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Abstract and Outline

Bessel functions are among the most important functions in
mathematical physics and the theory of special functions.The
ability to compute their values is equally important.

The standard method of evaluating the Bessel functions has

been to use an ascending series for small argument, and the
asymptotic (but divergent) series for large argument. In this
talk, we describe a new series (based on arc-trig series) that
IS geometrically convergent in the number of summands, with
explicitly computable error estimates for the tails.

 Motivation and Context (JMB)
e Earlier Talk on Laguerre Asymptotics

 Our New Algorithms (O-YC)

 Preprint related to Current Talk

Moore’s Law
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Motivation and Context

A primary research motive for providing effective asymptotics lies in a beautiful Laguerre
series for the incomplete gamma function (see [1]), namely [14]

[Na,z) = 2% * 1_&
Z+ i
L+ 2—a
ZT 14
_ i (1—a), 1 (5)
= (DML () 209 (-2)

where (¢)p, := c(c+ 1) (c+ n — 1) is the Pochhammer symbol. This series is valid
whenever none of the Laguerre denominators has a zero. Thus an interesting sidelight is
the research problem of establishing zero-free regions for Laguerre polynomialg (see our
Open Problems section).

This was needed by Crandall to perform high
precision computation of Riemann-Zeta, say near
(1+1019,1+2-1019) to treat primes around 102°




Motivation and Context

For example we obtain the large n asymptotic

LG (—2) ~ Sala,2) (14 O(m™ 12 (3)

where the sub-exponential term S is
< =L N .
nla, 2) 1= 2 /r 21/4-af2 ppi/atal2 (4)

In such expressions, R (\/mz) is taken to be +/m|z|cos(8/2) where 8 := arg(z) € (—n, 7]
(we hereby adopt the convention arg(—1) := 7), and so for (a, z) € D the expression (4)
involves genuinely diverging growth in n, due to the sub-exponential exp(2+/mz) factor.

What we seek are effective bounds, for example to replace a logical error-bounding
statement for an expression £ in the following way:

{E =0 (\;a) } is replaced by {E < \/—% for m > mf} ;

We manage this in part by finding the most
effective contour for Laguerre polynomials
experimentally (C_1 dominates)

A




Motivation and Context

ch.10. Bessel Functions

Properties: Bessel and Hankel Functions
§10.1. Notation §10.3. Graphs and Visualizations

§10.2. Definitions

Contents
§10.2(i) Bessel's Equation
§10.2(i)  Standard Solutions
§10.2(iii) Numerically Satisfactory Pairs of Solutions

§10.2(i). Bessel's Equation

10.2.1 ) d%w d_w )

This differential equation has a regular singularity at z = 0 with indices + v, and an irregular singularity
at z = oo of rank 1; compare §§2.8() and 2.8(ii).

§10.2(ii). Standard Solutions This IiDSLVI\\//IhI?t X:;S
new
Bessel Function of the First Kind pI‘OVidES ( )
10.2.2 k
Ju2) = (32 Z(— m (with metadata
suppressed)

This solution of (10.2.1) is an analytic function of z € €, except for a branch point at z = 0 when v is not
an integer. The principal branch of J,(z) corresponds to the principal value of (% Z) ' (§84.2(iv)) and 1is

analytic in the z-plane cut along the interval (—co, 0].
When v=n( € Z), J,(z)is entire in z.

For fixed z ( # 0) each branch of J,(z) is entire in v.

http://dImf.nist.qgov/X/
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Motivation and Context

Inter alia we obtained expressions for J, (and |,) at integer order:

? — , _
Jnlz) =~ > gr(—2in) (bpcosx — cpsiny) (66)
E=0

with angle

k
X:i=z—1mn/2—mn/4, g (7) ;:H7-2+(2j_1)2
and the coefficients by, c; determined by i=1

by 1= 19,13(1722)6@”/£l + Bk(—iz)e_iﬂ/'ﬁl,

icp = B;{t(z'z:)eiw/d1 — B;c(—’iz)e_m/él.

Note that if z i8 real then each bz, ¢ 1s real, whence our series here has all real terms.
Note that our recursion (45) likewise ignites a recursion amongst the bg, cy.




