The same

argumnent as before noﬁ shows that u' = & A Fesl/ go} and
L & ]

(5) provides a solution to 2(a).

~1
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[20]

& When (8 +)O £ ¢ and voth (1), (2) have solutions one has
(6) o= al Azt a2 Ax + o A3x + a A x::.a A, 3% i=1,2.

o the fact that A x> o produces a contradiction in (6)

H
).h
Py
[

: +
while otherwise a, can be chosen to belong to SZ © ana aZ AéX)-O

whick again contradicts (6),)

Remark: Banach space hypotheses are only needed for the
Farkas lemma ﬁhile normed conditions are only used for

(R(Ai)(XSi)+ = R(Ai)+ + S;. It is therefore possible %o
prove El&] with the spaces sequentialbarrelled and fully
complete ﬁith the operators with barrelled range. This

merely uses [}f} instead of [15]

Conditions for (*) to hold can easily be derived from [15](2)
or [i?] Another condition is given by
Proposition: (*) is closed when 82; 83 are polyhedral cones

([?.19]) and A4 has finite dimensional range.-

Proof: Since 82 is polyhedrally convex

1 :
‘{x | ( A; (yj) (x) N0 j =1yee.,m
which is poiyhedral. Similarly Agl (33) is. VUsing the
simplest Farkas lemma Afl (s ), Agl (s )+ are finitely
2 2 3
generated.
* * *
Since N(A4) = R(A4) and dim R(A4) £ dim D(A4)
-1 + ~1 + . .. N
A2 (SZ) + AB (83) + N(A4) ig finitely generated
and hence closed.ﬁ Ritter's alternative theorem (1969,b) is

inciuded as the case of [18]1n which X, Xz; X, ave finite

X 83 are the orthant

orderings. The proposition shows that (¥*) is satisfied since

dimensional Euclidean spaces and S

the orthents are polyhedral.




(23}

[22]

Theorem: l(Generalised Gale's Theorem) ZIet X,Y be normed
spaces and let A&B [X,Y] have closed complete range. Suppose
S¢X is a closed convex cone such that N(AjL + S+ is closed.
ﬁmfmawqﬂﬂ'ﬂm@
(1) a7 =0 o'(y) = -1 y&s
or
(2) &% y? < or q+ (4% is the adjoint of A.)
has solution but not both. |

Proof: =)Suppose (1) has no solution then there is no solution

to
(1)" Ay = o, —q+(y) <o, ye€S8

Applying the theorem of [18] to (1)', and noting that 5° # §
is not needed since the operator Iy = y is surjective, one has

- rq+ + s+ + q+ A=o
with » > o, s € S+, a'€Y'. This can be rewritten as

AX (r_lla%) = q+ -1 gt __q+.[ Ths theorem includes
Gale's equality theorem (Mangasarian (1969)) since S = Y is
a perfectly good candidate. The closure condition.is met by

any finite dimensional map and any polyhedral cone.

It seems worth noting that at least for some convex funciions

an anologue of [18] can be proved. = Suppose f: X =2 Y is convex

with respect to 5. and that £(o) = o, £' (o) exists and has

1

closed rahge.
Theorem: With all terms as in 18 and f satisfying the

condition above either there is a solution %o

(1) £(x) €~ Sg, A2x & SZ/{ o§ s AZIG‘ S3’ A4x =0

or multipliers exist as described in [18] with

+ + + +
{(2) - a, £(x) + a, A2X+a3 A3x+ a4 A4x§_f» lQIXGX.

~F

(914
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[23]

Propf: If there is no solution to (1) there i1s also no
soluticen to

(1) =£t{o) x>0, Ax F 0, MzT Do, Agx

i
Q
-

[18] can be applied to this yilelding
+ Ly + + +
(3)-alf(0)+a2A2+aB%+a4 A,

Since f is convex with respect %o 5, end o) = o

1l
o

a 2(x) 2 &) £'(o)(x)

which gives the desired conclusiom when substituted in (3).}

A generalised form of Steimke's Temma is an easy consequence
of the transposition theorems.
Proposition: Tet X,Y be normed spaces with A€3B [X,Y]
having closed, complete range. ILet S<X be a closed convex
cone with interior. Then either (1) or {(2) is solvable but
not both. -

(1) k* y'e 5%/ ¢ o

(2) Ax = Oy xQS?

‘ . +  _+

Proof: If {2) has no solution then for some s &S /{o}%

s +a A= 0

. + +_ +

or equivalently A¥(-a ) = s € S /{05. If (1) and (2) have
solutions y' and x respectively one has

o= tax) (y') = (4 y1)(x) So.k

n Rn a derivation of Tucker's Theorem {Mangasarian (1969))

is now an easy corollary.




Chapter Four

SUBGRADIENTS, TANGENT CONES
AND LOCAL SUPPORTABILITY
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-1
-1

Subpgradients, Tangment Cones and Local
Sunnortability

Definition: If f:X -3 Y and S is a closed convex cone

in Y then the subgradient gsf(x)‘at x € X is the set

of linear continuous mappings Z:X —2 Y satisTvyving
() fly) - £(x) > 4 2(y-x) Vy e x.
When asf(x) is not empty £ is said te be subdif-

ferentiable at x. If it is unambiguous gsf(x) will be

writtehtaf(x).‘ f is said to have supergradientdgsf(x)
: | 7

at x if -f has subgradient gsif(x).

Proposition: Let S be any closed convex cone and I:X 7Y,

Then:

(1) a Sf(x) is a convex set in BEX,Y] and is closed
in the weakloperator topology.

(2) T s -_—>ng C st,

(3) u e s = U+gst 3u+f.
Proof: These all follow directly froni D].E

The notion of subgradients originates in the study
of convex functionals {(Rockafellar (1970,a), Fenchel and
others) and theilr importance arises largely from the fol-
lowing composite theorem. It is stated in R” but retains

much of its validity more generally.

Theorem: Let {:R" — R be a (proper) convex iunction,
(1) TFor x & domf gf(x) = b;
For x € ri{domf) grf(x) # Q.
(2) x € (donf)®<=>8r(x) is closed and bounded

and non empty.
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(3) ajf(i) is everywhere single valued on
domf <=y 08 (x) = {£'(x)%. 1

In this chapter a few existence fheorems fer sub-
gradients of convex functions with respect to S are
given, These are followed by some tangent cone proper-

ties associated with subgradients.

Proposition: If £ = X — Y is convex with respect to 3,

a péinted convex closed cone and f’{x) exists, then

fe1 (Gt = 95(x).

Proof: Now

ﬁl_i;mg fo-.Jf th1): - £(x) - (f'(xo)) (1)

and since for T (fasf(x) and t > o

f(x + tﬁgu f(x) _ T(h) € s

one has{%r(x) - fkﬁ) € S for all h € X.
This means that (£'(x)-T] (n) € sN- s = {o{for
all h and £'(x) = T.}

From no@ on {f'(x)} and f'(x) are identified.

When X = R” and Y = R the existence of a single
valued @ £(x) is also sufficient for f'(x) to exist and
equallaf(x). This and most other proverties of sub-
gradients rely on relationships between support hyper-
rlanes and convex sets. Since these do not appear to
have natural extensions to planes of grerater deficiency

it seems unlikely that much can be szid in general about

subgradients of convex Tunciions.,




{51

(6]

One case +in which the situation is.radically dif-
fereﬁt_;s when Y is a recal sequence spéce and S is the
co-ordinate cone. In this case £ is convex exactly
when each co-ordinate is convex and (*) ol f1] is satias-
fied by a function‘lefzggexactly when each Zi satisfiés
(%) for the corresponding real valued fi' The situation
can then be read off from r2].

Some propertieé which hold more generally are given

below., A few preliminaries are necessary.

Definition: If AC B and B< R are convex cones then

A will be sadd to be polygonal with respect to B {denoted

ApB) if there is some m by n matrix K with x €& A<=y Kx€B

Proposition: If ApB.and K-is_surjetitive then

y+6 _A+ PR y-z» - I{Tc+, cfE B+.
Proof: If vy € AY then y'(x) > 0o VYx ¢ A. Thus
Kx € B =3 v (%) » o.

By the Farkas Lemma ([3.6]) y+T = c+T K for some c € B'.]

Proposition: (1) ApB, BpC = ApC.

(2) Suppose A and B and Pointed and
ApB, DBpA. |
Then, XK of definition 4] is invertible.
Proof: There are matrices K and L. with X mxn, L nxm and

X € A Kxel; x¢€ By Lxe A,

Q

o

N

Since A is pointed Kx = 0 € BNA-B<= x € AN-A =
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(8]

Similarly since B'is pdinted Ix = 0o = x = o0, This in
turn implies that

rank X = n £ m = rank L ¢ n
Thus m = n and since a sguare matrix of full rank is

invertible K(L).is invertible.l

Proposition: If ApB and A and B are related by an in-

vertible K
then  x égA fx)<== ¥x & aBKf(x).
Proof: g(h

) %, flx+n) - £(x) &
xx(h) >p Kf(x + n) - Xr(x)
since ApB. DBecause K is invertible,when

;(h).b g Kf(x + h) - Kf(x)

then ; = Kx for some Xx & R® and

. X(n) %, £(x + n) - £(x). 1

Since, as was remarked above, the subgradient of
a function f:R" — R with the orthant ordering is com-
pletely determined by iis co-ordinates' bhehaviour and
subgradients [7] only extends this result to any closed
conveg cone in R? generated by n distinct half spaces,

i.e. -~ generated by n linearlyrindependent constraints,

- . m n .
Proposition: .Let f:R —> R be convex with respect to

a cone 5 which is specified by x € S &> Kx has each

: 2
. . . . . Tl
column non negative for an invertible matrix K C RO,

Then all the properties ofgf(x) asserted in [2] hoid

for gsf(x).




o

Proof: x € ri{domr) <=Kx ¢ ri{domKf) since XK is
invertible. Similarly x £ (domf)o ¢@>Hx_e(domhf)o.
All the conclusions now follow from the above dis-
cussion except for the boundedneés.of gsf(x) which
follows from

nx <0 e

and from [7] with B = ™", 1

Proposition: If all hypotheses sre as in Eﬂ and

%Sf(x) is single valued then gsf(x) = £1(x).

.

Proof: This also follows from the previous discussion.j
It is possible to extend the result in [8 so that
the cone S is generated by n + 1 half-spaces,

Proposition: Suppose all the hypotheses of Proposition [@

hold and that S, = Sn {x I a(x) b3 o§ then 981f(x) is

non empty on ri(domf).
Proof: £ is supposea to be convex with respect to S1
and hence with respect to S. Thus'HE.z (51,...,;n) =

K_1(;1""’§n) € gsf(x) when x ¢ ri(domf)' and
(?1,-..,§n) e JKf.

_.rIf the rows of K are denoted by 51,...,gn then the

a. are independent and a = r.a + F T A T.i...,7. € R,
i 171 nn 1 n

Since, by a theorem of Rockafellar {(1970,a),

(}) :ég(x) +%h(x) = g(g + h) (x) when x € ri(demg)N ri(domh)




[11)

&4
re

this also implies that

(2) V(g - n)(x)C Fg(x) —n(x) when g,h, g-h, are
conveX.

(i) and (2) mean that

(3) Dar = g(r151f+...+r‘ngnf) < r19§1f+...+rnagnf

since gf, gqf,...,gnf are all convex;
By the previous results daf(x) Z ¢ when x & ri{domf),

Let ¥ € 4ar(x). Using (3)

Yy o= r1y1+...+rnyn yié;g aif

r Kz .+ +r Kz = 32 .
1 1 n n

Then Ez(h) {af(x + h) -af(x)
and from above gkf(h) £ gkf(x + h) ~ gkf(x).

Thus KIE 6:9K1f(x) where K1 is (K
| N N

and Z égs fx). |
o
This argument cannot be ektended inductively since
there is no guarantee that the vectors chosen from (3)
would agree-for two different a and b. Illowever, as an

easy- corollary one has:

L —
Proposition: If 5 = 'ixl at(x) 2 0, t & T§ and there

are a; ;...,a

then Bsf(x) £ @ if x € ri(domf).
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Proof: (2) guarantees that the extra functionals in
5 are irrelevant.,}

In particular (3) of the proposition in ﬁ] guar-
antees that for any cone Sé containing S in [@ . [1@
or ﬁ1]

95 f(x) £ & when x &£ ridomf,
z .

For the remainder of the Chaptef it will be assumed
that £ has a non trivial subgradient at the relevant
points. From the previocous discussion when I is convex
this is at worst g requirement that fL(x} exists and

if often weaker,

Tangent cones and subpgradients.,

Proposition: Let f:X - ¥, Then x is a strong winimum

for £ with respect to S if and only if O € gsf(x).
Proof: = £{y) - f(x) € S ¥ x ¢ domf if x is a minimum,
This means O GE)Sf(x). & 1If 0 ¢ sz(x)

£(y) - £(x) >4 0(y - x) =0 Vye X

and x is a stirong minimum, |

Pfoposition:_Let f:X — Y and let x be a strong maximum

for £ ever A with respect to 5, Then for any Z € st(x)

-Z [wP(A,xﬂ C - s,

Proof: Let 2h(xn—x) — h € wT{A,x). By assumption

0 Z,f(xn) ~ 0(x) ¥ Z(x_ - x) since x€ A

1
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- x) =Z A (xn - x) € - S since )n'z 0.

Thus ré E(X n

n
By definition Z is continuous, hence

Z(n) = lim EXn(xn - x) &€ -8,

since S is a closed convex cone and thus weakly closed d

[1@ Proposition: Let g:X — Y, S be a closed convex cone in

Y and Z Eﬂgsg(x). Then z wT(g—1(~S),x} C pP(-5,g(x)).
Bzggiz.let h € wP(g_T(-S),x) Then h = wlimhn where hn =
ﬁh(xn - x), g(xn) € - 8, x, —x and }n » 0. Since g is
subdifferentiable

N, Telxy) - elx)] ¥ Zn).
For each n, the left hand side belongs to 3h(—8 —g(x))

and thus for some net isn% in S

Z{h) = w Lim (%.Eg(xn)—-g(}c-.)—sn] %&?‘(_S ~g(x4))

By [2.12] this last set is P(-S,g(x)).{

DB Proposition: Let gEX -3 Y, Suppose g has a supergradicnt

at X with respect to a closed convex cone 5 with interior
and suppose g_T(—S) is convex., FThen if there is
z Gésg(x) and ho <« X with
| (1) Z(n) + alx) & - s°,
1t follows that
(2) h € P(g_q(;S),x) whenever E(h) =3 P(—S,g(x)).

Proof: Suppose Z(h) &€ P(-S,g(x)) then there are

)n % Oys_& S with -s_ -3 z(x) such that




gy

r}\1:1(—-5n—8(>€)) ~> Z(n).
Let ht = h + tho 0O <t < 1, Then
E(ht) + tgl{x) < Z{n)

and for n sufficiently large

f(ht) + teg(x) (q>ﬁ(*sn ~-g{x)) K —)hg(x).

Since Z &£0g8

———

hY
x}
g{x + rht) ~g{x) < -r()h +t) g(x) , ©> o0,
For © < T, the right hand scalar will be larger than

1
—% and

e(x + hn,) < da(x) € o0,
Thus x + rh, € gui(—S) or h G.r_1(g_1(—8)~x) which is

contained in P(g—i(—S),x) sinqe g—1(—S) is assumed convex.
Letting f — 0 one has h ¢ P(g-1(~S),x).l

The condition that'g“1(—5) be convex is satisfied if

g is convex with respect to S. In the terminology

of [2.36] fi5] says-K(E) is contained in P(g—1(—5),x),
except thgt Z need not belong to E:.

The last four paragraphs have partially illustrated
the relationships betweeﬁ tangent cones and subgradients.
They will be used in combination with various other rc-
sulté to derive necessary conditions for constrained
minima, They are rather unsatisfactory, though, since
both Yﬁﬂ and [151 require supergradients Tor minima
rather than subgradients. This will be discussed further
in the next chapter in the sections on one sided deri-

vatives and stationary point thecorems for convex functions,




l.ocal Supportability

ﬁé] Egiigiiigg: A set AC X is locallwv supnortable at x
if therc is a néighbourhood N of x and a continuocus
linear Tunction ut such that u+(x)$:u+(Y) Vye ANLN,

By a theorem of Valentine (1964) if A is locally
supportable at each boundary point of A and A i1s con-
nected with interior then A is convex.

In the pro@fs of [ﬁj] to [16] it is apparent that
it would suffice Tor the subgradient inequality to
hold locally. This suggests the following genceraliza-
tion which has been investigated for real valued by

Bazaraa et al.(1970).

[i7] Definition: f:X — Y is locally supportable from below
at x with respect to S if there is a 3 é—B[},Y} and a

ﬁeighbourhood N of x such that

£ly) - £(x)) ¢ Z(y - x) VYyen,

DS] Theorems: (Bazaraa(1971)). For a continuous funcfion
£:R" - R, f being locally supportable from below at
x by Z-is equivalent to any of the following
(1) (x, £(x)) € pd{Epif N N] for some neighbour-
hood N of (x,f(x)).l o
(2) (-Z, 1) eP™( @mﬁi‘ﬂ Nj, (x,f{x)) for some
neighbourhood N of (x,f(x)).

(3) Epi £ is locally supportable at (x,f(x)).f
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With the appropriate interior conditions on
Eﬁpif N NI the theorem can be extended to any convex
domain space X. When f is no longer required to be
feal valued the same problem that occurs for subgradi-
ents occurs here, in that the type of equivalence given
by the last theorem seems unobtainable, jThe eguiva-

lences do suggest the next two propositions, though.

[1§} Propeosition: 1 X is a normed space and f:X —3 R satisfics

(1) limsup f(y) - f(x) S o~ s
Yy = X Iy - x|

(2) x maximizes £ over A,
(3) (-%,1) € wP™(Bpif, (x,£(x))),
then
Z e wp'(a,x).
Proof: Let h A0 < wT(A,x). As usual hn —3> h where

hn = >h(xn - x), x € A I and')n > 0, Using

(1) there is a subsequence of {xn? {which will not be

distinguished notationally)with

mkn f(xn) - f(x)

o > > —- M ny n_,
P W T oXy o
Since h_ — h, A 1l x_ -x}{ is bounded and
n n n.
kn = }h(f(xn) - f(x)) must also be bounded and has a

convergent subsequence (which again will net be re-
labeled) with ko — k.
Then

(h,k) = wlim >h(x#-x,f(xn) - £f(x)).




120]

Thus  (h,k) & wP(Epif, (x,f(x)). Using (3)
z{n) < k. 7
Since f(xn) ¢ £(x), E €0 and Z(h) ¢ 0. Hence
-z & wT+(A,x)‘= WP+(A,X).I.
Condition (1) is guaranteed by local supportability

while condition (3) is wvery close to ﬁB] (2).

Propesition: Let X,Y be reflexive normed spaces, Sup-

pose g:X —» Y is continuocus and that B is any set in Y

containing o. Suppose the following conditions hold,

(1) limsup _ U g(y) - glx])i < ©o
v X Wy - X i

(2) 3 Z ¢ B[X,Y] with
(Z, -1) [wP(Bpige, (x,e(x)N1C wr(B,e(x)).
Then 2z € w& (in the notation of [2.31]),
Proof: Let b € wr{g~ ' (B),x). Then n,o=(x -x)—=n

with x_ — x,:g(xn) € B and “knj; 0. As in [19}{1) can

be used to derive the existence of a subsequence (not
relabeled) of )h(g(xn) - g(x)) tending weakly to k.
(This uses the rdlexivity of ¥ and the weak compact-

ness of the unit ball in .a reflexive space.)
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(h,k) & wP(Bpige, (x,g(x))) since (x_, g(x_))< Epigg.

Since g is continuous
ko= wlin Oy (s(x)) ~a(x) € we(3,8(x)).

Using  (2) Z(h) € k + wP(B,s(x)) C wP(B,g(x)). Thus
= -1
z2(vI(g” (B),x)) C wP(B,g{x))

and since Z is supposed linear and continuous

Z(wp (g™ (B),x)) T wP(B,e(x))

#s desired, {




[21]

3

[
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This last proeposition illustrates the problem
associated with (local) supportability of epigraphs when
f is not real valued. It éeems necessdary to impose
rather strong conditions like (2)'which-will be easy
to verify on the line when I = 1 but are not so con-

venient in general,

Lxamples: -(1) Let C C R™ be a convex set and let
£:R” —» R be defined by f(x) = 0 x& C; f£(x) =% x £ C,

Br(x) = 12| Z(z - x) <€ 0 Yz ecl=(c - x)".

(2) f£{x) = x3 is a reazl valued differentiable
function which is not lecally supportable at O,

(3) The duality map J of a Banach pace X into its
duai X' defined by

J(x) = %x'e X" xt(x) = fix 4 xtvy o, uxt =%l£'H}
is thé subgradieﬁtVof‘the-convex mapping g(x) = %&Ixﬂ 2.

In a Hilbert space J is just the identity.

The last result of this chapter gives a simple
necessary condition for a set E to be pseudoconvex at

point x. ([2.5])-

Proposition: E €X is weakly pseudoconvex at x € only

if every hyperplane which supports E locally at x sup-
ports E globally at x.

Proof: Suppose x'& X! is such that for some neighbour-

hood N of x x'(yjéyx‘(x) for all vy « N E, Then if




h & wT(E,x)

- "™ B N . c o
h n(xn x) b where x_  — x,q;ng

C E, \_ 0.
n

- - ' " _ ~ o ' . _
For n %D, XnC,N gnd X (ln X) 6’0' S}nce x' is con

£inuous and linear

xt(h) = wlim x'(hn) = wlim u}nx‘(xn - x)2 0,

Thus x' € wIT(E,x) = wP (E,x).
Suppose E*isweakly pseudoconvex at x.
y - X e.wf(E;x).
Thié together with -x'€ wP (E,x) gives

x'(y) > x'(x) ¥y e E.|

Then 1f y £ E

30




Chapter Five

FIRST ORDER CONDITIONS
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This chapter is concerned with first order necessary and

sufficient conditions for the optimization problem

(P) = min £(x)} subject to g(x) € 3, x €C
where £:X—>Y, g: X-2,BCY is any set as is C ¢ X,
Min:imi%ation is taken with respect to a closed convex cone S cY
and it will be indicated whether the nd_nimumr is weak or strong
in each case. X, Y, Z are Hausdorff locally convex spaces unless

otherwise noted.

Notation: A, the set of feasible soluticns of (P), is defined by

A= {xl‘g(x)é B,x&_C}'.' ,

A will denote the inverse image of B under g
A= §{=x|dx)ery,

g will be called the constraint function,

f will be called the objective function.

Section cne: Fritz John Conditions

The first secticn of this chapter is restricted to some
generalizations of first order neceSSary.conditions'for (P) in
which g is subject to no 'constraint' gualification. The basic
theorems generalize resuifs of Fritz John (1948), Mangasariamand
Fromovitz (195?), Nagahisa and Sakawa (1969) and Zlobec and Massam
(1973). The sets S5, B wiil sometimes be supposed to clesed

corvex cones with nonempty interior., Thenthe problem will be

denoted by (Q) and written as

(¢) min f{x)}) g(x) € - B {or glx) -SBo)- x € C.




(2]

Such theorems are generally called Fritz John {ype conditions.,

Theorem. Suppose X is a weak (local) minimum with respect to
s for (2). Suppose f, g are compactly‘ Gifferentiable at x. Then
+there exist p+e S+, q+é§. B+, not both zero, such that
o't () + g (x) & PC,x)  o(g(x) = o,
{72 | 3n e ne,x) with (£ (00 € )
(g (xXn) € 52 §
{(y,z) 1 y &€ -8, z€ -Bz .

M and N are closed convex sets and N° % §\.

1]

Proof: Let M

N

]

. Suppose that ¥ {1 N° § &, There then exists h € T(C,x) with
Fa 7z,
(£ (x)}b) € -8° and (g7 (x))(n) + &(x) € -5°.