Motivation and Context

This development depended critically on the following exp-arc expansions:

For any complex 7 and = € [—1,1], one has a remarkable expansion :

eT arcsinz __ z_: Z_ (1>

where the coefficients depend on the parity of the index, as

Tomi1 (T H 2+ (25 — 1) ) Tom (T) := H (72 + (25 — 2)2> :

By differentiating with respect to x we obtain

e’ arcsin x k

x
—— ISy
T k=0 k

valid for z € (—1,1).

| learned (1) from Ramanujan and
Berndt while doing number theory




Motivation and Context

We noted more generally, for z and v having positive real part, that

1 T . ] i
I (z) = —/ cos(vt — zsint) di — S0T) / e vi—zsinht gy (68)
0 0

Fis w
with a corresponding representation

1 T . o0
L(z) =~ / 705t st it — SEUT) / g~vi—zoosht gy (69)
0 0]

F w

itself valid for the same cases of z,v. One wonders whether an exp-arc approach can be
used to resolve the integrals here—which contribute when v is not an integer—as exp-arc

series.
The paper concluded with several open questions: notably

e It would be useful to establish the very most efficient way to calculate J,(z) with
our converging series (66) and to know, for given arguments n, z how many terms of
the exp-arc sum yield b good bits in the answer for J,(z). It should also be possible
to extract the classical ascending series for .J,, directly from our converging series.

e Can the integral pieces of (68, 69) be resolved as exp-are series, to provide even more
general, universally convergent I,.J series (i.e. for noninteger v)?

And this is what we now consider ...
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For any complex pair (p, q) and real numbers «, g € (—7, ), let

s
Z(p,d, o, 3) ::/ @ dwapcoswy

o
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For any complex pair (p, q) and real numbers «, g € (—7, ), let

C
I(paCI,Oé,ﬁ) ::/ @ dwapcoswy

o

Then we have the absolutely convergent representation

[e.e]

.y
iap 9 sin 5

I(p, 4, 8) = = > 7rk“i(|2'q)/ azxke’szzdx,
q k=0 ; sin7
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For any complex pair (p, q) and real numbers «, g € (—7, ), let

C
I(paCI,Oé,ﬁ) ::/ @ dwapcoswy

o

Then we have the absolutely convergent representation
ieP o= 1, 1(—2iq) sin’3 2
I(paq)a)ﬁ):_z;/ Xkeisz dX)
q k=0 k! sin%

where

D. Borwein, J. M. Borwein, O-Y. Chan Effective Computation of Bessel Functions, Part Il



For any complex pair (p, q) and real numbers «, g € (—7, ), let

g
I(p’q’a,ﬁ) ::/ e_lqwepCOSwdw.

Then we have the absolutely convergent representation
ieP o= i 1(—2iq) sin 2
I(p’q’a’ﬁ):_zﬂi/ Xkeisz dX,
q k=0 k! sin%
where
m m
amaa(v) == v [[ (P +@ - 1), ran() =[] (2 + (@ -2)%).
=1 =1

These are, you may recall, the coefficients in the series
expansion of exp(arcsinx).
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In particular, for the case where («, 3) = (—7/2,7/2), we have

1(p. )= 7(p.0. ~r/2,7/2) = 2= Y 2y ),
k=0 ’
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In particular, for the case where («, 3) = (—7/2,7/2), we have

1(p. )= 7(p.0. ~r/2,7/2) = 2= Y 2y ),
k=0 ’

with

l/\/i 2 1 1 1
Bk (p) ::/ xXe=2P gy = m/ e PUuk~2du
0 0
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In particular, for the case where («, 3) = (—7/2,7/2), we have

1(p. )= 7(p.0. ~r/2,7/2) = 2= Y 2y ),
k=0 ’

with

Bk (p) := vz 2k 72px2d _ pu k- 2d
k(p) == S x“e X = u

2k+1\/_ /

B e P 1Y\ Bk-1(p)
T p2eiyz (k - 2> 2
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For integral order, we have from the Laguerre paper

= zi (e_i”“/ZI(iz, n) + e"/27(—iz, n)) ,
T

dn(z)
and

Ih(z) = % (Z(z,n) + cos(mn)Z(—z,n)).
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For integral order, we have from the Laguerre paper

Jn(2) 1 (e_i”“/ZZ(iz,n) +ei””/21(—iz,n)) ,

T 2

and

Ih(z) = % (Z(z,n) + cos(mn)Z(—z,n)).

As Jon mentioned, we want to use the integral representations
to get expressions for general v.
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|The integral representations are: |

1/ . sin o0 .
Ju(2) = —/ cos(vt — zsint)dt — —— 2~ / e-vi-zsinhtgye
0 0

s 7T

Yu(z) = %/0 sin(z sint — vt)dt

1 [ _
- —/ (e”' + e " cosvm)e 2sMgt,
TJo
1/ sinum [
l,(z) = —/ eZcost cospt dt — gzoosht—rtge
™ Jo T 0

> —z cosht 1 /= —z cosht—ut
K.(z) = e coshuvt dt = > e dt.
0

—00
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The integrals on [0, 7] can be expressed in terms of the 7
function. Specifically,