Let h :?’\n(xn - x) —h where x € C, x ~3 %, }‘n}’ o. By the
definition of the compact derivative

. - - £, \ o]
(1) M ex) - £ = £z D) - £(x) (e ())n) € -5

Ny

Thus, for n ?,no, ”)anf‘(JEn) - f‘(x)] € -5°, since 8° is a cone

(2) (=) < ()

. Moreoever, similarly

, ;-
(3 NG - &)+ alx) = (e (0)(h) + alx) € 7.
For n 7 n,
o}
HElx ) € =87+ (N - 1)elx) .
Since g(x) € -B, (')\n -1) g(x) € -B for n > nZ(Since h £ o,
r/\n can be assumed convergent to oo ) and
-1 e o

(1) a(x) € N (-2 -B)C-B.

Examining (2) and (4) one sees that for n ), ag

f{x ) < £f(x), g(x)) €-B, x & C
which contradicts the weak minimality of x for (Q).

This means that X N NO = b\ SO th.at the Fahn Banach theorem




g

(3
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can be invoked to assert the existence of (p:c‘f)#o & (Y’,Z’) with
p'(y) +a%(z) % p(8) + ' (®)  (y,2) € W5 & 57,0 € 2°.

In particular p+ E;'S+, q+ & B+ and

(5) U ENM) + P )M + qalx)) % 0 ¥n € 2(C,x)

Letting h = o one sees that q° {(g(x)) ) o which in conjunction
with g(x) &€ B, g7 e BY gives q™{g(x)) = o. f‘inally, since
g (g(x)) = o and T4C,x) = P7(C,x), (5) gives the desired conclusion, |
The proof of the following theorem corresponds closely to

that of [2]. Note that X is implicitly a seguential space

(2.a3]).1

Theorem: Suppose in addition to the hypotheses in LZ}, f and g

are supposed boundedly differentiable at x with f (%) and g“{(x)
conpletely continuous. Then there exist p+e S+, q+& B+ not
both zero with ‘

p (£ (%) + ¢ (g(x)) € wPY(c,x) ' (elx)) = o.

Froof: The relevant lines (1), (3) follow from the fact that

. {hn‘% is now a weakly convergent net and the argument in [2.26]

. end [2.0). ]

Remarks: . (4) Theorem [2] was proved in Banach spaces for real
valued £ by Nagahisa and Sakawa, and was sketched, with an incorrect
statement, by Zlobec and X¥assam (1973) for convex spaces and real
valued £,

(2) In return for strengthened differentiability assump-

. 5 . ' e . +
tions [3_‘ gives a stronger necessary condition since wF (c,x) C

+
P(C,x) and they need not be egual.

The next results are concerned with the specific case in

vhich C is the null set of a mapping h. That is h: XV and




[5]

c = {x lh(x) = o?)- = N(h).

Theorem: Let x be ‘a weak local minimum (Q) and suppose that
Theorem

h: X —W is compactly differentiable at x with X f‘ﬁlly complete
and W barrelled. Suppose further that h'satisfies the following

regularity condition

(1) P.(h’(x)) is closed in W, .

(2) If R(h(x)) = #, then N(h'(x)) = B(¥(R),x).
Then there are p+€- S+,q+ e B*',*..v+ < %’ not all iero with

Ex) + a g (x) +w(a (%) =0 a(g(x) =o.
Moreoever, in case (2) both w and {p*,q") can be essumed non
ZET0s
Proof: By assumption R(h/(x)) is closed. If the range is not W
then there is (by Haan—uanach) some W' & 'ﬁ'l/ { o%- wifh
W+((hI(X))(y) = o \fye X. In this case p = q = o and the

given w' suffice in the conclusion.  Otherwise let p+,q+ be as

in P and define

() = p((£7(:))3)) + (& N

" Using [2] and (2)

v € P(C,x) = N(h'(x)) D K(y) Y o-

411 the hypotheses of the Farkas Lemma [3.6] are satisfied and

one can deduce that
K(y) +w((2'GNG)) = o Vyex,wio

which gives the desired conclusion.

Theorem: Suppose in [5] f,g are boundedly differentiable and

, Ay

b (x},g/(x) are completely continuous')the regularity condition
{2) can be replaced by

(2 1f R(H(x)) # %, then 1(r'(x)) = wF(N(n),x}.




i

proof: This is as in [5] using X}] rather than [2]. i

The theorem of [ﬂ s [61 generalizes results of Craven (19?0),
(1972) and Craven and Mond (1973). The demonstration of this

relies on the next definition and proposition.

Y?ﬁl Definition: A continuous iine.ar map B: XY Z between Banach spaces
55 said to be adequate (Craven (1970)) if |
(1) P(B) is ciosed in 2,
(2) If R(B) = Z then there is a continuous projection q

of X onto N(B).

18] Proposition: If h: X —» W is continuously Fréchet gifferentiable
at x and h/( x) is adequaﬁe “then h satisfies the regulerity condition
of Theorem [5].
Proof: (1) of Eﬂis the same as (1) of [5] . Suppose that (2)
of [71 holds. The image then satisfies the hypotheses of Halkin's
“"correction” theorem [2.37] with T = (1 - o)X, Using [2.39]

M (%) = P((h),x). 1 |
Note that if W is finite dimensional n/(x) need only be assumed

to exist since one may then apply [2.38] . E

[9] Proposition: If h: ¥ W is continuous and affine then
=) %) = 5(a’(0)

Proof: This folleows from the fact that h/(x) exists and

h'(x)(u) = h(u) - h{e) x,u €X.
This means that when (hl(x))(u) = Oy h(u) = h(o) and
h(x + tu) = h(x) + t{h(u) - n(o)) = n(x)

Thus when x € N(h) and (a{x)){(u) =0, u e P(N(h),x) since




ko]
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[12]

i

, 4 ) s . .
g = 1im n (x + A x). The opposite containment is standard.{

Theorem: (Craven and ¥Yond (1973)). This is ES]'with Y =R, X and

y |
W Banach spaces, f (x) and g (%) Trechet and h continuous, affine

. / .
and open or continucusly differentiable with h (x) adeguate.

Froof: This follows from [5], [é} and [91.!

The next results 1isté some other properties of adequate mappings
which can be of use.
Frsposition: (1) In-[Y] if R(B) is finite dimensional or X is
a Hilberf space then a continuous projection qr X 2 H(E) exists.

' (2) If h satisfies the conditiéns of iBE then vhen
h'(x) is surjective there is a bijection T of a neighbourhood X
of o in h’(x)_i(o) onto a neighbourhood U of x € N(h) with T and
7' Préchet differentiable at o and x respectively.
Proof’: (1) follows from the fact that projections in Hilbert space

are continuous. (2) is proved in Craven (41973, submitted), |

A generalizaticn of [51 which utilizes a condition similar to the
Guignard constraint condition ( [167] ) is given by the next
result,
Theorem: Suppose everything is as in [5] with the provision that
(2) is replacedzby (2/)

(27) R(n(x)) =¥ impiies N(h{x))N ¢ = H¥(hn),x)
for some closed convex coné &{ € X) with interior.

Then there are p+, q+, % a3 in [5] such that

p (e () + ae (%) + W () € 7, o (alx)

i
o}

W)

il

Froof: In the terminology of [5} one has (when R(h/(x))

yE€G, (W(x)y) =0 = x(y)>o.




[13)

Thus there is no solution to -
I - .
(R (x))(y) =0, Kly) <o 3 y &G,
The transposition theorem [}.10] applies since h,(x) is open and

[zp% (e 1) + r & (x) +#' (N ] () 20 ¥y €6

for wi € W', r % 0. This is the desired result.}

when B = § in (Q) Craven (1973, in preparation) has proved,
using the concept of adequacy, an extension to [1 ‘1] « Since this
condition on g is a constraint condition generalizations will be

given in the section on Kuhn-Tucker type resulis.

Converse Duality

The following theorem generalizes results of Craven and ¥ond
(1971) and Mangaserian (1969)using the result of [5]. The proof

method is taken from Craven and Mond.

Theorem: Suppose Xband 2’ are reflexive fully complete spaces and
X :Z are barrelled spaces. Suppose f: X >R and g: X2 Z are
twice compactly differentiable and that B C€Z 1s a closed convex
cone with (E")® 4 §. ZLet (D1) (Dz) denote the preograms

(D't ) min f{x) subject to g{x)& -B

(DZ) max f£{x) + at(g(x)) subject to ¢ & B+,f/(x) + g (g (%)) = o

Suppose (,xo, q;) is op‘timal for (DZ) and that

rx /” + ﬂ. . " ~

¥*x = [ (xo) +ag (Ko)] has zero kernel,
Then if (i) f is pseudoconvex and (ii) Q*o+g is quasiconvex or
B = g_1(—B) ias pseudoconvex at X, X is optimal for D, and
the optimal values agree.
Proof: Suppose (xo,q;) is optimal for (DZ). Applying [5] to

(DZ) one has u y, 0, Vv ex”-% qe (39" =B, not all zero, and

$a]

-1




(1) u [f,(xo) + q;.gl(xojj +¥*(v) = o

(2) ualx) +(elx))Nv) +q=o0

(3) q;(q) =0,
These are just the necessary conditions of [_5] rewritten. Note
-that [S] can be applied to (DZ) since BY has interior and
f'zxé) + ofa{x,) satisfies the regularity condition of 5]
(Craven (submitted) claims that the condition on ¥ is sufficient
to prove adeguacy of f}tko) + q;g,(xo);if this is not so then
_the condition needs ﬁo be added.)

/.
. - . . 7 + o = .
Since (xo,qo) is feasible for (DZ) f (xo) + qo(’fi‘ (xo)) ©

(1) says then that ¥*(v) = o which by hypothesis means v = o.
If w = o (2), in turn, forces q = o. Since all 3 cannot be

zero u # 0. (2) again implies that g(xo) = 1/uq &8, (3)

\ + -
gives qo(g(xo)) = 0.
ALY s /( F) LY PR A s
(). (£ (2 N(x - x ) =-(q alx ))(x - x )
By hypothesis either q;g is quasicon\rex,which’mith
q;'(g(xo)) = o }/q;g(x) when g(x) € -B, gives
° .
(5) (= )z - %)y o Vxe DN
or N\ is pseudoconvex at X, e This means that

(g’(xo))( A - xo) C_AP(-B,g(x:)) which with q;e_ Y and

q:(g(xo)) = o gives (5) again. Thus since ' is pseudoconvex and
(5) heolds one has

£(x) % £(x ) it x e N (glx) € -3).
Because x_ is feasible for (D1) x is optimal. Moreoever, the
extreme values agree because

£(x,) + ai(a(x,)) = 2(x_) |

L '
ijhj Remarks: (1) q;g can be pseudoconvex withoutl [3 being pseudcconvex

at X, and conversely. Convexity guarantees both conditions.
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(2) Craven and Y¥ond's result (1971) is given with the hypo-
- +heses that £ and g are convex.

~ (3) It is clearly possible to use XKuhn-Tucker type results
to prove [13].

Section Two: Real valued objective functions

Kuhn and Tucker (1951) were the first to use the notion of
a constraint qualification on g to guarantee the existence of a
multiplier for the problem (M).

(¥) min £ (x) g'j(x) >/,o,...,gn(x) 7 o"hn+

1(}:) = 0,000,
hp(x) =0 ‘ o

where all the functions are real valued and are assumed to have

continuous first partials at any optimal point.

bs)

Definition: Xuhn-Tucker constraint condition. Let x € R° satisfy

the constraints of (¥). The constraint cualification is said

to hold at x, if for any ¥ % o with

(8] () 2o Vi€ {1 | g =of

- (b)) =0 5=

N+ 1 sea3p

¥ is tangent to an arc K ( © ) differentiable at x and contained
. . s

in the constraint region. That is A(c) = x, «{0) = y and

L (@) satisfies the constraints for @ < 91 .

Fuhn and Tucker proved that if x satisfied this constraint

condition

V4 L 7 D / )
£ {x) - 2_ w g (x) + z zih (x) = o
1=t i-n#

for some ui )/ o) 1=t 60 with uigi(x} = O




e}

100

f

In other words, in the terminology of [}] the multiplier

* agsociated with f could be assumed positive. Varaiya (1967),

Guignerd (1969), Zlobec (197¢) and others have considered

constraint qualifications for the problem (P) which are given in

tangent cone terms and which generalize Kuhn-Tucker's conditien.

when £ is no longer real valued certain problems arise in the
attempt to produce an analogue of the real results. The results
in this section assume that f is real valued and give analogous

results to those of Guignard and Zlobec for weak cones.

Theorem: Suppose X is a minimm for (P) with f,g boundedly
differentiable and f real valued. Let

vl = {ht x | n= utg (x),u€ WP+(B,g(x))-§—

= 4y | (2 1)) € we(B,elx)] -
Suppose wH is closed and.G is a closed convex cone such that
WK NG C w(a,x) and wK' + ¢* is closed, then there is some
ut e w2 (B,g(x)) with |

£(x) - u'(g’(x) € 6.

The condition is also sufficient if

(4) ¢ is a closed convex cone with A - X C G,

(2) A is weakly pseudoconvex with respect to N at x.

(3) £ is pseudocorvex over A at x.
Troof: Guignard proved the necessary condition for strong tangent
cones and Frechet derivatives., Propositions [2.26]and P.ji} provide
the only alterations necessary in the proof. The method will be
shown later when a similar result is proved for more general
objective functions. The sufficiency condition will also be
vroved more generally later, (2) is in fact more general than

- Iy 1
Guignard's condition which was A or LX is pseudoconvex at X. ({2.5]) }




[17]

bl

1]

If the closure conditicns are not assumed in 16 the
S

following asymptotic versien holds.

Theorem: In the terminology of chapter 2 suppose x € A and

{1) G € X is a closed convex cone with E e wl and
wK(E) NG Cwr{4,x)

(2) D e wPT{4,x) .

Then L & 'wP+(B,g(x)E + et
Froof: x £ wK(E) N\ G = D(x) > o by (1) (2). Thus

5(x) € w(B,&(x),%€6 > D(x)o.
Thia is the same as

B(x) ¢ wp'(B,e(x))7, % €(¢MT 2> D1x)>o.
By a proposition of Zlobec & Massam (1973) this last line is
equivalent to the conclusion. In fact it relies on a separation
argument which is independent of the nature of the closed convex

conesd. ‘

Corollary: If x is a minimum for (P) where f£,g are boundedly

differentiable with f real valued, then if wi(g () NG ewr(4,x)

£(x) € wp'(3,g(x))g’(x) +&%

Proof: By [2.26] £'(x) e wE(4,x) while by [2.33] &'(x) € w&§

Froposition: Suppose that the sufficient conditions (1) (2) (3}

of [ﬁé] hold and that for some closed convex cene G

' (x) € @ (B,a(x) ¢ (x) + 6"
Then x is a minimum for {P). |
Proof: This is similar to an argument in Zlobec (1971).&
Lzain it will be shown more generally later. It sezms worth

. < . s .t + s
emphasising that conditions for wi + G to be clesed are given
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[20)

(2]

[221]
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in [5.15] and (5.17] .

Section Three: Conditions for weak minima

If x is a weak minimum with respect to 8 it is too much %o
hope that a direct analogue of [161 or l__‘f 7] shoulé holé. The

next generalization is of some help, however.

Theorem: Suppose X is a weak minimum for (P) and suppose f,g

are boundedly diff_e;:'entiabie at x wit'h fl( x)rcompletely continuous,
Then, if wilg(x)) O 6 Cwi(4,x) for some closed convex cone

G, there is p & 8%/ { of witn

>N (x))e w (B,alx))g {x) + 6"

Procf: By proposition [2.26] there is a suitable p’ with

pT(£ (%)) € w2 (4,x). The proof proceeds as in [ 8] .

Fqually,if the closure conditions are met as in [‘I 6_[ one can
actually assert that p+{ff(x)) - u+(gl(x)) € G+,p+f: S+/ { 0% ’

ut € wP'(B,al(x )l .

it was noted in [2.}0] that functions £ with weak minima can
exist for which there is no ecuivalent real problem. The
sufficiency condition of (1 9] can be rephrased to exclude this
possibility.

Theorem: Suppose x € 4 and that for scme p+é S+/{ 0§ and sox

3
o

closed convex cone G one has

(1) pH( £1x)) € w2 (3, a(x))g’ (x) + G

(2) 4 ~x &G

(3) A is pseudoconvex with respect to [5 at X.




f2i)

(&) u'f is pseudoconvex at X.
Then

(P/), min (p'f)(x) subject to g(x) &€ B;x €c
has a minimum at x.

Froof: This is Just [191 for p+f. {

Remarks: (1) [2'11 , [22_1 in conjunction give that if (P) hes a
weak minimum at x that (P/) has a minimum at x when the appropriate
conditions are met.

(2) [20] ,“ [21] ’ T_ZZ] could equally well have been phrased
for strong tangent cones and compact derivatives without f’(x)

in [20} being completely continuous.

The result of [2t] can be related to the Fritz John condition
[ 2}, [12] as follows.
Theorem: Suppose in [21] that (1) K(g/(:{)) = ¥ A ,x) and
(2) P (A ,x) O\ B(C,x) ;P’(A, %) then 3 p+é S+/ %02}-,
ut € PY(3,a(x)) with
p*(£(x)) - u'(g’(x)) € PY(C,x)
Proof: This is just a special case of C21].

Conditions for (1), {2) to hold were given [2.18] and [2.59] .

Remarks: When -B is_ s closed convex cone then [2&](1) is just a
regularity condition on g similar to the one imposed on h in [5].
The proof method of [5] could be applied to [21,.] to obtain a
generalization of Craven's (1973, in preparation) announced result

waich was used in Craven (1973, submitted) for cones B with

EO =§g.
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Section Four: Conditions for strong minima

In this section snalogous results to the Kuhn-Tucker
necessary condition are derived for (P) when x is assumed to be a
strong minimum for (P) with respect to S. In this case the
'multipliefs are no longer linear functionals but are continuous

linear operators.

[}6 Tefinition: T €_B[X,Y] is said to be positive with respect to

two convex cones K € X, SC Y if T(¥) € S,

"~

[27] Definition: The set of all positive mappings of K into 8§ will be

called the maximum cone and denoted by Ef, when 5 = rY x®

is denoted X'. When S = Rn+, x® is denoted Knt

In the notation above g'(x)(Iﬂ & L,x)) < P{R,g{x)) which

ey

was denoted g’(x) € & can be rewritten as gj(x)éif{ﬁﬂ,x)

[283 Positive mappings and maximum cones have been studied by Ritter

yA

(1989, a, b}, The next resdlt of Ritter's is central to the
generalized Guignard condition.
Theorem: {Ritter (1969,a)) Let X be a normed space and Y a reflexive

Banach space. Suppose S # 0 ig a closed convex normal cone in Y and thatl

Kl’KZ’KBzKang are closed convex cones in X. BSuppose that either

(1) Kg % § or (2)(i) Ky has interior relative to ¥y - X,

(ii) KB has a peint interior to K2 or K1
Fa
(111)¥y e ¥7 #(8) = o implies y’= o (S is called

full).

L

Then

P T

- 3 ., 2 3
K, + K, H(K,‘OKZ)_.%

g o T




!

[29] Definition: If B < B[i(,Y], S5¢C Y are convex cones, define

(H)® by ,_
()% = {xex \T(x)ﬁ' s Vre :z}

[30__\ Proposition: If S & § o} is a closed pointed convex cone then
=0 K3
Proof: = Let x& K, then there is a sequence (net) 7x LT K
with x » X. Then N(x )< S and since T is continuous ard S is

closed T(x) € S for any T inK? Thus £ <(x%)%. <« Suppose

L AR R

”

b (_ K. Let,u+ be a continuous linear functional which is non

negative on X but has u (%) = 4. Let Ny) = su+(y_) where

s€ Sf—{ 07:. Then ¢
(x) = su'(X )es Vkek
and T €(X)°. However, M%) = ~s ¢ -5 [ { 0§ and since S is
pointed T(X) & S. Thus Eéﬁ (x%)® and (x®)°<c &, &
This generalizes the standard result for closed convex cones

tnat (¢N)Y* = c.

131] Proposition: Suppose H = {Tg,(x) - B[X,Y] l T & P(B:S(x))s} 3

a then H° ¢ K(g’(x)).

. Proof: Let ¥ & H°. Then (Tg”(x))(7)€ 5 VYT e B(5,g(x))>. |
Suppose (5°(x))(7) & B(%,g(x)). Then there is some u'€ FY(B,g(x)) |
Z with w'((g (2))(5) = 4. |

Let s & S/ { 0% and let My) = su’(y). T belonzs to
P(B,g(x))® ana T((g/(x)}(f) é S which is a contradiction.

Thus (g/(x))(§) € ®(B,g(x)) for any ¥ & H® which is

5% C k(g (x)). |

DRI
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This resvlt can be improved if one imposes cxire conditions on

& and ?(B,g(xoj.

Theorem: Suppose X,Y,Z are Banach spaces with ¥ reflexive.
AReoTed

Suppose that S5 # 0C Y is a closed convex normal cone and

that g’(xo) has closed range. oSuppose also that

(1) R(g'(xo)) = 7z or (2) R(g‘(xo)) # 7 =and

(1) rlg(x )N 2°(Zalx,)) £ 2

(31} S is a full cone.

< ,
Then K~ < H. -
Proof{ Suppcse T € Ks; Then

g'(xo)(h) E-P(B,g(xo)) = 7(n) € s,

The Favkas Lemma [3.8 can be applied since R(g‘(xo))is

closed and

| S
it

. s
=2 g'x ); T€ (2(z,8(x,)) N =g (= )))"-

The nypothescs guarantes tat
e 2(2,8(x,))° + Rlg' (%)),
using [QSIjSO that

m = m . 3
T,= T v T, 5 € P(3,8(x,))

T, € R(g'(xo))L

so that
- t( u
T, = 0.8 (xG)E H. §
. = S - - - .
In particular (B°)°c ¥°C H  and ¥ = H. This theoren

gives conditlons which exclude Zlobed%,(1970) example in vhilch

R(g'(xo)) is closed but H is not.




L

[_-32] The following is a generalization of Guignard's theorem in the
necezsary direction.
Theorem: Let X,Z2 be normed spaces with ¥ a reflexive Eanach space.
Let 8 €Y be a clesed, convex normal cone. Suppose that f,g
are Fréchet differentiable at % and thaé there is a closed convex
cone G € X with G NK CP(A,x) and suppose that
(1) (6N EK)° #& or (2)(1) 6 NK has interior relative to
(¢ NK}-(G N K)
(ii) Some point in G MK is interior to
G or to X,
(4i1) S is full.
Then a necessary condition for x to be a strong minimum with
respect to S :is |
f‘/(x) &(Hs)s L as,
froof: By [2.24] £'(x) € P(4,x)%. By the theorem in [28] and
(1) or (2)
P(4,%x)° < (¢ NK)® = ¢® + &5,
By [31) E°C K and it is clear from definition [28] that
x® c (58%)5. Coilecting results one has

r(x) € c® + (5895 }

[53] Corollary: (1) 1f (Hs)s = H, which is true at least for
(Y,3) = (RLE™), or if T = g’(x) is imvertible, then £ (x) € § + &%,
(2) Ir (1°)® = H = H then for some Te P B,g(x))°

£ %) - Me'(x) €65 1

(3&] The result in [53](2) can be proved directly from the Farkes
theorem of [3.9] if the appropriate interior conditions are

satisTied. These are, perhaps not surprisingly,stronger than




b5

[36]

those in [521 .

Theorem:_(Generalized Cuignard) Suppose X,Y,Z are Zanach spaces
with ¥ reflexive, Suppose S 3 0 €Y is a closed comvex normal
cone and that £,g are Fréehet differentiable with R(g'(x)) = Z.

Suppose that for some closed convex cone G € X

G NK < P(A,x)

‘and suppose that there is some X € Gé with (g(x))(%) e P(B,g(x))?

Then a necessary condition for x to be a gtrong local minimmum
rfor (P) is |
£1(x) - T(e(x))ee®, TerEax))".
Froof: The conditions of the theorem are sufficient to apply
the Farkas theorem of [3.9] to obtain from
hec, (g(x))(n) & BB,a(x) 5 (£ (x)(n) €s
that

£lx) = g (%)) + 1, ,TEHBEX))T, T,&6 . |

Corcllary: If G can be chosen to be X, 3,g(x)) need not have
interior and S need not be normal,
Proof: In this case one can apply the Farkas Lemma [5,6] to
(e(2))n) € H3,gx) » (£ ()n) e s
and proceed as vefore. |
The conditions of [3&] are clearly stronger than those of
(?2] since when % N\ G° and (gf(x))(i) belongs to PO(8,e{x))

X mist belong to XK°N ¢° C (¢ N K)® and ‘52] (1) is satisfied.

Remarks: (1) [321 could have been phrased for weak tangent cones
with the appropriate sirengthening of the differentiability

hypotheses,
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(2) In [ﬁé]’ E* 4 67 closed was required this was guaranteed
for H® + G° in [32] by the interior conditions of 28] applied
to P(4,x%).
(3) If S is closed but not normel one can derive
(e & + &y

as can be seen by inspecting Ritter's proof of [28].

Theorem: (Generalized Sufficiency Condition)

Suppose that f,g are boundedly differentiable in convex
spaces and that for some point x and some closed convex cone G

(1) A-xCG

(2) A is weakly pseudoconvex with respect to A at x

(3) £ is pseudoconvex at x over A with respect to a closed
convex cone S€ Y.

Then if

(&) £(x) &€ wB(B,ag(x)) g (x) + G

% is a gtrong minimum for (P) with respect to S.

Froof: Using (4) there are nets Gn} ¢ 6% and
{Tn% C wH{3,g(x))® with
(5) (£1)y - x) =1in [Tn (ex N -=x) +cly-x )]
Let vy € A, then by (1) ¥y - x €G and thus (6) C—n(y - x) € S,
Now, by (2), A - x < wP{ A ,x). Since g is boundedly differentiable
g’(x) ewl ([2.33)) and (27(x))(y - x) € wHB,5(x)) so that
(7} o (&' (x)y - x) € 8. Substituting (6) and (7) in (5)
(8) (£1x))y -x) =1lims_€75 =5,

Since f s assumed pseudocorvex with respect to S at x over
A (8) yields

f(y) -f(x)&s Vyea

and % is a strong minimum for (P). t




b
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[38]

This theorem clearly remains true if all wesk pseudotangent
cone relations are replaced by strong ones, It is then only
necessary for g to be compactly differentiable as cone uses

[2.32] instead of [2.33].

when Y = R a necessary condition can be derived for (P) directly
from the Guignard type result proved for real valued maps in [‘E 6] .
This is phrased for strong tangent cones.

Theorem: Suppose in (P) that Y = R® and that X is a strong
minimum with respect to a pointed cone 5C R Suppose further
that g sa‘tiéfies the Guignard constraint conditi-on for some convex
cone G. Then a necessary condition for x to be a strong minimum
is

() -ug’(x) & xT(E™

where M = KT with K an invertible mm matrix with rows in 8%

Hy

and T = (ujI P ,un+)T , ui+ c 2(3,e(x)).
Proof: Since x is a minimum for f over A
£(x) e ®a,x)"®
Since S is pointed in Rn, S+ has interior. Choose y1 +,...,yn+
linearly independent in S+,' then
vyt 1x) e P 4,x) £ =1, 0.s,0
Applying the necessary condition of [16]to each yi+f (x) one
derives ui+€ P(B,g(x)) with
(1) yi+(f’(x)) —ui+(g/(x))€: e 3 = 1,ee.,0
Which can be written as
k(£ 1) - MegTx) e ¢"7
or, since K_“ exists, as

£x) - ¥glx)) e k(™). 1




[39]

(403

[M]

r

Corollary: If S = Rn+, K can be chosen as I and one derives
/ ! n+ n+

£(x) -Te(x)ec” , Té&PrB,gx). |
In particular one obtains for (R%)

(1.51) min £{x) subject to g1(x)‘>, o..gm(x)‘.', o, x & Rk *
where f: Rk—% E™ and g+ Rk—? R are suppbsed continuously
differentiaﬁle. ¥inimization is with respect to 3 = K7, Denote
X :
i

= f
\

Ved o r
[ 61)""’5

m

Theorem: A necessary condition for x to be a strong minimum with
respect to E™* is that when x satisfies the Kuhn-Tucker constraint
condition of [ 15} one has

f(x) - 2g’(x)) & HEF ©,0)™5 1 e BE,g(x))".

When f is pseudoconvex with respect to R™* at x this is also
sufficient if A - x < .\ Sx).
Proof: The X¥uhn-Tucker constraint qualification gives G = P(Rk I
The closure conditions of [1 6] are met since all the cones
invol\;'ed are polyhedral. Note that since the spaces are finite
dimensional weak and strong tangent cones coincide. Thus this
necegsary condition is just a special case of [59].
Sufficiency follows from [37] since conditions (1) and (2) hold

because of the choice of G and because Rk+ is convex.l

The last result of this section can be used to recast Fritz

John type results for weak minima in operator form.

Theorem: Suppose G is a closed convex cone in Y and that
+ .
p e stu e PUB,a(x))) exist with

e (%)) - u (g (x) e &%,

e




Then there exist T1 e s°, T, & E(B,g(x))s, T5 e G5 with

PN 2oy L

iy 5 + -
Pmmﬁlhﬁneiﬁy)=Sﬁmﬂ,T5Y)=Su(ﬁ:l5=Tﬁfqﬂ)-

Tz(g'(x)) where 8 € S /{og‘ A

Section Pve: One Sided Derivatives

. One drawback to Zlobec's notion of asymptotic consistency
(see [17]) is that it is necessary for the functions irvolved
to be linear and continuous. There age many functions which are
| not differentiable but which have an associated non-iinear variation

for which optimization results can be framed.

[zg] Definition: Let f: X—>»Y with X,Y vector spaces. The one sided

(Gateaux ) derivative of £ at x denoted d f(x;) is defined by

a*t(x;h) = 1im . f£(x + th) - £(x)
+ ”
t a0 t

[hj'l Proposition: Supvose f: X =Y is convex with respect to a closed
convex cone S and has a one sided derivative at x. Then

a*tlx;h) = “int £f(x + th) - £(x)
t >o0 t

and d+f‘(x;h) is convex and positively homogeneous as a function
of h.

Proof: The convex inequality can be written as

(1) flx + th) - £(x)" » - f(x + rh) - £(x) ty T,
t - r

which is the force of the first conclusion. MNoreoever, dencting
-1
£ o(x + th) - f(x)] by gt(h) it is clear that g, 1is cowex as

a function of he, Thus for o L r 1 and t > 0




[44]

- [as)

(2) rgfn) + (1 =glk) 25 glma+G -0 k),
Taking limits one has the convexity of d+f(x;h) since 3 is assumed
closed. |

Note that this result-includes a type of subgradient

inequality.
£{x +h) ~ £(x) g a‘r(x;h).

It is also apparent that the following proposition holds,
Proposition: If f: X —>Y is quasiconvex with respect to a closed
S and has a one sided derivative then

a*f( % ;h) & -5 when £(x +h) - f(x) € -8, 1

As a partial generaiization of [&5] cne has:
Provosition: Suppose g X > Y is (P) strictly quasiconvex or
quasiconvex with r33pect to S.. Then when d+g(Ix.,h) exists it
satisfies

a*glorh + (1 - 1) K) € a¥glxs k)
whenever d'*;g(x;h) < d+g(x; 1{) and o £ r (1.
Proof: If a*g( % ;n) - a'g(x;x) € =8° there is éome t, such

that for t< to

glx + th) - g(x) ¢ alx_+tk) - alx)
t t

which gives g{x + th) < g{x +‘tI< ) t < t -
Using either of the.convexity hypotheses

g{x + rth + (4-rjtk) L alx + tk) o rH
which in turn gives

dg(x;rn + (1 - o)k ) < a'elxk ).k

The simplest example of a funcition with a convex one sided
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7]

derivative is given by f(r) = |z| for.wﬁich a*f(o;n) = iH .

The next results give some tangent cone relationships for
one sided derivatives. For simplicity the spaces are taken %o be
convex threoughout,

Proposition: Let £: X 3Y have a ope sided derivative at x which

is uppersemicontinuous with respect to S. Suprose x is a strong

(local) minimum for f over A < X. Then vhen A i& convex
a*r{x,b) €S Ve Xa,x).

Ezgggﬁ Since A is convex aﬂd X 1s a minimum over A

fx + ty - x))_2(x) Vyea
and _

a"f(x3- x) S o - Vyea,

Since d+f(x;h) is positively homogeneous in h

(1) &'ty -x )) Yo t o yVyen,

Let h ¢ P{A, x ). Then there is a net hn—é h with hn = tn(xn - x),
t 3 0,%x € A, Using (1) and the uppersemicontinuity of
a*r(x;h), o £ 1im'd+f(x;hn) £ a'f(x,h)

since S is closed, Thus one is done.l

Proﬁosition: Suppose that in the hypotheses of [Aé] that rather
than A being convex f is supposed to be quaesiconcave with respect
to 3. Then

a*r(x;h) €8 Vnea,x).
Proof: Let h_ = )\n( *, -F )R, TS x, x €4, Ay o
Then £(x + ‘t(xn ~x)) % £f(x) for o £t €1 since f(xn)'z;f(x).

Froceeding as before cne derives




-

+ » - — + - \ l
a f(x ; )\n(xn x}) =4 f(x,hnjﬁ S.

Since f is upperéem_icontinuaus and S is closed d+f(x;h) € s

[}_‘_51 Corollary: Suppose in [4?] that d+f'(x;h) is concave in h with

[9]

respect to S. Then
a*r(x;h) € s Yh eP(4,x).

Proof: Since d+f(x;h) i's concave and [l;_?] holds
S es Vi ¢ [(a,%)]

Since d+f{ x;h) is uppersemicontinuous in h

Fr(h)e s VE e [Mmx3 = 54,x). |

Froposition: Suppose d+g(x;h) exists and is convex in h with
respect to a closed, convex cone B with interdior and
(1) 35 ex with ate(xh) + g(x) <o
Then ’ o
§n [a'sCon e H,a(0)§ € B Ax) (A =g
Proof: Let b, = th + (1 <t)i o <t <1. Suppose
a¥g(x,h) € P(-B,g(x)). There is {yn% ¢ =B with Yo g(x) and
r/\n(yn - g(x))> a'z(x;h). Since aTg(x; ) is comvex
a¥glxshy) + (1 - t)glx) < ta%g(x;n) + (1 - £)a"g(xsh) +
(1 - tglx) < ta'g(xsn)
Thus for n > n,
a'g(h) + (1 - Balx) < Ay, -alx ))<= Nelx),

Using the definition of the derivative for r& X,

glx+rh) = a(x) (=N +t-1)alx).
-

Rearranging one has
glx + b)) Cglx) +x(t - (1 + ™ )alx)

Fixing n at D,» if r is small enough r(t - (4 + >‘n)) >/ ~% 2nd
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g(x + thy) < ze(x) Lo.,
This means that x + rht eg-tl(-B) = ~and htﬁ T(A $%) .

Letting t 1 h,»> he XA ,x) <D %) o |

Corollary: Suppose g is actually compactly differentiable in [49]

then X = B A ,x).

Proof: In this case (g'(x))(n) = a"gl{x;h) so that [14,.91 shows that
g (07 (R(-B,a(x) € BB, x),

The réverse cont-ainment was given in [2.52} so that

g’ ()7 (B(-8,8(x))) = Mg (-3),%). |

With these preliminaries one is in a position to prove a necesssry

condition which generalizes a problem of Luenberger's (1970).

Theorem: Let £:X-~3R g: X->Y, BC Y, C <X and let (Pj) be
min £{ x) = 30 g( x) € -Bx €C. Suppose one has
(1) B(-B,8(x))° 4 &,
{(2) d+f'(x;-h) is convex in h,
{3) a’g(x;h) is convex in h vﬁth resPeét -P{-B,g(x)),
(4) h € (A ,x) when d'g(x;n) e B(-B,g(x)),
(5) A is convex or f is quasiconcave,
(6) a*r(x;h) is uppersemicontinucus in h.
Then if G is a closed convex cone with G 1 P{ A ,x) € P(4, X))
and there is some h € G with (7) d+g(x;l_1)'€ - P(—-B,g(x))o a
necessary condition for x to be a minimum for (P3) is
d+g(x;h) - u(a%g(x;n)) >0 Yn € G
for some u’ g P(-B,g(x)).

Troof: Let E = f(r,z)‘ d+f‘(x;h) L, d+g(x;h) -z ¢ P(-B,glx)),

h €




[52]

and F = {(r,z) Ir <o, z € P(-B,g(x)) g
Suppose E NF° # Y. Then there is some h & G with

a*r(x;h) < o, a'g(x;h) € B(-B,g(x))",
By (4) h € P( A ,x) N ¢ CP(A,x). Then using (5), (6) and [45]
or [45]

d+f(x',h) ) o
which is impossible. Thus ENF° = §. Moreo-ver, E is convex
since G is comre:; and (using (2}, (3)) d+f(x;h) and d"g{x;h) are
convex. There is, by the separation theorem for convex sets, a
linear functional z¥ = (F,u’) = o with T ) o, -u’ & P*(-B,g(x))
such that

Fa*r(xsh)) + u'(d*g(x;n)) > 0 Vh et .
If © = o then u+(d+g(x;h)) >'; o \{h &G which contradicts (7).

T can be taken to be 1 and the theorem is established.|

Corollary: With [Pj) as in I:Sﬂ suppose B is a closed convex
cone with interior, that C = X, and that

(1 ), d+f( x;n) 13 convex and uppersemicontinuous in h,

(2)" Either £ is quasiconcave or ﬁ. is convex,

(3)’ d"g(x;h) is convex with respect to B.
Then if h exists with da*g{x;h) + g(x) € ~8° and x is minimal for
(Pj) cne has

w(g(x)) =0, d¥(x;h) + uag(x;n) > o Yhe o for some

ute BT,

Proof: B8ince B C B + g(x) <« -P(-B,z(x)), P(“B:g(x))o 4.
(3) is implied by (3)/ since B C ~-P(B,g(x)).
(3) ana [49] imply (L) while G N B( A ,x) € P(4,x) is satisfied
by G = X since C = X. ¥inally d a(x;h) + g(x) € o is sufficient

to exclude T = o in +the proof of 1151] . [51] thus gives the
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desired result because for B a convex cone

ut e -ig(-B,g(x)) implies u' @ B and uwlg(x)) = ol

4,7 @
[553 Remarks: (1) If X = R; B = -f /13 Y {OYS and g{x) = o is an
example in which -B° = A but P(-2,0)° X E& so that condition (4)
of [51‘5 is weaker than B° 3 A
| (2) If £ is differentiable (2 ) of [52] or (5) of [51]
can be dropped. _ |
(3) Luenberger {1969) states [52] without (2 )l and

d+f(:>ﬁ;h) uppersemicontinuous in h. This can be established in a
dgirect argument but not from [51) -

One also has a sufficiency cordition for one sided derivatives

similar to [37].

[51{] Definition: f: X->Y is pseudoconvex with respect to 5 at x over
A if

Sty -x) Zgo dmplies £(y) % f(x) Vye Al

[55] Theorem: Suppose there are closed convex cones G € X; B € 2 with!
' (1) A - x¢ G,
(2) T i=s pseudoconvex o#er A at x with respe=ct to 3.
(3) There is some u’ € BT with u+(g(x)) = o and
atr(x;n) +u(@'g(x;h)) % 0 Yheo.

(4) u+g is guasiconvex.

Then x is a strong minimum with respect %o 3 for
min £ (y) subject to gly) £g0 y€C
Proof: Let vy € A, Using (1) and (3)
(4) a%e(x5y ~ x ) +u (@ glomy - x )) 0.

1f gly) € o then u (gly))< wlg(x)) = oo (&) and EMJ then
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yield
(5) u(a’g(x,y - x)) = au(aglxsy - %)< oo
Combining (4) and (5) produces a*e(x;y - x})% o Yy e A. Since

£ is pseudoconvex X is a sirong minimum. §

L}

Section Six: Convex Optimization Theorems

Let (P!.;.) dénote

(Pl*) min £{x) subject to glx) £ 50 n({x) = o, x € C where
f: X >R, gt X >2, h: X >W and B is a closed convex cone with
interior in Z. C is a convex set in X a reflexive Banach space.
The functlions ;.'fill 81l be supposed to satisfy variocus convexity
assumptions. The fundamental utility of subgradients arises f‘rgm

the following theorem which generalizes scme results of Fockafellar's.

Theorem: Suppose domf® $ o and f is continuous and convex on
¢ = domf. Suppose g is convex with respect to B, g is continuous
on C, h is affine, continuous and open, Suppese that
(1) 3 x, € C with g(x,!) < o h(x1) = o,
(2) dx,¢ c® with n(x,) = o.
Then a necessary condition for X to be optimal for (PL,) is;
o0& gf(i) + (YR + w+(9h(5:')) 3u+(g(5c') =0
for some u+{- B+, w+e W
Froof: The hypotheses guarantee an equivalent unconstrained
problem of minimizing
Q () = £(x) + u(glx)) + «"(n(x))
for some w & W, ute BY vith u'(g(X)) = o. This is proved in

[6.17].
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By the definition of 1§ (x) oﬁe h;s

o e YR = I (r(x) + u(alR) + wn(E).

f, u+g and w'h are real valued convex mappings which are
(1lower semi) continuous on CO. By a result of Rockafellar's
(1966) or from the general theory of maximal monoione mzrpings
(3) o € 3D + W e(D) + (W) = 24(x).
Yoreoever, h is affine and continuous and thus differentiable, So

(w0 (%) = w5 (%) = w(d R

HE

N
(1) d(w'n(%))

Combining (3) and (&) gives the result.fl

[57] Corollary: (1} When X, 2, W are finite dimensional spaces the

L

5

continuity results are met automatically if c® ¢ (domf)oﬂ(domg)o
(2) ¥hen 3 =R* and z = Rn 3 u*(g(%)) can be

replaced by u( aBg(i)).

Proof: (1) is just [1.53] while (2) follows from the definition

of %Bg.l

Corollary: If B is pointed and g (%) exists u’( gﬁg) can be
used to replace. lé(vfg).

Proof: In this case (4) of [56] holds for u" 2nd g.l

Corollary [57] (2) is the basic theorem of Rockafellar (1570).
There appears to be a generél problem in the extension of [56]
since it seems that ’é(u+g) and u+( ag) need not in general be
equal,

The tangent cone relationships proved in chapter two and
in {4.1 3], [4.'1 5:( can be used to derive some more gensral results

about (PL,_} N




[59]
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Theorem: Suppose I is either differentiable or uppersemicontinuous
Theorem T

and concave Suppose that g isconcavewith respect tc B and there

is some I € dg(X) with
(1) Z(h) € B(-B,g(x)) > nhe P\ ,%).
(2) For some closed convex cone G with GN P( A ,55) CH(A,x)
Z(h) € P°(-B,g(X)) for some h € G.
A necessary condition for X to be a minimum for (Pl;.) is:

u'Z € ﬁf(i—c) for some utE PT(-B,g(x)).
Froof: By ‘[_‘2.24] £ (D) € Pa,R). By (i3] 263 e rHa,%).
Let y € éf( x) or lety = f/( ;:);one can then apply the argument
of [51] to ¥, Z in place of d'f, d'g to obtain

¥y +ui=o0 u+6~P+(-B,g(;c)).§

Corollary: Suppose B° # b, C = X and for some Z & d g(X)

- -

3 A f 2y
J T EX) S 0o,

]
ny

i’
\
Then the necessary condition in [5%9] holds.

Proof: This follows from [59] and [A-’l 5] mach as [521 follows

Vfrom [51] and [501."

[59] and [601 give resulfs which are essentizlly backwards
as they give necessary conditions for concave functions’ minima
and not maxima. The next theorem rectifies this for the constraint

function.

Theorem: Suppose in (P&.) f is uppersemicontinuocus and concave,
h = o, g is convex with respect to B and has a subgradient
Z e gg(x). Then a necessary condition for x to te a minimum in

(PL;) is




jf(ﬁ) c P-B,g(x))Z + 6"
whre G is any closed convex cone with K\ ¢ € P(4,x).
(X denotes {h \ Z(h) € P(—B,g(g)j% ).
Proof: Let § [ gf(i{-) then by [1“1 5__\ v € PT(4,%).
Since 2 & gg(g) Fh.14] guarantees that
Z(P(g" (-8),%)) € P(-2,a(x))
One can apply Zlobec's result (which is [1 7] with strong cones)

to deduce that

v e P(-B,glx)Z + 6"

Note that the assumptions of f guarantee that gf()—c) N |
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MULTIPLIER THEOREMS AND MINIMAX THEOREMS




(1]

vultiplier Theorems and Minimax Theorems

This chapter is conlerned with multiplier theorens for convoex
and quasiconvex programmes in locally convex spaces. The first
section is concerned with various genera_lizations of a theorem
provedl by Luenbérger (1968) concerning the existence of sinpler,
vut constrained equivalerit problems for

(:95} wea}ﬂni‘ds. t(x} subject to glx)e-B, x<€¢C.
where f:X — Y is sirongly guasiconvex w.ni.5, a closed convex
with interigr, g:X —~» Z is convex w.r.t.Bya closed convex cone
with interior, and C € X is a convex set .

Theorem: Suﬁpose (1) T is upper s_t/emicontinuous on lines w.r.t.5
(2) 1 x e Cwitn g(}:T)émBo.'

_If X, is a weak minimum for (P5‘) there is some u+é B+/§Oz( with
(PB) equivalent o (P5‘)_ 7
(PB‘) wealmin f(x) subject té uwi(g(x)) € 0,x€ c.

Proof: ILet E =§y lf(x)'(uo v glx)-y € -B, xECE
where u, = f(xo). _
(1) E is convex.
et Y11¥,C€E. Then there are X ,X, € C with

£(x,) < Uy £(x,) <'uo‘ o oelx) Sy elxy) <y,
Since C and g are convex x, = 'Ax1 + (1= ) %X, € C and

eln) € ne(x)  + (1N glx)any, + @ N 7,0
Since ¥ is strongly guasiconvex w.r.t. S, proposition [18§] of
chapter one gives f(xg) < u_ since i‘(x1)<u0,f(x2) Ly,
Thus '>\y1 +{1-2) Yo, & B and B is convex.

. , X o o e o
(ii) By consiruction E N~B = #. Since B # @ the Iotm-3anach

+
-

. . . . +
“heoren is applicable smd there is some not zero 1 &€ B

with




Wty yo Yyekr

1

R . + ) i
(iii) Suppose that yZGE with u (yz) 0. By the second hypothesis

x, € C with g(x.]') « -p°. Since Y, & B there is x, € C with
g(xz) £ 7, Thus for o <7 <1
(e + (1=20x,)) Q' (el )) % (1-N) W (g(x,)) < 0.
since Nz, + (1-N)xy € € , g(hxy + (1=%)x,) € Eand
(hx, +-(‘!—'>\)z_:2) & -8~ +u

f(x2) € 5% + u . By the first hypothesis

lim £(A x, + (1-A)x.) - £(x.) € -5.
~ Do 1 2 2
Thus one would have

lin f(h x
NF ©

Since -S° uc') is an open set this would imply that

.f('r\x_; + (‘l—-})xz)ﬁ -=° 4 uo for ’>\<~)\O

CH (1) xy) € —sr(=sT) g €80 +u

9]

wnich is impossible. Thus "f(xz)%_-— 5% + u and since x, was
erbitrary ¥, & E. Hen'cev, one has y & E when a (y) € o.
From this one derives that when x €C and u+(g(x))~§0
f(x) ¢ -s° + f(xo). J

By the definition of y.realc minimization and the feasibility

of x one has that x is a weak minimm for (P‘il)“!

[2—) As Inenberger notes one need not have complementary slack-

ness, u+(g(xo)) = 0, in (PS’). This is shovm by

f(r1,r2) = EO r1+?2 > 0 and g(r,l,rz) = (ri,rz)'
&1 T1+r2 $O
for which (PB) has a minimm of 1 at (~171) awong other points.

. + +
Setting u = (1;1) < R2+ one sees that u satisfies (PS‘) but

w (gx,)) = -2

i3
W

et s LTI

U T N DT 2 e 43




]

{4] Proposition: ~ Suppose that f satisfies the following condition:

“or

then 1f the conditions of theorem [1] hold either g( )E ~5°

Proof: By [3] , if u+(g(xo) # O one has some x, € C with

. +
- There are various results about the slackress of u (g(x ).
. T o”

The next proposition generalises one of Luenberger's.