J,/(Z) = % (efimr/ZI(iZ’ V) + eiwr/ZI(iiZ’ V)) B Slnﬂ-yﬂ' /0 .
YV(Z) = Zim (e*iuﬂ/z_’[(iz,y) — eilﬂr/ZI(—iZ,V)> — %/0 -
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L(z) = % (Z(z.v) + €7 T(~2,1.0,7/2) + € *"T(~2,~1.0,7/2))

sinvmr [
™ 0

1 .
=5 (Z(z,v) + cosvnZ(—z,v) — sinvrZ *(—z,v))
7r

sinvmr [
s 0 ’

z © ;
zi r2n+2(2lv|)B l(Z)
v o= (2n+1)! n+3

where
I*(z,v) =

D. Borwein, J. M. Borwein, O-Y. Chan Effective Computation of Bessel Functions, Part Il



To get the generalizations we want, we basically just need to
evaluate the infinite integrals.

Let us look at the integrals in the J and Y cases. A change of
variables plus integration by parts gives us

* inh 1 z [~ inh
/ e—vt-zsinhtgy _ = _ _/ e—2Sg-varcsinhsye
0 0

v 1%
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To get the generalizations we want, we basically just need to
evaluate the infinite integrals.

Let us look at the integrals in the J and Y cases. A change of
variables plus integration by parts gives us

* inh 1 z [~ inh
/ e—vt-zsinhtgy _ = _ _/ e—2Sg-varcsinhsye
0 0

v 1%

The expansion of e~»a¢sinhs ghoyt s = 0, used in the finite
case to obtain the series, is only valid on [0,1).
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For large s, it makes sense to expand about infinity!
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For large s, it makes sense to expand about infinity!

The series, valid on (1, c0), is

o
_ - An(v)
varcsinhs — Z n

v
s’e 2n

n=0
where Ag(v) =27V and forn > 1,

(rv+2n-2)(v+2n—-1)
an(n + v)

An = - Anfl,
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For large s, it makes sense to expand about infinity!

The series, valid on (1, c0), is

o
_ - An(v)
varcsinhs — Z n

SZn ’

s’e
n=0

where Ag(v) =27V and forn > 1,

(rv+2n-2)(v+2n—-1)

An_
an(n +v) -1

An:*

from which we easily obtain

(D)2 "(v+n+1)_1

An(v) = 2201
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Note that when v is a negative integer, we have problems with
the recurrence.
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Note that when v is a negative integer, we have problems with
the recurrence.

When n = |(1 —v)/2], the numerator is 0. When n = —v, the
denominator is zero.

Effective Computation of Bessel Functions, Part Il
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Note that when v is a negative integer, we have problems with
the recurrence.

When n = |(1 —v)/2], the numerator is 0. When n = —v, the
denominator is zero.

In this case, An(v) = (—1)"*An;,(—v) forn > —v
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If we only used the expansions at 0 and oo, we could get a
series; but there are issues with interchanging summations and
integration, since we are integrating up to the boundary of the
interval of convergence.
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If we only used the expansions at 0 and oo, we could get a
series; but there are issues with interchanging summations and
integration, since we are integrating up to the boundary of the
interval of convergence.

Even after justifying the interchange, the resulting series is very
slow due to the “bad” approximation by the series near the
boundary.

D. Borwein, J. M. Borwein, O Effective Computation of Bessel Functions, Part Il
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Localize!

Effective Computati
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Localize!

For fixed k, fi(s) := e~vacsinh(k+s) gatisfies the second order
differential equation

1
k241 + 2ks +s2

(s) GROBCEDHAO)
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Localize!
For fixed k, fi(s) := e~vacsinh(k+s) gatisfies the second order
differential equation

1
k241 + 2ks +s2

(s) GROBCEDHAO)

So if we set

)

> k
g—varcsinh(k+s) _ Z an(k,v) gn

n!
n=0

then we have the recurrence relation

1
Anyo = m ((1/2 — nz)an — k(zn + 1)an+l) )
with va
aoz(k+\/k2+1)_y, a]_:* 0

Ny
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We can subdivide [0, o) into the intervals
[0.1/2],[1/2,3/2],...,IN —1/2,N +1/2],[N + 1/2,00) and on
each interval expand e~ ¢csinhs gt k ' the centre of the interval.
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We can subdivide [0, o) into the intervals
[0.1/2],[1/2,3/2],...,IN —1/2,N +1/2],[N + 1/2,00) and on
each interval expand e~ ¢csinhs gt k ' the centre of the interval.

Each of these series has radius of convergence vk2 + 1 and
so we may interchange summation and integration.
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We can subdivide [0, o) into the intervals
[0.1/2],[1/2,3/2],...,IN —1/2,N +1/2],[N + 1/2,00) and on
each interval expand e~ ¢csinhs gt k ' the centre of the interval.

Each of these series has radius of convergence vk2 + 1 and
so we may interchange summation and integration.