Proposition: Wlbﬂ everything as in [1] either

3 xecwitm glx,) € 3%, £(x,) —f(xcb € -bas

+
+
(2) u (E(X )) 0 for some neoncera u  satisfying (_t'5

e B Fi i1

Proof: Iet 4 =jy |dxec,y-glx)en", u, ~f(x) € s§

P st oy

(i) Clearly A is convex.
(i) ¢ AN-B% £ @ there 5 some % € C with £(x) o7 g(x) < 0o

and if (1) does not hold f(E)—f(xo) cennot belong o

-5 / -5° = vaS.’ This means that £(X) € -5°

+ u and
0

AT £ T T RO g Y

5(x) €0, % &C which contradicts the definitiom of X_ . Taus

ANEB® = P, There is, therefore, a separating hyperplane with

e 2 3208 st P

+
u €& B /{Oi and u (A));O. It is simple to prove that this implies

+ ‘ +
that u (E) 20 and to proceed as in theorem T11 to show u sziig-

. P 1
fies ( 5 ).
‘ S + .
lforecever, v € B g0 that u (g(xo))-$ 0. Since g(xo)é-A

u (g(x }) > 0 and must be zero.l

(1) x £y ana £(x) € 2(y) izplies £ (et (1-N)y) 2 (y) o< < 1:

u (g(xo)) =

g(x,) < 0 ana 2(x,) - £(x ) €-0aS. mis means £{x.) <7 (x ).
Ir X, # % one has by property (1) thet £(x +(14)) )‘if( ) o< A<,

Since')x1+(1—“k)xotgc and gka1+(?~30xo\-\0 this contradicts the



[€]

r

(7}

the minimality of x_. f
Wote that if £ is strictly sitrongly gquasiconvex w.r.t. 5,
f is strongly guasiconvex and satisfi.es (‘l).
Con’s:’mui-ty .conditions can be imposed on g to insure that for

some ut (possiﬁly 0) one does have complémen‘tary slackness,
Suppose in [41 that g is fully uppersemicontinuous
with respect to 8 and that x_ € C° then either x_ is a global
minizﬁum and u+(g(xo)) =0 foru = O or u+(g(x0)) = 0 and u
can be taken nonzero.
Broof: Zy 4] wla(x))) # 0 > alx)) € 2.
Since X is ass_umed to 1ie in ¢° and since g is fully upper semi-
continuous there is a neighbourhood N of xo in ¢ with g(N) C -s.
Thus . |
f(x) - f(xo) & -SO_ Yx €N,

Since property (1) of [4] is stronger -thatv (P} strict guasiconvex-
ity, propesition [80] of chapier one implies that x  is & wesk
global minimum. ' Tn this case (PS) is equivalent to (PS‘) with
u+ = 0.1 l

These resulis exclude Luénberger"s example vhich satisfies

2ll the conditions except the strict guasiconvexity of I.

Faquelity Constraints

Definition: h:X -—> W is subaffine if Ala) = {x\h(x)'—ag

is convex \‘! a€ V.

Proposition: h is subeffine if h is any of the following:

(1) afrine.




>y

(2) maximal monotone from X to X'.

(3) quasi~convex and-concave with respect %o a pointed
cone S.
Proof: (1) is immediamte. (2) is a standard result of monoicne
operator theory. (3) Supposé h is quasi—convex and-concave.
1f a & R(h) AMa) =g . If ae R(h) then a = h{b) and
{x [n(x) = h(b)ﬁfg = {X lh(x)'éh(b)‘g ﬂ{x( hix) >, h(b)} be-
cause 3 is.pointed,

Since the last two sets are convex Afa) is convex.l

[8) Proposition: Suppose that h: X — W is subaffine and %hat in

011 (PS) is replaced by

| (P6) V'.;eakznins £(x) s+t g(x) €0, n(x) = 0,% €C.
Then there is some u+€_ B+/ {o} with (P6) equivalent to

(PG”) wealﬂnins f(x) Seta u+(g(x))$0_ ; n(x) = 0, x C.

Proof: ILet C" = C (\§( \ hix) = O%which is convex and apply
Ml to (PS) with C replaced by c". }

The next resuld Vextends (i1 to include a finite dimensional

affine congtraint.

[9] Theorem: Suppose in [8)] that h: X —¥ R" is actually affine and
that the following hold. |
(1) 35{1&0 S.t. h(x_]) =0 , g(x1)< 0.
(2) 3 xzeco with (x,) <u_ h(x,) = 0 and with 1 open 2t x,-
(3) T is éc‘mallﬁr Tully uprper semiconiinuous with resnec
to 3.
Then there iz some u € B+/{ Oi and 2z € R with (¥

eguivalent to (P6' .

(Ps') v.realfmfms {z) s.t. uw{glx)) + z+(h(:~:))( ., z=C.

~1




proof: By [8] (P6) is equivalent to (PS").

Let B, = 1(r,2) [£(x) < vy ' (e(x))¢ =, 2lx) = 5, xeoF

where ut e BY/ fol is as in [8].

ss in [1], since h is affine, B, is convex.

Set F‘i = i(r,o)i r < 0, GERn’Zg . 3y 8l e N0 P, = ¢ and one

1

o

can apply Hahn-Banach since the seis are finite dimensionzl. This
— - +
produces r >0, 2z eR® s (r,g) # 0

Fd(gx) + 2 (n(x))> 0 it zec, £{x) <u.

Suppese T = 0 then

i
#
¥

z+(h(x)) >0 when x¢& C, £{x) < .

By (2) there is an xzeco vith £(x,)<u, and h(x,) = 0 and with

n{N) a neighbourhood in R for some N with x, + N cc®. By (3)

there ig 2 neighbourhood I\I,] of %, wich f(N‘i) < u,. Combining

+these facts one sees that z+(U) >0 for U= h{¥) a neighbourhood

‘@E’f RE O

+
of 0. This implies +that z = O which is impossible.

Without loss of generality suppose r = 1. One sces that

wlelx)) + 2 (n(x)) € 0 when xC, £(x) < u_ . One cen now pro-

uses

)

ceed as in [1] to derive the promised equivalence. Thi
-+ - ‘
u # 0 and (1) in place of g{x) <0. 4

The argument of [8] and [9] does not extend io infinite

dimensional affine constraints because separation can not be

guaraniteed., The next result, gives an infinite dimensional vari-

ation on [9].

{10} Theorem: Suppose in (Ps) that the following conditions hold:

(1) n

continuous. (on C ).

-4+

s open; g is continuous and £ is fully upper semi-

0 .. . .
Z @ eand if ¢ # ¥, h is continuous.

(2) ¢
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() 3 x3€ ¢ with f(:{.j)f:.uo, h(x_,)) = 0.

(4) 3 %, € ¢® with g(xj)‘( 0, h(:{,j) = Q.
mendu’e B/ {0}, '€ W with (B) equivalent to (2().
Proof: Let A= ‘g(y,w)l f(x}(um xec® , glx) <yn(x) = w}
=5 (rw)| ex)<y , Blx) = w, xe s (u{sc‘)%,

The Tull upper semicontinulty of f guarantees that

0 -1 oy . ‘ .
JL= ¢°Nr< (u -S") is an open convex set. 3By the comstruc-

tion of A there is no x indJ) with h(x) = 0 ang g(x)e- 3°.

Tis means that the transposition theorem of [5.10] is appli-

cable and u e B+, 2fe Wt exist (not both zero) wiih
+ + _ "

(5) w (glx)) +z (W(x))> 0 if x € c®, £(x)« a
Suppose ¢ # X and X € C. Sirce h and g ave camtinuous and f is
upper semicontinuous,

v (elX)) + z+(h(-::f)) is sti11 non negative.

As in f9] since h is open u+ # 0. Now suppose X, € C angd
+ T
u (g(:.cz))ﬁ z (B(x,)) = 0. Iet x = dx +(1-%) x,,
then u+(g(x)\ )) o+ z+(h(x:\“)) £ 0 o<»™<1 and thus f(x))$uo

by (5). Since f is upper semicontinuous f(xg) { u and one has

xe 0, u{gx))+ z (h(x)) € 0 implies £(x) & u, which is the

" desired statement. |

.- Tt is clear that x_ is in turn minimal for (P6'")
min_ £(x) s.%. w (g(x)) € 0, 2 (n(x)) =0, xec
since if £{x) < f(xo) and X is feasible for (P6"') it is feasible

for (Ps') which ig a contradiction.

The results of the previous sectilon could have bzen phrosed
for multivalued convex comstraints; in perticular the following

generalization of [10] holds.
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Theorem: Suppose that g in (10l is replaced by a lower sermicontin-
LAEOTEE .

vous multivalued convex napping G and that (£) is replaced by

MJ)EaeCOWHhh&Q::QG&Q(\%P#ﬁ._

Then (QS) Weaminsf(x) s.t. G(x) N -B#£ g, n(x) =0 is

equivalent to

(Q‘6) vealanin £(x) Sut. ut a(x) + 2" rx)NR # @
for some U & B+/{O7§ , 2 e .

Proof: The itransposition theorem [3.10] is s%ill applicable to

A‘I = {(y;vf)\ x&X, fx)<u, hix) = Wy [y—G(x)—_\ x| VBO # fj}

The argunent is derived in exactly the same fashion as in

[10] using the multivalued convexity rather than convexity to

show that u+(y) + z+(w) = 0 implies (y,w) & A.l

It was noted in proposi%ion [94] of chapter one that a

real valued multivalued convex funcition with compact images has

‘a single valued restriction. Yhen G is upper semicontimous

a(x) is compact (Chapter 3) and thws uw {6(x)) is compact and there

is 2 single valued k(x) < u+(G(x)). This means that (QG) ig

equivalent to (Q”6) wealming £(x) s.t. k(x) + z+(h(x)) £ 0.

Equivaleiqt convex and gquasiconvex consiraints.

&

In connection with (PS) Inenberger noted thet if g was only

assumed quasiconvex (with respect to the orthant in R") that

there would generally be an equivalent convex constraint. Fhe

discussion below makes this more precise.

["33 Proposition: Iet ¥ be any real seguence gpace with index I.

Suppose g£:X -3 ¥ is strongly guasiconvex w.r.t. the coordinsate
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ordering then each coordinate mapping gi(x) is gquasiconvex.

% Troof: g(x)Sz '{r#} gi(}:) g Zy Yicl.
Suppose &, (x) <-z—1 and g, (y) < '2-1 _2_1 € R.

Then g, (x) »{m_ax(gi(X),gi(y)) = B, 1A1,

similarily g (yi < E'i .

Tet z = 'Zzi i€ i% . By construction one has g(x) <z

and g(y) <z. Since g is strengly quasiconvex

g(hx +{(1 =N )yl« ?7 , 0<Mg 1. Trom this it is immediate .

that g1()x +('_1—))y)4 ’z'1 ', 0<Mhg1 , and each coordinate
is quasiconvex. This argument required that all the g; are

finite together or infinite together. |

E]A,] .I’ronositiom_ Let g:X — R be quasiconvex with S(o) = %X[ g(x)éof

a closed bounded set with nonempty interior. There is an equiva-

T e Dot

lent convex constraint £ with f(:{o) <0 for some x_ 2nd with T

finite everywhere.

Proof: Without loss of generality let X, = OESO(O).

Let S5, = (s(o) , o)< (X,R) and let 5, = (0,1)€ (X,R). Tet C
be the cone of lines through points in S1 with vertex Sqe

(1) ¢ is a closed convex set: C = i(’)\s,}-‘])[sé s(o), F)\>,O} .
Trom the expression C is obviously convex. ~C is closed because
o . < ) .

S(o) is closed and bounded. Suppose ¢ = ()\nsn,)n—‘l) e, .

me I -1 - ~ . A the 2l
Onenas')n': ')O 15}115 - b If o;é 0 then actuzlly

n

s, = b/ & 5(0) while if N =0, Qs —> O since $(o) is
bounded. In either case cgé C.
(2) Zet £(x) = min {r l (:{,r)éci' .

£ dis convex. Since if f(:{,l) = I‘.I f("2) =T




3]
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(X1F1)GCT,(X2,‘;2) €C so that (',\ %, + (1-7\):&:2, ')\r1+(1—7\)r2)6;3
and b, #(NE)O,) + (-N2Gy)-

) £(0) = 1.

(4) 72 £(x)£0, dr £ 0 with (x,7)& C since C is clesed.

mus (x,7) = (ts,%-1) 5 o <5< 1 and s€ 8(o).

Since o0& S(o) ;s = 15 +(‘1—-t)o€S(o) and g(}:) = g(ts) So.
(5) If glx)<0 (x,0) € C and £(x) < 0.

(6) £ is Finite everywhere. By construction 0€5%(0) and

w(o) < s°(0); |
inen zel(0) = (3%,1-1)€C "&ft} 0.
Tet y€ X. Tor o<d<£10 dy € ¥(o) and (tdy,%—ﬂas_ C.
Tn particwlar (v, ¢ 1-1)€ ¢ ana £(y) £ a b 1.
The construction could be performed yithout 5 bounded. It

in. that case.

‘would appear, however, thal {4) need not hold in that ca

The next result guarantees the existence of equivalen

convex constraints for a class of guasiconveXx constraints.

Theorem: Let ¥ by a seguence space indexed by I. Let Y have

the coordinate ordering &, and let G:X —= Y bé strongly quasi-
convex w.r.%.8. Suppose for .eat:h i that

(1) %xl gi(x) < O?S is closed and bounded with a common
intefior point ao'. -

(2) g (x)[(<o0  &>lg ) <.
Then +here is a convex mapping ¥ — Y with

SLX 'I\F(x) < O} = i{ }; O%

with T everyvhere finite and with F(a Yy < 0.

inite
Proof: G{x) <0 == xC, Q LX[ g {x) < O% By (2) and the

strong quasiconverity of G one has, using [131 , shot cnch 5.

is guasiconvexX. Dd.] and (‘l) now imply the exisience 0o I, cOnLVex




(1€}
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everywhere defined with
{x [£,4x) € 05 = {xlg,(x) £ 0 and with £,(a)) < O.

Setting P(x) = '{fi(x)} one has the desired consitraint.l

RemaTks: (?).Condition (2) impliés no loss of generslity since
if A,zin%‘ \ Ei(x) < 03?5 ane can redefine -éi(:{) by

by__éi(x) =Sgi(x) x€eh eand T (x) =7, (x)%
| (oo xéa T

T(x) then satiafies (2) and §x [60a)ga = fx | Bx)< 2§ Yz
(2) Szx \G(}:){O§ car be cgosea without {x\gi(x) SOEclosed

as is seen by G(x) = (g1(x),g2(x))'with gg(x) = 1x-%) and

gﬁ(x) ==fkn ix131 . The closedness of each component level set
‘ c- 1x1 <1 :

would be guaranteed by the semicontinuity of G.
At lezst in the cases covered by [}5] eguivalent convex

consiraints exist. This dodes not mean necessarily that u F and

+ -
u G are eguivalent.

Convex Multiplier Theorems

By requiring in (P5) that £ be convex w.r.t. 5 one retums
to the standard problem of conveXx progranming. lioreover, it is
clear %ﬁat any convex f 1s upper gemicontinuous on lines w.r.t.5
so that [1) stillapplieé to sny convex fimction.

The first result of this section gives a multiplier theorem

for infir ite dimensional affine consiraints.

Theorem: DLet X, W, Z be convex spaces and 5<CY a clozcd convex

come with interior. Suppose the following hold:

(1) CCX is convex with interior,

[ e SR A

A g o

g A P e <5




(2) £f:0C X —>R is canver and coﬁ’;iauous on ¢,
(3) g:C € X = % is caavex w.r.%.B and continuous on C,
(4) n:¥X — W is open and affine and is continuous if
C#XL
(5) 3-x1"£-. ¢ with glx,) € -B°, h(x,) = 0,
.. (6) 3:{2 67 CO with h(xz) =0,
(PT) ing f(x) s.t. g(x)€-3 , n{x)=0 , xe¢c¢
is -eq.uiv'alent. to: |
inf £(x) + o (g(x)) + z+(h(:{)) , x€C; for scme u € B'!;
2te wr. | -
llorecever, if the 3_nf1mum 2, is achieved in (PT) at X, then
u+(g(xo)) = 0.

Troof: Let f(x)

il

(f(x)) - U, ,g(x)) and 8 = R+ x H.
The Transposi’tiqn theorem [3.15_] can be applied io ?,h and S.
There is no solution to h(x) = 0, —f(x)é - 8°
and xéco since E‘-(x)é—soééf(x) <u0 ang g(x) € ~n°.
Thus there is u = (;,-u+) E(R+,B+),z+e W! with (u+,z+) #0 and
(7) B(2(x)) + u(gx) + 2" (a(x)) 3 Flu,) Vxe o
If * anad U.+ are 0 then z+(h(x))>,0 Yxe ¢ Since h is open

end by (6) z+(Nz) %, O where N, = h(N(x2)) is a neighbourhood of 0

and N(x,) < C. jﬁais implies z = O which is impossible.
IfFT=0amdu #O0 (55 gives some 'x1- € C with

u+(g(x1 )) + z+(h(x_l)l) = 1i+(g(x1 )) <0 in contradiction with (7).

Thus T £ 0 and w.1.0.8. 7 T = 1.

Suppose {xr% is a feasible net with £(x_) — . (7) gives

£(n) ¢ (g(n) + 2 () Y

Il
o
4]
3
ja]

llorsover, since %, - is feasible g(xr)E—B,h(xr)
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(8) 2(x) B 2(x) + w'(elx ) + = (alx))y u,

and j_m?cf(x ) | +u (g(x) + 2T (nlx)) = u .

Tf the infimum is achieved at X (8) shows that u+(g(x0)) = 0.1

[18] Remark: If in (337) the affine constraint is finite dimensional

“he theorem can be proved without most of the conts

tions analogously to the gquasiconvex theoren [9] put using the

next theorem rather than [1].

[19] Theoren: Iet £:C<X —> R be convex and let G:C<X —> 2 be con-
vex as & multivalued map with respect to a closed convex cone B
with interior and let C c X be convex. Iet (P8 } denote:

(PB) v, = inf T(x) s.t. G(x)N-Btg, =xeC.

If there is some x, such that G(X‘l -2 A g (PB) is equiva~

1
lent to: A
inf £(x) + u(a(x)) x & C.

Tf the infimum is attained there is some v 6(xy) with
u+(yo) = 0.
Proof: Let A = {(r,z), £(x)<r, [z - cx)IN B #8, :»:(:03'
(1) A is conver. ..TJeJG (;{,z,l. , (rz,zz)éA.- There are X,; %, & C
with (1) 200, +(1-W)x,) € Nelxg) + (-0 2(x,) <y +(1-Nx,
GEi)wx=he, +(1-Nx,e 0 (id1) [zy - 6(x, )N B#5 so there

are y.,y, with y;€ G(xi) and z;% ¥;. Since G is m.v. convex

there is some y)in G(x»}\) with y?\é %y,i +(T—))y2

that A 1s caaver.

2)_%? constructio there is no (r,z) in Awithr < uo and

P
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z € =3°. Aga:_n the Hahn Banch theorem guaraniees zn 7 % o
and U € B wi%hf
() +u(z) > T () 3t (ry2) € b
Since in particular for any z ¢ G(x) (:E‘(x),z)c:fx vvhen x €C one has

V:{e C.

" has ?f(}') + 1'1+(Z'), > ';:uo .

I£ T =0 then uw (6(x)) 30 ¥ x ¢ C vhich contradicts

%, € C znd G(xﬁﬂ ~8° £ . Thus T > o0 and con be taken to

1
be 1.
Then
izéi‘ £(x) + uf(G(:;c)) Su
© and they are in fact egual since there is some ned

{xrgcc with f(xr) ~¥ u, end G(xr) N\ -B#£F. Tet y.€ —-BﬁG(xr)

then

- +
c ), + .
f(:rr) > f(xr) u (yr) p/ Uy
and the infima are the same. If the infimun is atitained at X
+
this means u (G(xo)) > 0. Tor some Y€ G(xo), however, ¥ &-3

and thus u+(yo) = 0.}

It is apparent that f‘l"f] could 2lsc have been phrased with

FEACCINTY Frei Pty o fed e | m I tenes T t. e . amtem omam geileign oy e wmcoue s cen L n ae

a multivalued constraint. The proof of mul%iplier theorenms

SR R R R sy
e AT e T

with equality constraints could be manmged by applying [1 _01 to

T e,

inf #(x) 5.4, u (g(=)) + 2 (n{x))< 0, xec

under the conditions of [9] or [10]. To see this it is only

necessary to note that since u £ O the point %, of 7}, [19)

TR = + ) ‘ + ; iy - A T y :
satisfies u g(x1) + oz h(x,i) .. L0 and to remark that u gtz h is
convez. One recovers complementary slackness in [1 g}, Finally,

FR

the conditioms (2) of [9] and (3) of [101 are only necessory 1o

Th

<
D

w

guarentee the constraint g is aciive: I g is notl acti

reuult is still frue but is not deducable from (9] or pol .
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Tuenberger (1969} claims in a problem that the theorem of
remark [18] (and so analogously [9])noldswithout using in condi-
tion (2) that xﬁiCO. This seems wnlikely.

[20] Remarks: The continuity conditions on £ and g can be weakened

in [17) by applying [j9] (wvhich is in the single valued case just
the standard result) to‘(PT) deducing the existence of u+ & B+

with u (g(x,)) = 0 and uy = dnf £(x) + wielx)) s.t. nlx) =0, xe€cC.

The transposition theorem in [17] ié then applied %o
'f(x) = (f(x) + u+(g(x)-— uo) and S = R. The statement cf A7

could then be weakened by replacing {2),(3) by the condition

+ . ) L . .
that £ + u g is continuous on C. This has the drawback of using
in the hypotheses the multiplier whose existence is desired.

A simple minimization theorem for problems with non-affine

i
Tl

equality constraints in proved below. 1% seems worth including

beczuse it involves several previously discussed concepts.

{21 Theorem: Suppose £:X — ¥ is fully upper semicontinuous and (F)

strictly quasiconvex with respect to S. Suppose that h:X — Z
js a Fréchet differentiable map between Ranach spaces with
R(h'(x)) = 2 and with h continuously differentiable in a neigh-~
bourhood of X. Sﬁppose X is weakly minimal for

(PB) min £{x) subject to hix) = 0

Then % is also minimal for
(Pe') min T(x) subject to (W'{(x)) (x - x} = 0.
Proof: Since f is (P) strictly guasiconvex and fully upper semi-

contiruwous (2.23] shows that x is minimal for T over

X+ (@), x) =%+ 3mE)

S PR ST % A 5L AN ST . T T T T




[22)

23]

where the equivalence follows from the discussion of regularity

in {2.40]. Since yexz + W' (%)) exmetly when (n'{(x)(x -%) =0

the theorem is established.l

Corollary: continuous and convex

< :E‘ is sctually real velued

then x is & minimum of £{x) + z+(h‘(E)(x - %) for some z € L'.

’ s - | RS , .
Proof: The transposition theorem |2.34 guaraniees, since

h!'(x) is surjective and hence open, .that for some e 2Ty 0

— — 4,1
r(£(x) - £(x)) + 2" (0(x))(x
T cen Dbe teken non zero by [3.12]. Since x is feasible and

2x) + 2T (@) & - %) » 2(E)

-%) 2 0 ¥xex

the result is proved. §

Convex Programs with £:X — ¥

The preceeding theorems on convex multipliers can e adapted
to prove results when £:X — Y is convex w.r.t. 5 and X, is a

weak minimum for (P) with respect to S.

———

Proposition: Tet £:X — Y be convex w.r.t. S, S° £ £ and A be

a convex set. If x, is a weak minimum for £ over A there is some

s+jé S+/{O} with x minimal for s (£(x)) over A. sTf is clearly
s%ill convex.

Froof: Let E = %z \f(}:) £z + :f(xo),x-&Ag . E is a convex set and

. . o . . -
is separated from - S because Xo is & weak minimuzm.
L

Banach Theorem then guarentiees some non zerc s with

s+(z)'),o >/s+(-s') Nz &8, s&85

yhich means that s' € 5 /403 and s (£(x)) ¥ s+(f(}:0)) Y

ron [
T die
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[zil Theorem: Suppose X is a weak minimum with respect to S for

(139) min £(x) s.t. g(x)€ -B , xec¢

with £:X — ¥ convex w.r.t.5, g:X — 2 convex w.r.%.B, B° P
and C € X a convex set. Suppose there is some X, € C with
o) . s . '
g(x,l)é' -B". Then there is some T € B° with
?g(%) = 0 such that x; is a weak minimm for
f(x) + Tg(x} st . xe C.
; Proof: [23] and [i9] give in conjunction the exisience of

u GB+, 5" & S+/f0—§ with u+(g(xo)) =0 and

(1) s+(ftxo)).s S+(f(x)) + u+(g(x)) if x € C.

Let se. 5° then 87 (s) > 0 since 5" £ o.

Define T by T(x) = ¢ (s)'s u (x). Clearly T(B)C S and T is
continuous. Hence T€ B°. Equally clearly T(E(XOD’= 0.
Suppose now thatrthere is‘SOme xe C with

(2) £(x) + 1 (g(x)) < 2(x) + T(elx,)).

Then '

(5) s*(e0x) + M)} <a*(zlx,) + 5™ (2lelx,)) = 57 (2(x,)

+ +
but s T =u and (3) contradicts {1). Thus T satisfies the

claims of the statement.]
‘It is worth remarking that the same trick could be perfoermed

in chapter four to rewrite the Pritz John Theorems on weak minimi-

zation in operator form.

Strong minima:

Turning now to strong minima, one faces much more of z

broblem in obtaining multiplier theorems. The only easy avenue

H

appears to lie in application of the generalized Kuhm~Tucke

of the last chapter. One case in vwhich direct theoress can Lo
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proved does exist and this is dealt with first. The problem

is still (99) of [22_,4 .

[25] Proposition: £:X -+ Y has a strong minimm {with respect to
S a closed convex cone) over A at X, if and only if s+f has

- . +
a minimum at x-ofor 211 st € s,

R
T
\d
"
"
"

Proof: f{x) ,_);Sf(xo) Yxen 2 ()
o+ , + ' +

Conversely if s (f(x)) > s (f(xo)) Yx € Ay s € 8 then
£(x) - £(x) & ()7  Vxea

which since S is closed gives £(x) ) 2(x,) Yx ¢ 2.l

(26] Meoren: Let £:X —» R be convex w.r.t. a closed convex pointed
cone S. Let gi X ~»> Z be convex w.r.t. B, & closed cone with

interior. Let CC X be convex and suppose some x, € C has

g(x,i)‘( 0. Let 5,25 be defined by

xe s, < Kx e B

. . . . . +
where K is an invertible matrix with rows in S . Suppose xo
is a strong minimum with'respect to S for (Pg)‘ Then X is

a strong minimum with respect to S‘I for

£(x) + 1,(s(x)), x€ 0

5
1 _
where TO € B and To(g(xo)) = 0.

T Ay e A ot

' +
Proof: Since S ¢ R® S is pointed < (8 )° £ @. Thus there

is at least one such matrix K and cone 81. By [25] X, is minimal

for

+, : ' + +
(1) min Sy (f(x}} subject to g{x} &€ ~B, x€ ¢ g, &€ 3 ,i=1,...,n.

e P N b e

e

- . : +
[19] can be applied to (1) since Sif is convex. One derives

what XO ig minimal for

[

+ .+ tro s
(2) si(e(x)) + vy (g(x) setexec 5w e B, u (sx)) =




[27]

for 1 = 1,...,ns Ledting S£+’7"’3n+ be the rows of X and
: +

setting T = (u1 ,...,un+)T one has

() x(£(x) - f(xo))'+ telx) e B Vx ¢ c.

—
Since K ' exists this can be written as

-

(0) x[£(x) - xn(g(x)) - 2(x ] € = ¥YxecC.
Put this is just the definition of
£lx) -k 2(elx) 3 . flx) Yxeoc.
: . 4 D1 e}

-1

Sq
Setting T = K 1

s To(g(xo)) =0and T € B .,

In the case that 5 1s completely determined by n lineariy
independent constraints the cones S1 and S agree and the uncon-
strained problem is equivalent to the initial problem. This is

n+

certainly true if § = B and-in that situation X can be chosen

to be the identity.
If in [26] +the minimum was only required to be weak one
' . . + +y . .
cculd require the existence ¢f (51 seresS, ) linearly independent
. oo o - +
in 8 with X, minimal for 8y f{x) s.t. g{x)e -B, x€ C.
It is apparent, from the last theorem that this is equivelent
0 xo being a strong minimum over S1'
The preceeding discussion is therefore incomplete unless
S§'=35,. More general results can be derived from the differen-

1

tial conditions of the last chapter:

Theorem: ZIet X, Y, Z be Banach Spaces with Y reflexive and

5 € Y a closed convex normal cone. Suppese BCY is =z closed
convex cone with interior and that f:X —» ¥ is convex on

C wer.t.5 and g:X —'Z is convex on € w.r.t.B. Suppose I and
g are aifferentiable at Xy with g’(xo) surjective. OSuppcse

there is some x, € c® with x, € g—q(—B)O.
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Then if s is & strong minimum for I over gd1(-B) NCw.r.t.5
there is some T & BlZ,Y] with TO(B) € S and To(g(:{o)) =0
such that X, is a strong minimum w.r.t.S for

f(x) + Tog(x) _ Yx e C.

Proof: The conditions guarantee that

(1) B(oyxg) 0 B(B %) = 2(ax,) [21

G
(2) &'(x) (2(Balx)) = B(B,x,)  Busd

Thus the generglized Guignard condition of [3@ of the last

chapter gives TO with the reguisite properiies sucnh that
_ < ,
(3) t'(x) =+ (g(x))e (e, x )7
TO(P(—-B,g(xO))C- S implies TO(B) C S and To(g(xo)) =0
since B is a convex set and S is pointed (normal).
Tet x € Cysince C is convex x — x_ € P(C,xo).
() gives
(1 (x ) (x = x) + Bl Nx = x)) € 5
Because T and g are convex one has
1 — ’ —
(4) (£(x ))(x - x ) \<s _f(X) £{=x,)
(5) ('(x Nx-x) & ) - alx).
Substituting these in the previous expression one derives
£(x) - £(x ) + ¢ (g(x) - &(x,)) 2 ©

and since To(g(xo)) = 0 this is the desircd result.

.[éé] Definition: In keeping vith the terminology for the real valued

case £(xz) + T(g(x)) is qalled a2 Lefrangian and is denoted L(T,x).

I% is a mapping Trom B(Z,Y) x X to Y.
It is immediate that whenever a muliiplier To exists,
with T & BS T g(x ) =0, (T ,x } is a saddle point of
o} ’ Yo ) o?7o

. 5
the legrengisn over B x C.




[291] Froposition: The existence of T €& 5% with ’i‘o(g(xo)) =0
such that £{x ) = min £{x) + T _g(x) is equivalent to {T ,x_)
: o o 0 o’"o
being a saddle point of L(7,x) over B° x C.
S is supposed 4o be = peinted cone.
. Proof: Suppose f(xo)‘{ Sf(x) + To(g(x)).

Since .HTO(g(xO)) = 0 this gives

H(Tyx,) ¢ HTg)

Since '"ﬂog(:co):= 0 and g(xo) € -B one has, for any Te€3°,

m(g(z,)) € -5 & 1 (glx ) end so
(1% ) & W ,x,).
Conversely if (To,xo) is a saddle point over 3% x ¢

2z ) + 2elx)) ¢ 2x)) + T elx ) € £{x) + 1 _g(x)

from which it is clear that T (g(x,2)€ 50 =5 ={0% and X,

ig thus minimal over C.l

S

(30] Sensitivity:
Theorem: C_onsider_“tl_qe problems
strong mins f(x) S.t. g(x)«ﬁ zi,%EFC i= 1)2
Suppose that multipliers Ti exist for each problen
then

-z, ).

Cm o < _
T (21 32) sf(x1) f(xz) Q(ST1(22

2

Proof: The multiplier T1 gives

f(x1) = f(xq) 4+ TT(g(x1) - z1) Sff(xj + T1(g(x) ~z1) VB: € C.
Setting x = %, one has
f(x1)-— f(x2) L T1(8(X2) - Zja < T1(z2—z1)

since g(x2) S'BZZ and T(B)es.

The same argument can be aprlied to Tofxz and produces

the other ineguality.l




[1]

53

The primsl function

Suppose that for z in some nelghbourhoocd N of o the provlen
strong minsf(x) S.t. g(x) £z , xeC
nes solution. Let T1( z) denote this solution. 11(z) is

called the primal funciiom associated with the given problem.

S is assumed pointed throughout.

Proposition: .Suppose g:X = 2 is convex w.r.t. B and C is
convex.
(1 ) If £ is convex we.r.t. S T[is convex w.r.t.S on N.
(2) If £ is strongly gquasiconvex w.r.%t.S 11 is also strongly
guasiconvex w.r.t.5 on N. |
Proof: Suppose I is oonvei. Let 21,z26 N. Let
f(x,l) :ﬁ(z1); f_(x2)=ﬂ(22). Then tx1 + (‘I-—t)xzé C 0«41
Since £ is convex f(‘b:{_i +(1 - ‘t)xg) "(s 'h'ﬂ(z‘]) + (1—‘6)?1(22)-
Since g(xT)sz,i, g(xZ)Szz and g is convex w.r.t.B
g(tx1 + (1~'l:)x2)\< tz1 + (‘I—'t)zz. Thus tx1 + (1—t)x2 is a poten-
tial solution for W(tz,l + (1-t)z2). Since it is supposed that
'the_ strong minimum exists (tz"l + (1-—1:)z2 € N)
Tty + (1=t)2,) & £l +(1-9)x,) < 3Tz )+ (1-8) T (z,).
(2) Suppose f is sirongly quasicom*ex. With Xyy X, BS before
one has, if ’l—r(z_l){y s ﬂ(ZQ) £y , that
f(tx1+(1_t)x2) <y, Asin (1) tx 1+(1_t)x2 is feasidble for the
problem associated with Nr\(tz?%-(‘;—t)zz) and this means
1 (tz1+(1—*)22) < y.l

It is clear that if z,]-zzﬁ- B then Tf(zz) —-ﬂ(z1)63

(for ZT'Z2 & N).
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[35] Definition: The gdual function KQ of T] defined on B° is

given by \Q(T) = strongmin_ (£(x) + Tglx)) where as was the ccse
xel
with T\— the minimum is supposed to exist on some non trivial set i

= dom\Q . Let ¥ denote domli.

[34] Proposition: if £ is convex then \Q is concave and

R\Q(T,: min [TV (2) + 2(2)] i 1% exiots

21

ze\V ™

The domain of definition may well not be a convex set. It

is assumed throughout that definitions of convesdty (concavity)
are modified to take this into account.

Proof: (1) It is simple to verify that LQ is concave.

.
£
i

Then if T €B and zév ) '
Q(T) = min [f(X) v mle(x))).
e C .
1f g(y)<z then Tg(x))€ T(z) and

() € ﬂ('z) £ Ta).
Also, if 7y = g(X.I)

() + o (glx)) 3 TT(ag) + 2z).

This with the definition gives
KS{ (7) 2,5 mil_q N(z) + =) > 5 \,Q (7). 4
2l :
[35] Meorem: (Generalized Tagrange duality)

Suppose the conditions of '[27] are met and that f(xo) = T {0).

Then if Q(T) exists on K

T (0) = max, LQ(T) = LQ

TERTK

To(g(xo)) = 0.

P
1
L——




Droof: \_Q (1) = m{:}ins[f.(x) + T(g(x)ﬂ exists on K. Les
1 eB°, then if g(x)e-3 1(g(x))es

ena (7)€ 2(x) Yxe ¢ with z(x)X-3.

mus § (1) € 2(x,)-

The result of [24] s5aYS thatl{('l‘o) = f‘(xo) and that

~

To(g(xo))": 0. his concludes the theorem.i

‘The major limitations on this extension are that the domnins
of definition"ofd{,"ﬂ need not be convex even when the conditions
of [27] are satisfied. Thus one may well be maximizing.over
‘non convex sets.

It is also @ifficult to verify in general when\Q(T) exists
even if one knows\Q(To) exists, Tﬁe result, however, does in-
dicafe that the duality can be extended.

The result of [5ﬂ can be reworded as

min_ v (z) = maxSkQ {T) .
26~V ' TeBNK

¥Minimax Theorems

It seéms natural while examining the various extensions of
programming theory from real valued to more general objective
functions to investigate minimax theorems. It turns out that
the Sion minimax theorem has an entirely adequate extension with
the essential and limiting proviso, unlike the real valued case,
that both the minimex and maximin have o be assumed to exist.

. . ’ - s \ . . e
The proof is derived from Browder's (1968) investigation of fixed

pocints oflmultivalued mappings.
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Eﬂﬂ Theorem: Let K1,...,K5 be compact convex sets in

' n
topological vector spaces Eq""!En' Iet fj: ¥ Ki =K -5 Y
, i=1

a convex space with a closed convex cone B with nonempty interior.
N

Suppoée'K.'=. X K and
s IR - |
JA
(1) For each J=1lyeee,n fj(x.,Qg) is fully lower semicontinucus

with respect to B on Kj for fixed xj'in Kj'

A~ -
(2) fj(xj,x.) is strongly guasiconcave with respect to B on

. A LD
¥, for fixed xj in Kj.

J

(3) Let {a1,...,aﬁi C Y. Suppose for each j and xjerKj there is

. e e}
yje Kj with fj(yj,xj) - aj € B .
Then there is UK with fj(u) - 'aj €3 j=1,...,0.
- ' 0
Proof: Ietb Sj~{ul u ef, £,(u) - a € B ¢
' N Fa Fal
then S.(x.) =.{xj i xjéﬁKj,fj(xj,xj)—aje_Bof is open by (1)

4
S (%) = Ax.eK. %) -l o} i Y b,
and j(x )‘ {ﬁJixJeKJ ’ fj(xJ,xa) ay € B is convex by (2)

J
and proposition [18] of chapter one.
A
By (3) s,(&) A8 af ?cje K,

The sets Sj’sj(xj)’ Sj(éa) then satisfy all the conditions

of Theorem 11 of Browder (1968) (which was constructed to prove

the case Y = R) and the theorem allows_one ‘o deduce that some

u e K exists with
: n

u & 3

J=1

Tis u satisfies the claim of the theorem. i}

Theorem: Suppose I maps K1‘x K2 into Y where K1 end K2 are
non empity compact convex sets in separated topological vector

P

cpaces 31 and E,. Iet ¥ be a convex space anid BC Y 2 pointed

LA e o e ara e



closed convex cone with interior. Surpose that for fixed 7, 4
4 & J 131

K2 f(x,yz)_is fully lower semicontinuous w.rft. B and strongly

guasiconvex on K‘I . Suppose, similarly that for fixed Xy in K

_ f(xi,y}. is fully upper semicontinuous mnd sirongly guasiconcave

on K2. If toth minimization and meximization are supposed to be

strong wit‘n respect to B and

min max f(x,y) = A,
K, K 1
1 P !
max min £(x,y) = A
K K, 2
2 1
Then A‘l = _A2 . -

(1t is implicit in the hypotheses that the minimizations and
raximizations are well defined).

Proof: f(}c,y) & max f(x,y) and thus

yr:K2
min f(X,‘J){ min max f(}:,y) = A1
: }:EK1 x&K1 y(;Kz'

This clearly implies that if the s‘oﬁ:-ong max. of the left hand
side exists that Aé < g

set £.(x,7) = ~£(xy); £,(x5y) = f(#,y)-

’i‘her_l fwfz satisfy conditlons (‘]) (2) of {36] .

I'Jet aeBO then

min mex £{x,y,) = A, = min £{x, y(x)).
x{:K1 yeKZ x&K,I

1

. A
Por each x&K, = X, £z, y(x)) > Ay

“and fz(x,y(:{)) > A1-a_.

Similarly for each y€ K, £(x(y),7) <_ﬁ.2 + a
and f1 (x(y),7) )—!1.2 —3.

These points x(y), v(x) satisfy condition (3) of DCE} .

YRS
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Since all the conditions are satisfied one has some point i

u = {xy) with  £,05y) >4, -

- : i
fz(x’y) > A1 =3 ?i :
, B
or £{x,y) &K A, ta Ly~ 8 <£lx, 7). ;
- : 4
~Since aﬁBO is arbiﬁrary this gives r‘
'A1 f(x,y) 2 ;
which with 4, < 4, and BN -B = 0 inplies that A, = 4.k |
. . !
It dis apparent from the theorem that. it is too mach to !
. : . £
hope that the existence of A1 is sufficient for A1 = AZ or vice HE
. S )
versa. This is clarified by the Following example. ﬁ
i
; . [o,0) _(1,05| » .
[38] Ixample: Let A be the matrix EG’O) (091 )' with entries aij :
> o 7
in R, Tet £{x,¥y) ;> :iaijyj = x" Ay and let
1 . L. e

i, J=1

{x\x (x.],x),x +ox,.= 1’O<Xj_\<{§

=
N
- .
LS

'K2 vl x) y Tty =1 08y

I

(2) max min £(x,y) = max (0,0) = (0,0)

S e G T e N N ity L S, bt ey st

y&K2 xeK1 ye}\z
(b) min max f(x,y) = min *, DBeX (3’1,.Y2)
xﬁKz'yEKz xéK1 yéKg

but this interior masdimum does not exist strongly since all the

1y ot

ST

rvoints (y'_],‘l - y,l) are inccmparable. It is clear that 211 tﬁe
other conditions of theorenm [37] are satisfied since f is con-
tinucus and linear in each variable. In a sense (0,0) is still
a mininax since }'2 = 0 in (b) is nminipal for all (x ,Jh?'z).

Despite this {ype of drawback it seems worth phrasing the

71

following generalisation of the Von eumann minimax iheoren.
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Thecrem: Suppose A is & mwm matrix [éij] with entries in a
topological vector space Y with a pointed closed convex cone

with interior B<C Y.
'S N ST _
IﬁtK1=iX\X= &ny.”,%gilﬂi—j, %}O}
and 15‘13,1{2 Z{Y\y= (y'i""’yn)’zyj 1213 yj 7}0}
Suppose that (1) max aij exists stromgly w.r.t. B for
3

each } and (2) min aij exists strongly for each 1.

J
Then

min max XAy = max min XAy
xKy yexy &y XKy

1¥ all the strong optimizations are well defined.
Proof: All the conditions of [37] are met since xAy is linear

and continuous.}

The next proposition shows that condition (1) znd (2) of

[39] are essential.

Proposition: Tet a,,...,a, be elements of ¥. A necessary

and sufficient condition for

(1) strgng masc, E:)iai to exist ,

n
& n ‘
where Cn = )\\ S l°>\ 3'.:1’ ’>\i7/' O} ,
' A
i=1
is for
(2) strong TR, as to exist.
14£ i< n

Troof: The proof proceeds by induction. Suppose is the

smallest natural number such that a setd {a

et

AR S T




-3‘18.1 + o,

This can be rewritten as
n-1 - n~1

' n
227 N Yo

i=1

GY 3T Ry, TG - e Dey

i=1 ) i=1

Since '>§n = 1 is impossible, as it

. . ) n_‘z _
for (2); one has N "}\i = L >

i=1

¥Now in particular (3) holds for any

or eguivalently

n-1

| =
Z B Alegm) Y )
=1

-

This means that (L_J‘?\1 s e -,L-15\ -

would imply &, is maximal

0.
l} patl

Gan:L'thz '}\i =L £1
' i=1

n
i

xi(a‘i‘z"m) NE Cy -

-

-t

1) is optimal for (1)

with the set ga.l ~ Ay e 4 8

induetion hypothesis then impl

-8 over C . The
n—-1 nt n-1

ieg that this set has a largest

member with respect to B; that is

(a,

5 —-an) - (ai;.—,an) l€

B 1= 1,e0e0,n~1

i‘-—‘-'l,...,l’l—"].

There is no loss in

' anfiequivalen’sly aj > cHy

assuming that § = 1. One then has that the maximum in (1)
must be aa? + (1—a)an for some 0L &€ 1. The values 0 and 1

can be excluded since 2,a, are assumed incomperable. Setting

oL =§A+E. vwhere € >0 is chosen such that O < = = Z+& < 1
one can deduce from (3) that
Loy + (1-Ra, 3 (X+€ ) + (1 -(K +e )

vhich gives C—an 7 € a,l a contradiction. 7Thus no such set exi

e
P
FoaRVRRS

end (1) implies (2). Te converse is immediazte.f

T e




[41]

-

This condition (whaich is always met in a %oial orderinz)

is thus neccessary in [Bﬂ to even begin looikng for & minimax.

It ig clear that if there is a saddle point

a. .
1ojo with aij

o oo O ‘q
then it is ceftainly a minimax. (Here Aj,iA denote rows and
columms respecﬁively)

Relating Saddle poinis and Ilinimax points one has for

pointed cones.

Proposition: If the min max f£{x,y) and mex min f(x,y) are
c D D C

defined any mininax point is a saddle poini and vice versa.
Proof: If (xo,yo) is a saddle point for £ over CxD

f(::o,y) ‘<B f(xo,yo)\(B f(x,yo) x€ C,y€D, so

nin max f(x,y):;maxB f(xo,y) = f(xo,yo) = min f(x,yo)
c D D C

mex min  2(x,y)
D Cc

end since the other inequality always hold (xo,yo) is
A minimax.

The converse is clear. §
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Second Order Necessary and Sufficient Conditions

' ¥hen the generalized Kuhn-Tucker conditions are not also
'sufficien? it is possible to have the Lagrangian stationary at a
point which is not optimal for the associated problem. In this
case further infofmatioﬂ‘concerning the nature of optimal points
can be extracted by examining the second derivative of{the

Lagrangian - assuming that it exists.

Second order necessary conditions have been derived by

A

¥cCormick (1967) and others for the problem (% ) min £{x) subject

to

gi(x:} SO i=1,-..,n
LS .' hj.(x> = 0O j=n+1,oo-,p

where all the functions concerned are real valued and defined on

R R e e

Rm. McCormick introduces a second order constraint cendition

which he uses in conjunction with the XKuhn~-Tucker constraint

qualification to derive his necessary condition. The first

theorem of this section generalizes this result to a gqualification

which can be used' in conjunction with the Guignard constraint

' gualification. ¥eCormick's condition is then derived as a special
éﬁ case.

[1] Theorem: Suppose £: X—> R, g: X > Z are twice compactly differentiable

at a point X, which iz optimal W ggxugﬁnd{wkxuweno& {J}xg; ﬁﬁ“
(P) min f(x) s.t, g{x) € B, x € C.

Suppose further that the following conditions are mell



(1) The Guignard Necessary condition holds at x . That is for
some closed convex cone G such that G N K C P(A,xo) and some
ut & P(3,a(x )

| f__l(xo) - u+g/(xo) e ¢t
(2) It ne (GNE) N - (6N K) then for some nets {xn—)a C A,
{-3\ n?S >, o with x, > %, and h = ‘>\n(xn - xo)% h there exists
a net ;xn} with k€ - P(A,xn) ;md such that k_—h and

lr;;m 2(k -h) =z e -G,

(3) | For this net {xn%‘ , P(B,g(xn))C P (B,g(xo)) if nyon.

(#) Tim (r7(x)) (N k) o

Then when h € G N -G and <g’(xo))(h) € B(3,g(x,)) N ~ B(E,a(x_))
on'e has

(£ (x)(0,1)) = u* (&% ))((n,h) So.

- y:
Proof: (g (xo {(x )}

x ) - { x \\/h\
~ g\ OH\ J

)-’1
n

pan——

N ff ANY - 7
J\\n,h)) = lim (g
n

where x = \nﬂdhn + xol_- hn—>h as in (2).
1in(g (x,) - 8 (e )8 = 2im % [(8 0k, + 370 e (x ) (m)]

2 i (7)) (x, = 0)

with kn as guaranteed by (2).

mhus (g7(x,))((h,0)) = 2im %y [(8 T )26 )87 (x))(n)] (& (x_))(=)

where the final 1imit can be taken since }n(kn - h) 2 z and since
Vi s

g (x )= a"(x).

Now (g/(xo))(h) € P(B,g(xo):l by hypothesis and by (2)

k € - P(A,xn) < - PA ,xn). Using proposition [2.32] one has

(g/(xn) pI{ -kn) S P(B_.g(xn)). For n ¥ n_ one derives using (2) that

(g T )Nk, € H(2,a(x)).




Since ¥(B,g(x_)) is a closed convex cone and (g’(xo))(h) is
assumed in P(B,g(x )} M- P(B,g(x))
M )Nk - (& )m]€ =(z,a(x))  n7n.
This in turn gives
(5) (£(x ))((8,0) + (&' (x))(2) €= B(,(x).
In the same way one derives |
(£ ) ((m,0)) + (£ (= ))()
= im0 (e ) - £ (x ))(m)] .

Since h € G (Y - G and f’(xo) - u'g (x) & e*,

(£7(x ))(n) = u™(g (x))(h) = 0. Moreoever, since u* & P*(3,5(x,))

and h « K M- K, u+(gf(x0))(h) = 0 which means that (f/(xg))(h) = 0.

Condition (4) then gives
(6) (£ = ))((n,n)) + (£7(x,))(2) > o
Collecting (5) and (6) one has since u* & P'(B,g(x_))
(1) = Nr,R)) - u(g(x,))((h,h))
. o Y = e L)) - u(e 1 ))(2)]
Since f’(xo) - u'g’(x ) € ¢¥ and z € - & (7) becomes
w?%DHmM)~$@7%nwmnzoifhecm¥cma
(&' (x ))(nye 2(E,alx )N ~ 2(B,alx,)). |
An equality constraint can be incorporated in [1] if G is

specified more closely. This mirrors the situation for regularity

- conditions in the first order Fritz John conditions.

Theorem: Suppose h: X — W is twice differentiable with h/(xo)

surjective., Suppose X is fully complete and W is barrelled.
Suppose that in Theorem [1] C = N(h) and that

G = F((h), x_) = h'(xo)"‘ $o%. Ten if (n'(x,))(n) = o and
(g/(xo))(h) é:f(Eag(xo) f)— P(B,g(xo)) one has

(1

ot

it




(£ (x ) 0((1,0)) = u™ (& (x )((BH) + 2 (K (x ))N(n}) = o

with 2*e ¥ and u* as above.

Proof: The Guignard condition (1) [1] now becomes (h’(xo))(h) =0
smp1ses (£7(x))(h) - u'(g(x))(h) = 0. Since B(h'(x)) = ¥

the Farkas Lemma [3.6] can be used to derive zV¢ W” with

() (N = e lx))x) + 2% 160 = 0, ¥x € x.
~4s in [1] one can also show _

(2) 2im X [T N0) - (T )] = (07(x))(0,0)) + (n'(x))(z).

By hypothesis (h’(xo))(h) = 0 and since k& - P(4,x )

k € - P(N(h),xn), %k = l;m Tk'nm(xnm - xn) with
h(x, ) =0 =h(x ) and 1im n__[h(x_) - h(xn)] = 0.
m

| This last limit is - (h’(xﬂ))(kn) so that (2) gives

(3) (W= ) ,h) + (0 (x))(z) = o
Multiplying (2) by z* and adding it to the equetion (7)

of [{j one derives that

(£ T )(m,m)) = w™e (2 ))((0,0)) + 2%(8 (x ))((B,1)) %

(f’(xo))(Z) - u(g (% ))(2) + z+(h/(xo))(2)-

The right hand side is O using (1) which gives the conclusion.)
Note that z € - G 13 not necessary in this formulation.
It will now be demonstrated that McCormick's condition is

subsumed by B].

[3] Definition: Let X, be a p@int satisfying the constraints of (EH)

and assume gi,...,gn,hn+1,...hp are twice differentiesble

continuously at X, The second order cualification (McCormick)

~holds at X, if the following is true. Let y be any vector such

Z
Y and

’

that (gi/(xo))(y) =0 for all i¢ B = ? ilgs (xo) =0

such that




PE : ,
(hj(xo))(y) =0 3=n+1,0.0,0o Theny = (o) vhere (o)
is a twice continuously differentizble arc (e > o) along vhich

gi(o((e)) OiflCDO&ndh( =(e)) = Olf6<9 and with

(o) =

L Theorem: {McCormick) if f, g, and h, i=1 ,...,n and

J =n +1,4e.,p are twice differentiable at X and the Kuhn-

Tucker and Second order constraint conditions hold at xo then a

necessary condition for x  to be a minimum for (P1) is that there

exist u' = (u, + 4+ +
1 ,...,un ),z = (z

et ,z;) such that ui+ 2 0

+ .
and uy gi(;o) = O with

T (xo) + i‘;_;ui (x ) o+ Z .j hj (xo) =

J=+

. 4 .
and such that for any y with (g. (xo Wy) =0 Vi such that
1

gi(x ) = 0 and with (hé’(xo))(y) 0, it follows that

[0+ Zoltel () + 2 sio/ G ] ) e
pesssOy )x <oil=1,. ..,nf

Froof: Set C = R, B = {xlx = (x yreee s X500

h ). It will now be shown that

and set g = (g1,...,gn SVETITPLN

the conditions of [1] hold,.

e

(‘1) The XKuhn-Tucker constraint condition being satisfied by § can

be rewritten as: (g'(x INy) € P(B,g(x )) implies -

Tk e RS e

v = lim nf \6('—) - 6(")) which mnlles(sn_nce ?5(_) & A) that
n

¥ & L\A,xo) = X and that & can be taken as R ir 1_1_‘(23

{2) The second order condition can be written as:

if (g (x ))(3) € B(B,e(x ) N = P(,8(x,)) then y =70)

with « (2) satisfying the second order qualification. Set



» o ) )
X = o((_;) andr ')\n =n thenh = (o} = lrilm n(:v:n xo) and

/.

«(0) = 2 = 1im n [ - «'(0)]

i

). Thenk =1 -a[x(t-D - 2D

ol (

=l bt

Set k
: n

H

Since o {8) is contained in the constraint region 04(1;) and

o«(jﬂ-fa)e Aend X € -—P(A,xn). \

=

(3) Moreoever, from the second order cors
B - n
P(B,g(x,)) € H(B,e(x)) n>n,

as can be seen by examining components.

Since continuously differentiable marpings from R” to R are

Fréchet differentiable it only remains to verify (4). This is

proved as a separate proposition,[

Proposition: Let « be a twice continuously differentiable arc

satisfying the second order gqualification with «{o) =h c,[fo) = Ze

n

F/4 . Iy
Froof: (£(x))((n,h)) + (£ 1x))(2) = 1im N (£ (x) = £ T ))(h).
n .
Since h satisfies the constraint condition the above discussion

Setting c((:—l—) = X, o{’(%‘-) = k, and ’)n =n [1](4) is satisfied,

shows that"(g/(xo))(h) & P(B,g(xo) N = P(B,g(xo)). Because the
¥uhn-Tucker condition holds

(£ (x ))(n) = w8 (x ))(n) =o.
Let %(9) = f(=<(e)). Then %: R -+ R and has a local minimum at O

since «(®) € A for e < 'eo. (See [6] (1).)

while |
5e) |, = (2 (@) (oD + (£ (I o), o))
= (£ {x ))(2) (£ (x_)){((n,0))
4

which must be non negative since O is a minjmum and £ (o) = 0.1

0




el

[7]

p——y
(@]
[

1590

Remarks: (1) It is not clear from the statement of the second order

constraint condition that the promised arc,lies inside the constraint

region. An inspection of the definition shows that this follows
from the continuity of the finite number of constraints 51""’gn'
This observation is essential in the proof of the propesition in
151 -
(2) ¥eCormick shows that if the set B
oSt . a2 { . }
E = {gi ‘1 € {1 lgi(xo) =0 5 U hj [3 =1 +31,0.0,;D
is independent the Second order condition holds. He gives exarples
to show that the two conditions are rot strictly comparable.
Suppose now that in (P) the objective function f is assumed to
map X into Y and that X, is a strong winimum with respect to a
pointed S for (P). The following extension of [1] helds.
Theorem: Suppose that in the statement of [1] the following
alterations are made. :*:
s : E -
(1) TFor the given cone G there is some T C E{B,g(xo)) s
with .
- i ‘ '
(£7(x,) + Tg'{x))) (& s VYneec.
£ ’
(&) T (£7(x ) (MOk )€ S
Then a necessary condition for x to pe a strong minimum for
(P) is
“ s
(£ (x) +1¢ (x,)){(n,h}) € S
4
Vhe 6Nt with (g7(x ))(n) € #(3,8(x,)) N - P(3,alx)).

Proof: Vith these changes the proof in [1] can be mirrored exactly.t



[

O

]

of the last chapter to write the condition in operator form.

Corcllary: {to [1] s [7] or [81)

et i e

If in condition (2) of [1] or [7] it is required that
P(A,x ) C-.P(A,xn) n> n, then (5), (5)" can be rerlaced by
lim N f ((xn)r)(h) £ S.

Proof': In this case one can choose kn =h, z =0, I

[op]

e e
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Second Order Sufficiency Conditions in Reflexive Normed Spaces

S 2 g s

Second order conditions which are sufficient for the existence of

T

& minimum when the first order sufficiency conditions of chapter 5 are

not met have been studied by McCormick (1967), Fiacco (1968), Guignard
(1969) and Zlobec (1971). The results were all phrased in R® or in

finite dimensiocnal normed spaces for real valued objective functions.

The finite dimensionality was required to employ a compactness argument.
4 By considering weak pseudotangent cones in reflexive normed spaces an
infinite dimensional extension can be made. Two definitions are neceded

first.

[10] Definition: A polnt x_ is called an isolated intermediate (local)

5 minimum for f over A with respect to a cone § if there is no sequence

e,

{xn}c:A with x 3 X, X =% X, and such that f(xn) - £ (xo) € -S.

.. . e e o]
Clearly such a minimum 1s a weak minimum if S # h.

(111 Definition: A point x_ will be said to have property (F) (with
respect to S, f, A) if whenever there is a sequence {xn} in A/gxo}

with x - x_, f£(x ) < f(x_) then there is a sequence x” such that
n o) n’ — o n

” Ld / 4 Pi- l Ld
X)X s X € A/{xo}, f(xn).f f(xo) and such that Iixn xO{l (xn xo)

has a weakly convergent subsequence with limit ¥, + 0.

Remark: (1) The substance of property (F) lies in the assertion that
Yo F 0. This is because any bounded sequence in a reflexive normed

~
(RS

space has a weakly convergent subsequence. This subsequence may,
course, have limit zero. This pessibility is excluded for

” "'3_ 4 - “"‘ﬁ"f“"
hx - xoﬂ (xn— xo} by property (F).

(2) If X is finite dimensional every point has proverty {F) since in



this case Hx - x 11-1 {(x =~ x ) has a convergent subsequence k
n 0 n - "o n

with Hkn . =1. This means that the limit can not be O,

| (3) Clearly any isolated intermediate local minimum has property (F)
since no such sequence {xﬁ} can be found initially.
% One is now ready to formulate the following extension of Guignard's

sufficiency condition.

[12] Theorem: Suppose f : X—> ¥, g * X— Z are twice continuously

diffgrentiable at X, and that X, nas property (F) with respect to a
closed convex pointed cone S. Suppose the follewing conditions hold
{where A = g_l(B)nC):-
§ | (1) G is a closed convex cone such that if x€ A and

Hx - xol[ < € for some € > O then x~x0<§G.
(2) There is some s'c S/ o} and u'& W' (B,g(x)) with

gt () -t g (x)e a*.

3
{ (3) \JP(B,g(xo)) is such that if Hg(x) - g(xo))l[ <{ for
some given €>0 then g(x) - g(xo)é_v:P(B,g(xo)).
Then a sufficient condition for X to be an isolated local
intermediate minimum for f over A w.r.t.S is the following:
For any nongero element h €G such that either
() (1)s" (£7(x ))(n) = 0 and
(g”(x ))(n) exP(B,g{x )) M -wP(B,glx )
% o} o} o

or
(&) (1) w'(g"(x))(h) = O and

(g"(x ))(n) € '\«'P(B,g(xo))/ ~ wP(B,g(x_))
one has

&7 17 G - (e 7(x ) ((r,m)) 0.

roof: Suppose by way of contradiction that there is a secuence

{n

~

3 P C 1yl +3 - e

P AEA b with X =2 X n < -
S A/ i D‘S‘ C n 7 % and J.(Xn) =< ;(XO>



g
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Let k¥ = hhx =-x_ || .'-l(x -x ). Since x is assumed to have property
n o n o o -

n

(F) there is another sequence with k; = i‘-ix_'l-xog{ -1 (x;—xo) such that

1-:1;-—-‘0 k¥ O. There is no loss of generality in assuming x = x; .

Since G is a closed convex cone satisfying (1) there is some n
such that for nino xn - xo € G which in turn implies that kne G.
Since G is closed and convex G is weakly closed and koe G. Clearly
koewP(A,xo) C 'wP(A,xO) .

Suppose that s+(f'(xo))(ko) is nonzero. By proposition [32] of
chapter two (g'(xo))(ko) € wP(B,g(xo)) since kcf:wP(A,xo). Since
k € G, (2) produces s+(f'(x6))(ko)> 0. By proposition [26] of chapter?2

(sT£°(x )Xk ) = lim sTf (x + Ix_-x]|l k) ~sTf(x ).

) o 0 n o n 0

IENEEN

For n2 n, one has s+(f(xn)—f(xo)) > O which since s+e st contradicts

£(x ) § f(x)). Hence sT(£7(x )} (k )=0.

(1) Suppose now that (g'(xo))(ko) &wP(B,g(xo)) 0 —‘w’P{B,g(xo}) then
since s* (£7(x_))(k ) = 0 (4)(1) is satisfied.

(ii) Suppose next that (g'(x(')))(ko)ewP(B,g(xo))/ -WP(B,E;%))-

If u+(g'(xo))(k$)>0, {2) produces s+(f'(xo))(ko) >0 which is again
a contradiction. Thus u+(g'(xo))(ko) = Q.
In either case (4)(i) or (4)(ii) then guarantees that since

k 0
o

- + e _ + o >
(5) s £7 (x )k y kK)J) - u g (x )({k ,k ))? 0.
Tet s £{x) - v g(x) = L(x). Taylor's theorem produces (since

f,g are twice continously differentiable)

(6) Lix ) - Llx) = L{x ) (x %) + EANCIPPIC IS SR N
+ ol Tix ~x 2.
For ndn x -x €G so that (L7(x ))(x -x )N 0. Also,
o n o o n g -

(5) vproduces (L"(Xo))(kggko))> 0. Since L7 (xo) is continuous, and
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hence weakly continuous,in each variable it follows that
(IfoO))(kn,kh))'>EB ifn I}‘pa, for some 65.>O. One can derive

from (6), therefore, that

(73 L(xn) _L(xo) > 0 if n>»n
(RN |

~ This in turn produces
s+(f(xn) - f(xo)) > u+(g($n) - g(xo)) if n 2 ng

From hypothesis (3) it is apparent (since g is continuous and xn,ézxo)

+ .
that u (g(xn) ~g(xo)) >0 if nyn.
Thus s+(f(xn) - f(xo))> 0 which again contradicts st e s and

f(xn) - f(xo) < 0.1

[13] Corollary: (Guignard) Suppose in the statement of [12] that f is

real valued and X is finite dimensional and that all weak cones are

replaced by corresponding strong cones, then one has the Guignard

g . T TR e e

sufficiency condition for an isolated local minimum.
Proof: Since X is finite dimensional the unit ball is compact and
kK € P(A,xo). Property (F) holds as was remarked in [11] and

(g'(xo))(ko)tf P(B,g(xo)). Since qu(B,g(xo)) only enters the theorem

through this relationship it can clearly be replaced by P(B,g(xo)).
The theorem is then included in [12]'siﬁce, with S:R+, st can be taken

to be 1 and since an isolated local minimum is an isclated intermediate

minimum in the terminology of [lO].E

[14] Remarks: (1) It is clear that if g'(xo) is completely continuous, as

is the case if % is finite dimensional, \qP(B,g(xD)) can be replaced

by P(B,g(xo)) in [37.

(é) Guignard'did not include {&)(4i) in her statement of [13].
The proof given in Guignard (1970) contains the erroneous assertion
that if (g'(xo))(h) € P(B,g(xo))/a P(B,g(x )) that u+(5'(xo)}(h) is

positive which ensbles her to exclude ihe possibility of (ii).



g

{15]

165
Zlobec's asymptotic generalization (1970) @id include (&4)(ii) bdbut he

still gives Guignard's result as a corollary without it.
The next example shows that McCormick's sufficiency condition is

included in [12] with G = X.

Example: When one applies [12] to (Pl) one notices that if one replaces

L(x) by the reduced Langrangian,

‘ , P '
Ll(x) = fl{x) + z: u:gi(X) + 71 7 h.(x}
X il oJ
u;> 0 j n+i

that the proof method can be applied to Li(x) instead of L(x).
In fact in this case (g”(x))(k )} & P(B,g(x_)) /- p(B,g(x_))

means that

(B () (i)

O j'-:n“‘l’o-'pand

& < 3 —
(gi(xo))(ko) 0 for some 1, with gil(xo) =

so that u+g'(xo) = 0 implies that u; = O.
1

Now

- + » . .
0=f ((xo)(ko) = —SZT LM (xo)(ko) so that from this point
ui>0

on in the proof 1t suffices to examine Ll(x) and the suffigiency condition:'

(1) Ifh $0&G and (f’(xo))(hj = 0, (h&_(xo))(h) = 0 3=n+l,..yP

and (g'i(xo))(h) =0 if i & %i\u;;’ o}

then

n D
% ) + > W (gMx ) ()} + Z} Z(h(x Y)(h,h) > O
o 4y LT s

is adeguate to prove the resuvlt.

Note that in the general cass thers is no way of separating out

inactive multipliers.




]

[16]

Example: McCormick gives the following example to show the second

order conditions can isolate behaviour that first order conditions

do not.
Let f{x,y) = (:\vc—-l)2 + ya ; glx,y) = x - l/k_*fa , k > 0.
Then f'(O,VO) = K_gi, g'(O;O) = [é-‘ and

| 0

£°(0,0) + 2 g’(0,0) = {8} ¥k >0,

For k = % (0,0) is not a local minimum of (Pl)'while for k = 3 it is.

(@]
H
ot
j
a
L
ko
G
¢}
0
(]

Thus the first order oondition is inadequate £

O

the minima. In the second order condition
(L) £70,0) + 2g™0,0) = lé © ] = M.,
) 0 2 - bk

It is easy to verify that all the conditions for the second order
sufficiency and necessity theorems are met. The only one worth
remarking is that since there is only one constraint Remark [61(2)
.guarantees the constraint gualification.

The sufficiency result then elicits that for those ¥y for which
(g'(xo))(y) = O one must have ;,?Mfy‘ > 0.
These y are all of the form (O,s.)'r < and (1) implies that 2—%@ hY

is sufficient for X to be a minimum. Thus (0,0f'is a minimum for
(Pl) if k> g.

The necessity condition shows similarly that if k <2 (O,O)Tis
not a local minimum. For k=2 thé necessary condition holds but the
sufficiency condition does not.

Finally, the condition which is lacking for the application of the

first order sufficiency condition is the pseudoconvexity of the con-

straint sei. Since f is convex and G = X the other conditions are met.
A £ 2 .

A= ((X,y) ¥ /k D xt is clearly not pseudo-convex al (0,0)
since (al,az) < P(Ak,(0$0)) implies that ay <0 and hence

A -ER(a,(0,00).
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Asymptotic second order sufficiency:

The next result extends Zlobec's asymptotic version of f133.

Theorem: Suppose in the statement of [12] that (1) and (3) hold and

that (2) is replaced by (27),
oy aa . / '
(27) 1im (s"27(x ) - ] elx,))(e) = g (g) ¥g.c @
1
where {u;j is a sequence in wP+(B,g(xo)),g+ e G

In addition

(57) Lim (sT£(x ) - wog™Mx ) (¢, )) =1L{) exists for all v ¢ W
i o L o}

where
W = {w[w = (z—xo) /| Z—XOH , 2 €4, O< l\z—x&l <£ E}

~ h %M%%%Lm)VWEE

and W, k

k

and (4) becomes:

If O+ h ¢ G is such that elther

WD 1n G g G () = 0 and (7(x ) () € wB(B,g(x))/= wP(Box,))

or

B7(11) (f'(xo))(h) = O and (g'(xo))(h) 61mP(B,g(xo))n ~WP(B,g(x°))

" 1t then follows that

1im (s+f"(x0) - u-iP g"(xo))(h,h))>0;

from which it follows that X is an intermediate local minimum.

Proof: As before one may assume {using (F))that {xn} C A

}\xn—xoil_l(xn—xo) sk ok 0 and with x = %, xS
Then by (2°) rather than (2) since k_€G
(6) lm (s717(x) - uf g7 (x )% )20
as before (57 (x ))(k )50 and (g7(x D) (k) € wB(By50x))
Hence if (g7(x))(k )€ wP(B,g(x)) O - wP(B,5(x))
then u:(g'(xo))(ko) - 0 and using (6)
sT(£7(x (k) 20

‘which means s+(£'(xo))(ko) = 0.



g,

sogpr

i vy

(18]

1 (g7 (x ) (k) e wP(B,glx ) / —"TP(B,gtxo)) and
R PR . ) , . .
1im ui(g (xo))(ko)> O then, using {(6) agaln,ézf (xo))(ko)> 0 which
is impossible. Again the sufficiency condition (4)7(1), (4i) must
hold for k -
o .

Setting Li(x) = s £(x) - u;(g(x) and using Taylor's Theorem

lm  1im L) - L, (x ) > z 1in lim (L (xo)(kn,kn))

hY

ot

where the 1imit on the right exists because of (57).

This limit is

Lim (L (x )0k k) = Wk )> 0

1im [Li(xn) - Li(xo)] > 0 if nyn.

But lim  u. [g(x } - glx 5] N 0 (since utew®™(B,g(x ))) if nyn,.

- £ n o - i ! o 771
This means that for.qipmax(nl,no)

3 ) - s Y3 0 which comtradicts the choice of {x

5 f(xn) - (xO;)-O which contradicts

99
W

A stronger condition but one which emphasises the operator nature

of the conditions is given by the next result. It is stated for {123,

but could have been stated for [17].

Theorem: Suppose in [12] that (1), (3) continue to hold and that (2)
is replaced by (27)
(2 £7(x) - T g’(xo)fzss, T e wP(B,g(xo)s.

A sufficient condition for a point X with property (F) to be a
local intermediate minimum is:
For any non trivial h&G such that
(57) (1) (£7{x))(R) = O and {g'(xo))(h)é WP(B?g(xO))f\—'wP(B‘g(xo))
or
(57 (41) (Tg'(xo))(h) =.0 and (g’(xo)}(h)EwP(B,g(xo)) / ‘NP(B,g(KO)

one has

~ since lrcn*-—‘é L As in [12] this sufficiency condition then implies that
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LGx) - Llx)) =@k )) G- ox )+ F (LT Nk x )
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(£7 (x ))((n,0)) - T(g” (x)){(h,h)) € weak interior (8)  §.

Proof: ‘rlith?xr;} as in [12] suppose that (f'(xo))(ko)/.ét..s,
Then '
(5) (k) - fx) > (Flx )k € X/

ENEEN

since kn — ko. X/-5 is a positively homogenous weakly open set

A R Al R R

since -5 is a (weakly) closed convex cone. EHence (5) would imply that

f(xn) - f(xo)é X/-5 for n > a

which contradicts f(xn) - f(xo)E -5, So (f'(xo))(ko)e-s.

(27) gives’ (f'(xo))(ké) AN T(g'(xo))(ko)

- A - Ld !

and T{g (xo))(ko) > 0 since (g (xo))(ko)éiﬁP(B,g(xo)).
Sipce S is pointed

{(£7(x )k )es}- 8 = 0.

o o

Thus either (47) (i) or (47) (ii) holds and

(f (xo))(ko,ko)) - T(g” (xo))(ko,ko) € weakint (S).

Setting L(x) = f(x) ~ Tg(x) and applying the generalised Taylor
Theorem (which can be done because L is twice continucusly differentiable)

cne again sees that:

2
+ ol X, - xoﬂ )

(27) gives (L'(xo))(xn-xo)e S. Siace If'(xo) is continuous and hence
weakly continuous
L™ (x )(Xn T For EyT xo\—l L7 (x ) ((k_,k )
LRSI S
thus for nAR and some weak neighbourhood N of O

N L - X - x
+ ( (Xo))(‘xn *o n 0 ) € weakint S
12, =x o\ e

and
2 .
N+ Lix ) - L{x ) s ol - x )7 € weakint 5.

n - XD“d nxn - XO“

n
% =



£
&

(193]

Since any point of of W =% 1 2) belongs to any given
‘ . 2
“xn"xcu

neighbourhood N of O for n »ny, one has for n an, that

L(xn) - L(x-o)

& weakint S.

2
“Xn - XO“
Proceeding as before

f(xn) - f(xo) - T(g(xn) - g(xo)) € weakint S.

: {

snd ua ES) : : : 3
and using {(3) again singe g is continuous and x — X

N— &
g(xn) - g(xo) c wP(B,g(xo)) ifn » nge
Eence

f(xn) - f(xo) & weakint S + S¢ weakint S.

Thus once again a contradiction has been reached. }

Remarks: (1) Again it is apparent that if g'(xo) is completely

continuous that wP(B,g(xo)) can be replaced by P(B,g(xo)).

(2) If in addition f"(xo) is completely continuous S° can

be used instead of weakint(S). This follows because when g'(xo) is

S B g KA RS

completely continuous g”(xo) is and so, therefore, is L"(xo). One
woulid J(;,hen have
~” -~ o
(L (XO))(kn,kn)) = (L (xo))(ko,ko))‘E 5
which would suffice to deduce that

L(xn) -L(xo) e s° if n 2n

fix - X ©
n ol

(3) Finally it seems worth mentioning that the two part sufficiency
conditions in [123, [17], [183 could easily have been written in
simpler form. This was not done to facilitate comparison with

Guignard's and Zlobec's results.
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Chapter Eight
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CPTIMIZATION IN HILBERT SPACE AND VARIATIONAL g
INEQUALITIES FOR OPTIMIZATION
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Section one: Optimization in Hilbert Space

Tn this section a variety of results specific to Hilbert space
are discussed.  The central adventagesaf ﬁilbert Space lie in the
existence of a unique closest point to a closed convexhset C and in
the fact that dual conés can be more fully described since they lie
in the space ifself.

The first propositions give simplef equivalent constraints
for A(X)EZB when A:X > % is a linear map between Hilbert spaces.

[i] Definition: A densely defined map A beitween twé Hilbert spaces
A Hg'is said to have pseudo-inverse PURT there is a map

satisfying D(AT) = Hé ang

(1) =(a)n(al) r(A)en(a)

(2) s’ =P ATA = P

R(A) R(AT).

A is often called the Mgg;giﬁ;g;gg@ or generalised inverse,

.Such inverses have been studied by many mathematicizns. The
basic prop-erties used here are given in Charnes & Ben-Israel
(1963) which includes an extensive bibliography. Extensions
to non Hilbert spaces have been considered by Hille & Phillips
(1957) amcng others.

[2] Proposition : (Charnes & Ben—Israel)

(1) Every closed densely defined linear operator has a unique

closed psuedo-inverse.

(2) w{a*) = r(a)" = n(alh).
(3) R(aT) = n{a).
(4) (4T = 4.

(5) T A exists AT = AT

Moreover, if A is bounded with R(4) closed, A is bounded and

I T

(6) AT ad = & 1Y A = A,

-1

b
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Propogitvion: Suppose AED [X,i] with R(A) closed then
ixeD if? xeb |

where D = £ (D R(4A)) ®N(A).

Proof: = If Ax€D then axeDNR(A) and AT axeat (pNR(A)),
Using (2) ;E i}

P ‘xeal (Dar(4)),

R(AT)

PN(A)J' xeal (par (4))

and since PN(A)'L = I-P

N(a}"
reat  (DaR(a)) @ w(4),

. . Iy _— AR A
Since A 1s continuous N(A) = N(A; and x&D.

' A
Conversely 1if x&€D

P zesl (D OR(4))
R(AT) S

s0. that .
AT Az e AT {DOR(A))
Using (6) of [2] at (2) of [1]

Ax@m (0N R(A)) = DAR(A),]

Tt R(A) i5 not closed one still has that Ax D implies

ey (par(a))@w(a) |
Definition: @A(X) will be used to denote the closed point to
x in 2 closed convex set A and will be called the projection

of x on A.

The fact that EA is well defined is a standard resuvli of
Hilber‘i: space convexity theory and is proved in Imenberger
(1969). The use of the term projection is suggestive of lincar

projections on closed subspaces to which ihe noticn In [4]

reduces if A is a cloesed subspace.

la!d»;'::{é'd_/z:_ﬂi‘.,, o
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5] Proposition: Suppose £:XsY is compactly differentiable at x,

(6]

and that A:Xs% is a continuous linear map with R(4) closed.
A necessary'conditign for X, to be a strong minimum for f
with réspect to S subject to Ax €D is

(£1(x,)) (R)es Yner(a' (DNR(A)IDW(A),x,).
£ £ is pseudoconvex with respect-to S at X1 this is also
sufficient.
Proof: Since jxeD it and only if x€D this is just [2.24] .1
1f £ is supposed Fréchet differentiable then the cone P can

be replaced by wP when f'(xo) iz completely continuous.

Proposition: Suppose that D is a convex set then if £:3R
g necessary condition for X, to be a minimm for I subject
to Axe D is
. i .
ET(ﬁ,XO) ( £ (xo)) 0
Again, if f is pseudoconvex ai X9 the condition is sufficient.
Proof: It is well known that the nearest point can be
characterised by
/7
(1) (LPAaO—aO, E’Aao-a) <« 0 YacA,
Since D is supposed convex, D s convex and
LA T Fal
P(D,xo) = 1(Dyx_ ).
The condition of [5] gives
(2) (o-(=£'(x))), 0-t) ¢ 0 Nt e(f,x)
whieh on inspection of (1) is equivalent to
—F! =0,
PT@’ Xo) (-t (XO)) 0.1
This result says in geometric terms that the closest point to
the tangent cone for —£'(x,) is the vertex. In the last result
it is apparent that convexity is only used %o replace P(D,xo)

or we(D,x,) vy 1(D,x ).

This gives rise to the following generalisetion,

T T

A B

ety

L ¥

e

AT
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Proposition: Suppose £ : X %R is (Fréchet) compactly
differentiable. A necessary condition for x, to be a

minimm of min £ {x) subject to Ax€ D with A pseudo-invertible

LpP(D,x ) (=£7(x,0)=0
Ty pp,x) 6100 -1

Projections have been studied by‘McCormick & Tapia (1972)
to provide gradient descent methods for solving min £ (x)
subject to xeB, a closed convex set. The most extensive
investigation of projections has been made by Zarantonello

(1971).

Te result of [7] cen be rewritten as follows.
Erﬂ#ﬂﬁiiién; Ity is.any point of X
[PP(J’)‘,xO)(Y)zEP(Af (onr(A)), £t Axo)(A t)® E)N(A)(y)
Proof: x € AT ax @ PN(A)(XG) since R(ATA) is closed by

definition.

(1) P(f,xo) = p(at 0ARM)), & *A(xo)) @na) .

It is clear that the right hand side contains theleft. Conversely,

since N(A) is a closed subspace,
n(at(onr (a),at i )@ W(a)C 126) ;%) which easily
glives (l).

The definiticn of P Implies that

IPP(’D\,XO)(Y) " Poat (pnr(a),at AXO)(A+ £7) Q) Py gy

Corollary: The condition of [7] is equivalent to

(1) Bprpt (o AR(a)),at .lfLXO)(_A_%- 2% (x,)) = 0

(2) Byt (=,)) =0 .1

[0
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If A is invertible (1) jugt becomes [PP(A{]_(D)’XO)(.__—EI(XO)) =0

while (2) disappears. nd if A is the zero mapping (1)
collapses while (2) reduces to :E"(xo) = O which is the
standard resu.ljt for ;meonstra:'med minimization. |

It is apparent that when (Pl) is the minimization with
respec_t to 5 given by (Pl) =min £{x) subject %o g(x)GD with
D closed and convex and g nonlinear there is not the same
possibjlity of complete solution. It is, however, immediate
on setting G(x) = (I - PD>g(x) that (Pl) is equivalent to (Pi)
min Sf(x) subject to G(x) = O.

Unfqrtma‘cely, G need not be differentiable even when g

is. The following differentisl result does hold though.

Proposition: Suppose g: X - 2 is compactly differentiable at

X1 a'@(x_;h) - exists and equals

(g' (XO))(h)~ {PT(D,g(x ))((g’(x))(h))= lPT_.(D,g(X ))((g‘(xo))(h))-

+ . . o
Proof: @ &(x ;h)= %i{bg(xath)—g(xo) - %ﬁ*%g(x; ih) - Cpe(x, ).

4 4+
% L

' : =1
Now im Byl +th)- Ppa(x) = 1m b @ () (glxgtin)-alx, ).
- GOt e tsot

This last equality follows from

iPD_g(XO)(y~g(xo)) = Boy-g(x,) and Ppalx ) = glx,).

From the characterisa’cion_ of TAx one has

(IPAX— iPAy, -y ):: (LPAx— E’Ay, X- [PAX )+ (@Ayﬂ. LDAX’ y— [[:Ay) +

1 P,x- Py “2 A HPAx— I’Ayﬂ 2

since the first two terms on the right are non negative by

f

virtue of (3_) ([P}:{"JG’ ZF{?E) » 0 \‘f‘teA. This now yields

-yt 2P~ By,

-1

914



In particular

O B N I GO YR | By RV G CIOM N
§ | elx, + ) - elx) '—(g'(xo))‘(h)ﬁ .
- |

It is a consequence of (1) or the definition of @A that 3

2 )87 ((elxgrin)-glx,)) = t‘1wb_g(xo)(g(xo+ wn)-g(x ).

7 (0-g(x,)

This was atiributed to Rockafellar by McCormick & Tapia.

Rockafellar also noted that for x€7Z

Ty, T e

(B Pl ) o, ) P O ;

s g

Combining (3) with x = (g‘(xo))(h) and (2) one sees that

>

(8 Py, gl ) (8 ()0 = 283 2ot 3y [l + m)-slc )

Thus

&5

+
g &= ; gt (x Y(m).

o .
o *T(D,g(xo) & Yo
The final equality is a conseguence of Zarantcnello's resuli that

for convex closed cones I - @C = Pc— which is proved later.l

[11] Remark: It is apparent From the proof of [10] that if only

d*g(xo; ) exists,d*G(xo;h) =P d+g(xo;h)-

(0, 6(x,))

% N2l 4n application of [0l to [6] produces the next proposition.

Proposition: Suppese D' is closed and convex in [d then

a necegsary condition for X +0 be a minimum for f(x) subject to
Ax e D 1s

- ¢ =
%trpﬁ (xo g (Xo))L:oJr 0.

A -
Proof: D is clearly convex since D is. Suppose now that d!n £ D

and @' —3 d' . Then d' € A (par(a)) & w4, r' € (pnr{a)).
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The continuity of A implies that st e (D NR(4)) ana
a¥aa' e #Y(DAR(4)) which in turn implies that

d.€ A“{-(D(]R.(A) ). e N(a) ="D. Thus D is closed.

[10] with g{x) = x provides that

iiﬁ#-ﬁﬁ (xo_tf'ixon - Py (xo) = ET(ﬁ, Xo)(—f'(xo)).

The last quantity is O from [6] and this is the desired result.]

The differential condition of [10], while interesting, is
not of mich use in optimization because d G(x , ) need not in
general be convex, let alone linear. The only case in which
d+G will.certa;nly be convex occurs when D is a closed subspace
and thén d+G isrin fact (@Dg)' and the optimization results can
be applied directly. A necessary condition can be developed,

though, using the notion of a projection (constraint) gualification.

Definition: The projection qualification will be said %o be

satisfied at xo if there is a closed convex cone G such. that

By Pg = gy = r(a,x),
f

where ¥ and A retain their usual meanings. Zarantonello has shown
that this implies that GNK = P(A,XO).
The following propositions on projectlons are necessary to

the first order conditions.

D4]'PrGEosition: (Zaréntonello). If C is a closed convex cone in a

Hilbert space then any point x can be expressed uniquely as

x = X, + X5 s XTE‘C’

- = = ,!
XZQC ang x, Ecx, x,, EC;

it
-1

it
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[16]

FProof: . From the projection inequality

(1) (x~ IPCx,c- E’Cx) <0 \{c eC.

Since € ig closed convex cone, O and 2 EPCxO belong to C.
Thus

(x- P.x, P x) = 0.

Cc C
Moreover, C -+ Pyx CC and hence (1) implies xz- [ch eC .

Now lgt X=Xt x5, 2480, %€ 0 (prg) = 0.

Then
x—x1,c—:(1) X,5CX, ) = (xz,c)\(o V c € C
and X, = Ecx, similarly X, = [PC-X'
Since x = Ecx+(x—-[90x) and x— [E’C x €0 and .(E’C‘J_C., x—PC}:) =0

this meens that x- Byx = EPC-(X).E Note that this includes:

P,x = 0 if and only if x€C .

Proposition: (Zarantello) et C,,C, be closed convex cones.

/=
Suppese L'Ec EC fPC [PC then

172 “2 Y1
(1) B, x=P_ P, xif and only if
‘Cgl\G2 01 C/2 ‘
(2) (-, B, x, @, 1P, x)= 0.}
C'l 02 C1 02

1% is immediate that [“IB_] holds for eny x if one of 01,02 is the

whole space or if both 01,02 are closed subspaces. Zarantonello

has proved in addition that if C C are finte dimensional eclosed

1?

convex cones then E)C1n02 = [PG1 EE’02 whenever (31, 02 comnute.

Proposition: Tet H = “?hlh = u+g‘(x), u+ P+(B,g(_}:o)):§,
X = zkkg )) (k) €2(,8(=,))S .
mhﬂn K

4 — - - 1 '
Proof: That K € H is a consequence of {311 of chapter five.

+
Suppose, conversely, that h¢H. Then h =u g‘(}:o) s

~1
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+
u &bl (B:g(xo))-
For any kK, (g'(xo))(k)eP(B, g(xo)) by definition.

Thus (h,k) u+(g'(xo))(k)>,0 and since h was arbitrary HCK .

. . = + =
Since K 1s a closed cone and K¢ H one has X' = H[

The cone G = P(A,xo) will always satisfy the constraint guali-

fication since

tPP(A,XO) t:PK = @P(A,xo)h K~ [PK IPP(A,XO) - GPIP'(J!&,XO) as can be

easily verified. For the purpose of proving a necessary condition

it would suffice to requifl?e that
: 2t (x - -1 '
mP(A’XO)( £ (xo)) B, B (-2 (xo)),
Thig would be satisfied by the cone G = (EE’K(—i“(xO)))_ but,
siﬁce for this cone G one has IE’G [PK(—f‘(xo)) = 0 whether

P

P(A,x ) (;f*(xo)) = 0 or not, it would fail %o discriminate and
would have no chance of giving any useful necessary condition.
For this reason the consiraint qualification of [13] is used
since in ma.riy cases it is also sufficiert.

!
Theofem: Suppose X is a Hilbert Spzce and £f:X > R, g:1X — 2 are
compactly differentiable at a point x . Suppose that G is a

closed convex cone satisfying the projection constraint qualifi-

cation at X,- A necessary condition for X, to minimize

(P) = min £(x) subject to g{x)€ B, x&C is given by

. + + +
1?1 f’(xo) - u ig‘(xo)e ¢, :.LG i (B,g(xo)), where

1:.i‘m uigi (Axo) ) Pﬁfi (XO)'

Proof: Tune result of proposition [71 gives [PP(,& x ) {—i"(xo)) = (.
B b X

The projection gualification gives [Py IPK(—-f'(xO)) =0 or

EK(—f‘ (XO)) c- ¢,

-1
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This is equivelent to 2%(x ) + (I-Bp) (-£'(x.)) €g.

Using [14] and [16 I~ P, _ B

Moreover; ¥F g £ ( =~ P I' (x
1 - 1
s0 that f (xo) et (xo)ee .
This last equation 1s equivalent to the claimed result.l

As a special case of [18] one has

Proposition: Suppose that H is closed énd that
)T R 8(x)) = 267 (3)ix,),
then a necessary condition for min £{x) subject %o
g(x)eB is (1) £'(x )-u g (XO) =0 or (2) v'g (xo) = iPH_f'(:cc)
and f'(xo)GH.

Proof: Since H = H P.x = P- x. Since K = P{&,x ) = P{A,x
—_— HX H o] of?

¢ can be taken to be X and the result follows.)

Theorem: (Sufficiency) Tet £:X —3 R giX —r Z be differentiable

at X, ,Suppoée (1) L EPK(.—f'(xo)) = EP(A,XO) (—f'(xo))

and (2) A is psewndoconvex at xo and £ is pseudoconvex at X,
over A then £'(x ) - Pﬁf‘(xo)e:G-+ is sufficient for x to be
a minimum for (P).
Proof: Working back through the proof of [18]
Pt =
¢ P (x,))

Using (1) % )( -t (x }) = ¢ Bquivalently £ (x ) & P+(_L,:,': ),

P(2,

The result now follows from +the standard sufficiency a _r"\,men'c,l

Remarks:

(1) L8] and 119] can eaua’ily ell be framed for bounded

A T
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[22]

'Progf:. f’(x;o) - @Ef'(xoh)

181

differentiation and weak pseudotangent cones.

e v N
ER R R e

(2) By using s+f'(x0), S+Q Sf/f OE instead of f£' the previous

~results can be adjusted to deal with (P) when £:X — Y and x, io ;
a weak minimm with respect to S. g

(3) 1 ?(A,XO) = 0 then G can be chosen %o be X . This covers | %

the case , for example, when C is a discrete sei and provides an %

example in which G can be considerabl& larger than P(A,xo). ?

An zlternative fonﬁulation of a first crder necessary condi- g

i

tion but one which appears to aveid restraint qualification is %

given by the next‘theofam. ?

Proposition: Suppose x_ is a minimum for {P) then a necessary
condition is given by:
1 —_ ?
£1(x) - Pt (=) € B (2(a,x ).
- - t
(1 - ) (et (x,))

W(_H+)(f’(xo))

ii

it

il

P (£1(x.)).

—— . P S
Then,since x, is a mmlmm,f'(xo)éP (A,xo)

Cana £t(x) - B (n) € P (2 (A ).

?3

Theorem: ILet H=H and G = EP_K(P+ (A,XO))] +. Then a necessary

condition'is | | |

f'(xo) - u+g‘(xq)€E-G+; u+g‘(x0)7= @Hf'(xo).

12 (1) PP (ax ) € P ayx,),
(2) A is pseuvdoconvex at s
iS) £ is pseudoconvex over A at X, ﬁﬁen the condition is suf-

ficlent as well.

Proof: Hecessity follows from H = E and

+ +
Lrg ,_KP (ﬁ_,xo} ]: (P P (A= )
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[24)

[2

5

 Sufficiency is proved by noting that with G = [[P_KP+(A,X)]

182

whence f’(xo) - u+g'(x0)é‘[P_KP +(A,XO)C G+ .

o+
f'(xo) -u+g'(xo)€ G+

g0 that by (1) f’(xo) - u+g'(xo)6_P +(A,xo)

and bemnce  (£1(x,))(0) 3u*((67(,))(2)) Vae2(4,x,).

Since A is pseudoconvex (f'(xo))(x—xo) P u+(g‘(x0))(x—-xo) > 0,

*‘l:{e A.
Which, since f is pseudoconvex implies that xo is & minimum for

T over A.}

Remarks:

(1) Condition (1) iE’_KP+(A,xO)C P+(A,xo) is essentially Cuignard's

sufficiency conditian that A—XO C G because A is pseudoconvex
by (2)
(2) It is only in cases in which G does satisfy some sort of
constraini condifim tha‘t f22] is at 211 useful., This constraint
condition might ac%ually be !P_KP+(A,xO)CP+(A,x0) which is cer-
tainly met if K = P(A,xo).
(3)l MceCormick and Tapia gi_ve an expliclt characterisation of IPC
vhen C is what ..they call a 'pg_s_ifc_ile cone with respect to an ortho-
gonal set in X, That is C Z{X eX kx, gbd) 7 du dgAE aﬂd-((gﬂ;f
is orthogonal in X. In the case that X is positive this allows
ar explicit statement of [22] $0 be made.

The final Hilbert space result uses a series of resulis by

Zarantonello (1971) on spectral mappings with respect t0 non linear

projections.

} Definition: J:X — X is szid %0 te a spectral mapping with recpood
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to a spectral resolution {?QS if J is a mapping which can be

written asg
e
J = J')\d [P
2 T
where (roughly) the meaning of integration is anslogous to that

in the standard (linear) projection theéry. Zarantonello has

'developed a complete theory of such spectral integrals with respect

to projections on convex cones.

@6] Theorem: Suppose f:¥ -3 R is compactly differentiable and
: J:X — X is speciral with respeect to a spectral resolution
{@‘E :-§E %. Suppose that D i1s a closed convex cone such that
A D .

ILA= D for some.DT\in the resoluticn. Then a necessary condition

for x, to minimize £{x) subject to Jx ¢ D is given by

o 2:(0), x,))(2" 1)) = 0

P3
=

where T{x) = % ($ﬁ(x),J(x)) and QT% is the subgradient of the
convex conjugate of T.

Proof: J(i)eb if md oﬁly if (I~PD)(J(}:)) =0

Using IMj J(x)ED if and only if 1 ~(3(x))=o.

3y Lemma 9.1 gf Zarantonello (1971) Eb—J(x) is a spectral map
since J is, and by Theorem 9.8 of Zarantomello

(1) lPD—(ng)_) = %X%(@Dx,s(x)) = %X (x).

It is reasonably simplé-to verify that so defined is convex
from X to R. In fact any spectral map is the gradient of a convex
map.

Wow 0 = @ -7(x)) if and only if 0 = 4 2(x) =22(x)

D ax
and 0 €d92(x) € % 9T (0) by a theorem of Rockafellar (1966).

Hence, using (1),

¥
0 & B ~T(x) if and only if x€dT (0),



[27]

[ 28)

*
Since'gT (O) is a convex set and since the problem is eguiva-
lent to

. ¥
min £{x) subject to x€ T (0),

[6] gives the desired necessary condition.l

‘Remarks:

(1) Spectral resolutions containing eny given P, can be simply

comstructed, as Zaranionello indicates.

(2) Again sufficiency is guaranteed by the pseudoconvexity of
£ at xo.' The constraint set 1s necessarily pseudoconvex at X,

gince 31?(0) is convex.

Section ftwo: Variational Inegualities

“Suppose that X is a ‘convex space and f:X — R is lower semicon-

tinuous and convex. TLet T:X — X' be a given mapping. Let { , )

be the assceiated bilinear form.

Definition: An inequality of the form
(1).@M,uw)$'ﬂv%fwj u,v & domt

is called a variationmal Ineguality and is said fo have sclution u

if (Tuo;uo—v) £ f(v)—f(uo) . ve dont .

The study of such abstract variational inequalities is well devel-
cped in the work of ﬁrowder, tempacchia, Lions and others., The
primary motivation for the study has come Ifrom partial differen-
tiai eguation theory, ﬁut as Browder has remarked (1966,a) there

are very close correspondences with oD

in which £ is just the indicator of a closed convex set.

5 TR

L

AR

St

B

o gt i T e e



¥

185

It will be seen from (1) that a solution to the variational
inequality is equivalent to O€ R(T + Jf). Thus any theory which
guarantees solutioﬁs to operator equations T1(u) = 0 alsc can be
invoked in the variational conbext. Such theorems are usually

somewhat less constructive than the corresponding direct proof of

" solutions to (1) but are generally much more immediate. In this

section 2 brief survey of results from monotone operator theory

. is made and these results are then applied to two optimizmation

{29]

[34]

[31]

problems. For the remainder of this discussion X is a real Banach

space with dual X'.

Definition: (Browder & Hess (1971)) A mapping (multivalued) T

from X into X! is said to be generalised vseudc-monotone if the

following holds:
For any seguences {u”§'in X and {%.E in X'with w.€Tu, u, > u
d J J J J o
— i — -
wy = such that limsup (wj,uj uo)$(h w €Tu  end
(Wj’uj ) — (Woauo)-

Definition: T:X — X' is said to be mopotone if

(w—v,x—-y) 20 Vx,yéD(T) \{W ETX,VveTy.

Definition: T, ie said to be maximal monotone if G(T1)(.(X,X')

1

is maximal among the graphs of monotone maps G(T); or egquivalently

: \Q’ Y : ; ) ( ) e T

it (Z—w,u-—v) >/ 0 uc’cD(T) and¥z €Tu implies veD(T,) and we Tv.
Erowder and Hess have proved that any maximal monotone map

is generalised pseudomonotome s0 in particular any subgradient

map is generalised pseudomonotone. ¥eximal monotonicity of such

neps was proved in Rockafellar (1970).
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BQ] Definition: ILet T:X-}X‘be g multivalued map. T is said to be

B
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[351

quasibounded if YM >0 there exist X(M) >0 such that if weTu

and (w,u) €M nuit  , Hull £ M then Wwt € K(M).

Definition: T i3 sfromgly guasiboumded if for each M> O there

‘exists K(M)? 0 such that if wéTu and (w,u) {M, tut € ¥ then

Hwk < x(M).
In addition to bounded maps strongly guasibounded maps include

L] .
those maximal monotone maps which have 0 €D(T) (Rockafellar (1969).

Definition: T is coercive if there is a map ¢t R —» R with
tim ¢{r) = w0 - such that (w,u) 2 c(f uilf) i ulf \V’(u,w) €c(r).
Fals - -

With these definitions one can siate the following theorem of

Browder and Hess.

Theoren: Let X be a reflexive Banach space and T be a maximal
monot?ne map from X into 2}Cl with 0€ D(‘I‘). Tet TO be generalised
pseudomonotone and coercive with the property (2) that T is
regular, that is R(TO + TZ) = x’ for any bounded, everywhere
defined, single—valued maximal monotone mapping T2. Suppose
further that 'I.‘O ig guasibounded or T is strongly quasibounded:
then R(T  + 1) = X'.§

From the previorué discussion it is clear that this includes

the result OQR(TO + "w_r'o + o), fv_o ¢ X' when the conditions on T

hold with T =@f. For these maps, therefore, one has a solution
wyoeTu, to

(3) (WO—;:O,uo—v) £ f(v)—-f(uo) \{-fve domf .

186
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If in fact one only wishes to solve (3) with Tv'o = 0 the

coercivity coﬁditions can be weakened in many situations.
For -example, in the case that T is guasibounded and oer(0)
the condition: 3 M, > (Tou,u)>0 it du > M, , suffices
as can be seen by inspecfing the proofs'in Browder ahd Hess.,
Many glterations are possible in the type of thecrem that
can be proveds Browder and Hess (1971) and Mosca {1969) provide
more than énough variations to indicate the depth of the subject.
ﬁosca‘s paper which deals with approximatioms of inequalities
provides-conditions under which monotone mappings,which are
no% necessarily maximal, can be used. |
With this brief discussim behind one can turn to the use
of variational inequalities in optimization. The most immediate
example i1s provided by the notion of the subgradient itself.

Ag has already been pointed out any variational inequality can

be considered as a statement that the subgradient of £ contains

vectors of'certain forms. Within this framework it seems worth

noting the following theorem which relies on a result of Rocka-

fellar {1970,c) that:

Propozgition: If K(u,v) i5 a convex—concave semicontimuous saddle
function then 0K is maxrimal monoione where d X denotes

dE(u,v) = (9%,~-K). This last notation is used 10 demote the
sﬁm&wdmﬁgaﬁaﬂsofK(fﬂzmdAﬂu,)bmhofﬂﬁdlmf

convex, functions.

Theorem: Let X = (Y,Z) where Y and Z are reflexive Ionach Sprceo.
Let K(y;z) be g convex-—concave semicontinuous saddle funciion on

X into R. Let'To be & coercive generalised pseudomomotone mud
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- satisfying (2) of [35] . Suppose that either

(1) T is quasibounded and (0,0)€D( %K), or
(2) 0K is strongly quasibounded (i.e.(O,O)E‘DO(gK)).

Then éiven any (y'o,z'o)e X! there exist (yo,zo)GD(gK)

similtanecusly solviﬁg

(32) K(y,2,)K(y_,2,) %", = 1,2 (7,:2,):7 = ¥,)
(30) ®(y y2)-K(y,2) £(2t ) = W2 (v,,2,)52 - 2)

49 1T2, are the projéctions of

for all (y,z)& (Y,Z) where T
X on Y:Z' respectively;
. = 1 -
Proof: (33.). can be rewrliten as ¥y 0 Tf1TO € gyoK(yo,zo)
Azt - g =
and (3‘0) as (z o H2To)€gzo K(yo,zo),
or using [37 (3! ,2' ) - (W2 (25,0, 7,0 (x ,7,)) EgK(yoyzo)-

This in turn is equivalent to requiring that R(T +3K) = X'.

[}

By 371 X is maximal monoteone.  An application of the Theorem
of [35] gives the desired results.}
Note that (0,0)€D@K) if and only if K has a saddlepoint

at some point (yo,zo). since the existence of such a saddle point

is equivalent to
K(y,2,)&(5,,2,)> (7-7,,0)
«(y,,2) - (K(y,,2.)) € (22,0)
which in -t-u_rn says

0€dx(y,2,) | ¥ 0 edx(y,,2)| =,

o]
ox (0,0)€ 9&(y,s2,)-
t is simple to verify that if To(y,z) = (T_iy,i[‘ez) and T, T,
¥

are both coercive, strongly quasiboumded generalised pseudo-~

monoctone then TO haz these properties. It is clear that [:8}

includes the standard variationzl inegualitly =zs the case 2 = 0

in which case (3b) is vacuously satisfied.

18
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. Theorem [38] might be said to give solutions to a pair
of coupled variational inequalities with the coupling teking

Dlace TO.

Te next results retﬁrn to simple variational inegualities
and to a discﬁésioﬁ of the oompiementarity problem. Suppese that
-C is a closed. convex cone in a Banach Space and that T:X — X! is
a single valued mapping which will subsequently be required to
be of various monotone <types. The complementarity problem is ﬁ
&efined to be: (P) minimize (Tu,u) subject to Tuec’, u € C.

| ’lhié problem finds its origins in linear programming when
gliven an n vecltor b and an nmxn matrix M one wantsto find y,x ¢R°
such that "y = Mx + b and (yi,xi) =0, 1= 1,.,n.

Karamardian (1969) showed that when C<E" and T = £ ¥was

et t e 3B

 continuous and satisfied (f(u)wf(v),u-v) >k u-vif 2 o C that

the minimm in (P) is O,

5 Gy

Bazaraa {et al.) (1972) have showed that 0 is the minimum

when T is bounded hemicontinuous and satisfies C CD(T) and

el

(Pu-~Tv,u—v) > | w1l ) it u=v I  for some strictly increasing

o with lim A(r) = o .. This property is called O -monotonicity.
T2 o0

Their proof relies on variationsl inequalities proved in

Mosca (1969) conceming perturbations of mappings satisfying the

AL | S OIS I SR Eoym

" various conditions listed above. In the case that T is every-
where defined, such a T is maximal monotmme and their result is in-
cluded in the following results.’

Generally, one has:

[39] Zroposition: The solution 4o (P) is 0 if and only if there ig
a solution to the variaiional insgquality {Tv,u-v)z 0 'ﬁ{uf C.

<
. s 0 as Cco L,
Proof: Note first that seiting £ (u) = : o ol hon Tha
bl c o . C
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form of [28] {1). Suppose v, is a veriational solubion, then
(Tuyu) € (2u ) ‘¥ u €c. Since 0 € C, (T ,u )< o.
For any A»0 ')\uOQ C since C is a cone.
Tous N9 0

 (tau) € M)

which is impossible wnless (Tuo,uo) = 0., This in turn implies

v o fm ~ ~ e T 2
Cthat (Tu,u) % 0 Y ueC  or equivalently that Tu € C .

Conversely if (Tuo,uo) =0, Tu & C+, u € C then

. +
(Tuo,u-uo) = (Tua,u) 20 Vue € since Tu, € C .

Finally since u & c, U,

iz actually a sclution to the vari-
atimal ineéuality.i

Arsolution to (Tuo,uo) == 0 must be 2 minimum for (P) because
Tue €, ueC implies (Tu,u)3 0. The solution will be unique if
Ty "—-v}',\o u # v, since with u ,u, &€ CyTa , T, € ot
(Tug,u ) = (Tu,,u,) =0 implies
(Ta,-Tu,u-n ) = ~(fay,u) = (Mg,u,) <0

Thus one has, using the remark of [36]:

[40] mheorem: (P) has solubion u_ with (Tuo,uo) = 0 whenever T is a

guasibounded generalised pseudomonotone mapping which is regulor
and satisfies (Tu,u) €0 if jull < 1L

Browder and Fess (1972) remark that for a monotone map,
regularity is equivalent to maximality when 0 €D(T) so that [40]
includes all maximal monotone maps with O €D(T). |

If one reguires a stronger property than generalised pscudo-
monotoniclty then regularity is not needed in [40} « The defini-

tion is initially due to Brezis {1968).
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Definition: A multivelued mapping T:X —» X' i3 said to be
pseudomonctone on .C € D(T) when

(a) Tu is a nonempty closed convex subset of X if u € C.

(b) Tl is upper semicontinuous zs a muJ._’civalued mapping from
C NF into X with the weak ftopology for any finite dimensional
subspaée F.

2 S LS TR - . -
¢} Whenever Ju.¢*C C u, .1 ,w. & Ta. then
\e) T J(g‘ 0?73 j

J
1imsup(wj,uj-, u) € 0 implies that for each v€ C Jw(v)e Tu with

limin;f(wj,ujuv) % (w(v),u-v).

Definition: A single valued function T:X —» X' is said to be

demicontinuous if X, ~>» x implies Tx_.n —= T

while T is said to be hemicontinuous, if
2(tx +(1 ~%) x) — Tx vhen t - 1.
Progoéition: A single valued hemicontinuous monotone mapping with

¢ CE(T) is pseuvdomonctone on ¢ if (‘1) D(T) is open or (2) if D(T)

is a dense subspace and T is locally bounded.

Proof: (a) is immediate since T is single valued.

(p) Kato (1967)(1964) has shown that hemicontinuity implies
demicontinuity for a class of sets D(T) which include open sets
and includes dense subspaces when T isg locally boiunded. Demi-
continuity is clearly sironger than the continuity properiy of
[41) (v).

(c¢) Let {uj% C C with us -~> 1 and suppose
Tim!

(Tuj,uj-—u) £ 0. By monotonicity and G € D(T),(Tu,uj—u) S(Tuj,uj—-u)

which means that
T, ,ul-u) -5 0,
( J? J )

Let x be any point in C, Then

('I‘uj,uij) = (Iuj,ujﬂz) + (i‘us SU-X )

b
£
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[43]

[44)

1

so that
Lining (Tu,,u,-x) = 1imin® (22, ,ux)
Also (Tx,uj-x) < _(Tuj,uj—x) so that

(Tx,u-—x) £ limint (Tuj ,u—x).

Tet v € C and let x, = tv + (1-t)u which since C is convex is in

t

Cc D{T). Sebting X, = X

(TX+’u_X+) ‘g lj_tﬂj_nf (Ttl_-l ’u“x+).
%) L7 'J v
Since T is hemicontinuous

_limet-—-T'u
t —o0

and

(ma,u~v) € liminf (Tujﬁumv) = lim (Tuj,uj——v)
and T is pseudoconvex on c.t
For pseudomonotone maps one has the following theorem of

Browder and Hess, which they prove directly.

Theorem: Let X be a reflexive Banach space, and C a closed convex

subset of X with T pseudomonotone on C. Then 1f
(1) wé& Tu, and (w,u) £ 0 implies B ulf € M for some M0,
there is a selution uof; C, w0€~_ Tu to

(Wo,u“uo) 20 \/ u€ C.
Proof: DBrowder and Hess prove this theoram for T coercive and
assert that (wo‘_;;,u—uo) > 0 Yu€cC has solution for any we X'
Tnspection shows that their proof holds for the present theorom.{
Note, conversely, that coerciveness of T would provide that
P satisfied the hypothesis (1) for all we& X'.

Using [42] , 139] one has as a corollary

Corollary: There 318 a2 solution wo

. . . +
(Tuo,uo) =0, u, &€ € M &C

o
e

i
!

3,

PHRP—
&Rt
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whenever T is hemicontinuous single valued monctone satisfying

(1) (m,u) >0 if hufl >

and either (2){a) ¢ < D(T) and D(T)} is open or (2}(b) 7 is

T T T e e

locally bounded with D(T) 8 dense subapace.

[45] Remarks:

in fact shows {‘:964) that D{(T) need only be'auzsi dense™

-

f \ a
V1, EKat

-

Q
R

1
in {2){b) by which he means for each u € D(T) there is a dense

subset Mu in X such ‘t‘ha‘c for each v & Mu u+ tv&D if

AL R R TR R TR AT T MY AT o T Bt

0 <t <€&(v). In this circumstance hemicontinuity and local

boundedness still imply demicontinuity.

by
H
f

(2) Any ol -nonotone T satisfies the condition in (1) so that for

D(T) quasidense [#47] includes the result of Bawaras et al.

TN T

e

[46) The variational inequalities theorems discussed above are all
valid Tor T multivalued so that they all provide solutions to

(P1)0€(Ta,u ) ™ac £ F , ued

R A L

which might be considered as the multivalued nonlinear complementary

problem. :

Bazaraa et al. note that their method; which as was already
noted relies on Mosca's approximation theory and which doesn't
appear to have direct extension {0 non monotone mappings, &lso
gives information on approximation, perturbatim and continuous
dependence of solutions. The perturbation theory for the varia-
tional inequalities discussed above is buried in the operator
analysis. The penultimate results of this section use a pertur-
bation argument directly o establish the existence of a soluiien
t0 the complementaritly problem for generalised ngeudononotone

merpings which are demicontinuous and sati



[47]

48]
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monotone type condition.

Definition: (Hess(1972)). A single valued map 0% -> X' ig said
$0 be of type {P} if whenever un --‘su0 then

1imsup(Tun,un—uO)>/ c.

Definition: J:X — X! 4s cdlled the duality map and is definegd
by

Ju={ve X! l (u,v) =.Hu vt vyh o, iyl = il E.

It is kmowm (Hess(1972)) that every reflexive Banach space X has

an equivalent norm in which both Y snd X! are locally uniformly

~ convex and that with these equivalent noms J is single valued

[49]

and demicontinuous,

Theorem: TLet X be a reflexive Banach space and let T:X -—= X!
be a demicontinuous Yype (P} mapping then
T,A= T +AJ 1s psevndomonotone on any closed set contained in

D(T) when X, X' have the locally uniformly convex norms mentioned

above,

Eroof: J i's single valued demicontinuous so that I~ is also
N2> o

J 1is kmown to have the property that whenever uj — u,
and 1iminf(Juj,uj-uo)\‘§ 0 then Uy => u . As Hess remarks it is

straightforward to verify that T\\ shares this properity. This in

turn allows one to verify thai T\A is pseudomonotone on any closed

Teorem: Suppose X is a reflexive Banach Space and that



¢
7

mow  (Dugun) = (Ta,ul) +1(Ju;\,u?\)_= (Tuy,y) + gl
S0 ﬂlat "‘('-A > 0

T:X — Xl satisfies the following properties for = closed convex
cone C.

(‘I) T is generalized pseudomon_otone on Ce.

(2) T is 4ype {P) on C.

(3) T is demicontinuous on C.

(4) T iz quasibounded on C,

{(5) 1£ (Tu,u) €0 and u<C ‘l:he;l tun £ M. Then there is

a solutlon u, to the complementariiy problem with (Tuo,uo) = 0,

Proof: “There is no logs in assuming that X and X' are locally

wniformly convex gsince all the hypothese are invariant under

equivalent norms as is the conclusion. [49] then implies that

T’A is pseudomonotone on-C and coercive. Using [43—1 there is

a solution u-}‘(— C to

: ' +
(T-Au}.,ui)‘) =0 u,>_6 c, ’J}_Aux_cc .
2

(7 _u.)' ,u_A) £o0.

Property (5) implies that {u)ﬁ is bounded set in C.
Since X is reflexive there is some sequence }ﬂ =0

with u =u —_~ Uge Uy belongs to C because € is convex and

P
n

one has, by (4), H_Tun i € k(M) so that for some subsequence which

will not be relabeled Tun - L

) +
Since T'P\nun z ’l‘un + )nJun c C

and i T%un ~ty = R = A u L DN

fr.uw - 'Iunﬁﬁ%o and since Tu —> W,

7}111

195535

cloged znd hence weakly closed. Using (Tun’uh) \< 0 and \1un W< M

AMRSA AT e, ST T s
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+ +
% un—l woe C as again C is weakly closed.
al

.Now (’_l.‘)nun,u\r1 - uo) £0

because u, £ C and (T} un,un) = 0, Thus one has
= - <
(Tu_,u uo) +'>~n(Jun’un u ) 0.
This in turn implies that
13_mlnf(Tun,un-—u0) £ 0.
- all €
because T ~» 0 and i (J—un’un uo) 1 s; IR U (R uOH <M

Since T is generalised pseudomonotone and w —Luo,Tun - W,
one may conclude that Y, & Tu, and that

‘ (Tun’uﬁ) - (.Tuo’uo)'

N : +

Finally (mo,uo) > 0 because u € Cand ™u € G, but
because (Tun,un) K0 one has actually that

(Tu =0 u e¢, T & C‘+'

\ O’uoj - fo) & s Ot 1)
Remarks:
(1) This result with D(T) = X is contained in [35] because one

can show that a demicontinuous everywhere defined type (p)

mapping satisfying the condition (Tu,u)> ~k Wull is regular.

{2) For 1501 to add any new resul® it must be ascertained that
mappings can satisfy [50] without being pseudomonotone. This
would appear to be possible since one can envisage examples in
which u ¥ u, tut $hu;f is untounded. Note that it is only
in thisg case that the requirement that T be iype (P) o C is not
implied by generslised pseudomonoetoniclity on C.

(3) Conditions {4) and (5) could be combined into the weokoer

conditicn that when u€ C and {Tu,u) < 0 one has Yu \§ &

and ¥Tul < X(M). Trivielly any strictly monotone map with

1-

19C
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7(0) = O satisfies this condition.

I% seems WO:th emphasising that any continuocus finite di-
mensianal mapping is pseudomonotone so that [43] holds for ell
these mappings. Karamardian (1972) has -shown that the comple-
mentarity problem is solved in Rn.for any continuous f satisfy-
ing (x,2(x)) = O when x€E N { x |t M?S while [39], [43] in-
cludé any continuous map satisfying (x,£(x)) > O when x € C end

pxp > M.

Since lower semicomtirmous convex functions have maximal
monotone subgﬁadiénts one might =ask if weaker convex type
functions have associated with them any monotone type operators.
In any case whefe, for instance, the derivative satisfies some
monotonicity regquirement one immediately has the whole of meno-
tone operator theory as an adjunct for proving op ;
A Tentative s%art in %his direction is provided by the following

4two resulis.

’PTODOSitiOE: et X De = reflexive‘Banach space and let £f:X — R
be a compactly differentiable quasiconvex mapping. Suppose that
£1(x) is bounded as a funciion of x and is completely combinuous
2t any local minimm. Then £1(x) is type (P).

Proof: Suppose X, —> X . In the case that x is & local minimum
f‘(;n) - ff(xo) by hypothesis s0 that
1im(f‘(xn),xn—xo) = 0.

Suppose now that X is not a local minimm. Since ¥ is continuous

and quasiconvex £ 1s lower semiconbinuous in the weak topology

gnd liminf f(xn)>,lf(xo). Bquivalently,

it n >/ no, f(y_'o) "'Gn‘{: f(%)

= oo



.
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whei'e{ﬁ n% is a sequence of positive numbers converging %o
Zero. DBecause X is not a local minimum one can find, for

€ < Gno , a sequence {yx;%vmth y, — X, and such that for

n?,n1

e ) 2 2(x) ~e % £2(y).

Since ¥ is quasiconvex and differentiable one has for n 2 n,

| f'(xn),xn—yn) > 0.

Thig in turn leads to
(e (x )yx =) = (£ Dz )+ (et (-2 ) ) (210 )y )
This last term co;rver.ges to zero because ;3—"1_1 — X, and since
.-ff‘(xn)r‘; being. the image of a bounded set is bounded by
hypothesis. Thus liminf (f'(xn),xn—xo) » 0 and £ is type (P).1H

As an application of this result one can prove that solu-
tions exist for the following kind of variatimal inequality.

' (Tuo.u~uo)>} 0 iz f£(u) gf(uc).

Theoremn: | Let X be a reflexive Banach Sp‘ace and suppose f: X =5 R
iz guasiconvex with a demicontinuous type (P) derivative. Let
T:X — X' be an everywhere defined hemicontinuous monotone mapping
satisfying (T u-T _v,u—-v))/B( nu=vh ) J§ u—=v Il for some strictly
increasing-B with B(O) = 0 B(DO ) = 00 . Suppose that
(£1(x),x) 2 k) xlf for some k>0 and lixif > M, then there is
a solution to "
(Tuo—;;,u—-uo) >0 Yue L(uo) = %u[f(u) £ f(uo)’i .
Proof: Net T, = T + £'. Since T is hemicontinuous menotone with

1

D(T) = X 5 T is demicontinucus and T, is demicontinuous. Suppoase

1
e (P)

£

4y
Ly
.

el

¥ - % and 1jmsup(i[‘ Xy X =X )-{.’ 0. Since £!' is assume
n o] 1 n o

one must have ljmsup(Txn,xn~xo)\<O.
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Bat (Tx % - ) 2 (e % =2 ) + B(Jix = U )1 ~x 1) ana
hence limsup B( | %, =%\ ) x ~x M = 0. Suppose that
X, > x, then for some subéequence{x'zfs ﬁxtn—xoli 7‘,6 Y0
which in turn  means that limsup B(tx —x i ) fx -x Il » Ble)e>o.
Thus Xn — xo and as m previous resulté T1 must be pseudomconotone.
‘Since T is B- monotone and (£'(x),x)> -klix!l, one has

(T.Eu,u) 2 (1 oo,u) + (£1(u),u) + BOI uw ) {l oy
p (B(- B } - To k) full - if yuyz M and T1
is coercive.
Applying [43} with ¢ = X one sees that there is a solution to

10

ru =7 Y Werx.
Tet u & L(uo) then (Tuo —-w,u-uo) = —(f'(uo),u—uo) 20 since
£ is quasiconvex. i

The condition (£'(u),u) 2 -k |l ui  is always guaranteedq if
there is a global minimum for fat o as .one then has
(£t(u),u-0) 20 Yu c{u [ 2(a) > £(0)% = x. Tt is clear that
the condition can be satisfied without any such minimum existing.

In more general terms the theorem opens up the question
of when one can find a solution uo(—j C(uo)

(Tuo,u-—uo)z o v uéC(uo). (That is, when ¢ (u)
is a convex set \;.rhich.varies with V.. )

The last remarks of this chapier convern the solution of
generalised variational inegualities. Specifieally, sunpese
T:X—=3 [X,Y] and thét S5 ig a closed convex cone with interior
in X. OCne can ask for solutions 1o

(1) (Tuo)(u«uo) & - s° Juec or to

(2} (Tuo)('umuo)és Vau e,

Conditions for solution of (‘!) are easily obizined tut (2,_.

which appears more Interesfing, also appesrs much less tracintlio.
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A particular example of conditions for (1) <0 be sclvable is

. . e o 4+ ot F o
given by reguiring that for some nonzero ué€sd , u T satislies
the conditionsof[:433. tronger results cen be proved by using

the natural generalisations of the concepts of this section.
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