For the infinite interval at the end, we use the expansion about
infinity.
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Thus for any positive integer N, we have

s .
/ e—zse—yarcsmhsdS —
0

aOV N akV
S (0 e 3

=1

~

+ An(v)Gn(

v

ve o e-2/2
an(z) = e “°sds = — oy T Ea”_l(z)’
0

1/2 ) e2/2  e-2/2 p
I —ZS _ _ _
bn(z) = /_1/ze sids= (=2)rz 2Nz + zﬁ”_l(z)’
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and

efoz

Gn(@,Z,V) = W/O e_ezs(l + S)_Zn_yds
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and

efoz

Gn(b, z, / e "5(14s)"2""ds
0

v) = g2ntv—1
C(w+2n—-1)(v+2n-2)

e Z(v+2n-2-62)
( T + zan_l(H,z,u)> .
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So we have found a representation for the Bessel functions in
terms of several sums:
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So we have found a representation for the Bessel functions in
terms of several sums:

Sums involving Z from the integral on [0, 7], where each
summand looks like

o Bn(+1/2)(2);
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So we have found a representation for the Bessel functions in
terms of several sums:

sums from the subdivisions of the real line on the infinite
integral, where a typical summand is
an(k,v)
I

nTﬂn(Z)e_kZ)
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So we have found a representation for the Bessel functions in
terms of several sums:

and the sum from the tail, where each summand is

An(1)Gn(N + 3,2,v).
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Let us first look at
nl
For simplicity we consider the case n even, n = 2m. Then this

IS
m 1 412
I1 <1 2 @ 1)(21))’

=1
which is bounded and decreasing for m > 2|v|2. Similarly for
odd n.
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Let us first look at
nl
For simplicity we consider the case n even, n = 2m. Then this

is
lm-I <1 1 4P )
U\ @-n@)

which is bounded and decreasing for m > 2|v|2. Similarly for

odd n.

Also, (for arbitrary n)

1 ! —zu, n—1/2
Bn(Z): W/o e u du

so it is bounded by

max(1, e Re()
Ba(z)) < T )
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Thus the terms of type

LB (2) = 0,2(27"),

where the big-O constant can be explicitly computed.
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For terms of the type

an(k,v) ks
2l )5 (2)e ke,

note that a,(k, ~)/n! are the Taylor coefficients, and so they are
@] (W) from the radius of convergence. We can fairly

easily get a weaker but explicit geometric bound using the
recurrence relation for ay(k, v).
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For terms of the type

an(k,v) ks
&) 5 2y,

note that a,(k, ~)/n! are the Taylor coefficients, and so they are
@] (W) from the radius of convergence. We can fairly

easily get a weaker but explicit geometric bound using the
recurrence relation for ay(k, v).

Gn(2) is the n-th moment of the exponential, and can be
explicitly computed. A simple estimate yields
e—(k—1/2)Re(z)

|Bn(2)e "] < on

D. Borwein, J. M. Borwein, O-Y. Chan Effective Computation of Bessel Functions, Part Il



Jon
Rectangle


For terms of the type
An(v)Gn(N + 3.2,v),
we can get a bound

2[lv[1-v-1
Al < P2

from the explicit formula,
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For terms of the type
An(v)Gn(N + 3.2,v),
we can get a bound

|p2llvli—v-1

An(v)] <

from the explicit formula,

and use bounds for the incomplete gamma function to get
explicit big-O constants for the bound

Gn(N +3,2,v) = Oz (N + 1/2)~ Re)=2),

D. Borwein, J. M. Borwein, O-Y. Chan Effective Computation of Bessel Functions, Part Il



Putting it all together, we see that the (slowest) sums converge
like 27", and with explicit big-O constants we may determine
how many terms are needed for a specific accuracy.
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Other features to note:

@ For each type of sum, the summands are all computable
via recursion.
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Other features to note:

@ For each type of sum, the summands are all computable
via recursion.

@ The most difficult computation involved are the
computation of By and Gg, each of which involves an
incomplete gamma evaluation. It should be noted that this
can be done via continued fractions, so this scheme can

be thought of as a continued fraction evaluation scheme for
Bessel functions.
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Other features to note:

]

]

For each type of sum, the summands are all computable
via recursion.

The most difficult computation involved are the
computation of By and Gg, each of which involves an
incomplete gamma evaluation. It should be noted that this
can be done via continued fractions, so this scheme can
be thought of as a continued fraction evaluation scheme for
Bessel functions.

The sum involving A,G, is bounded like O, (e ~2(N+1/2)) py
estimating the integral of the tail. So one can avoid the
computation of Gg altogether by choosing a large enough
N.
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@ Along the same lines, one does not need to compute all of
the sums involving G, for large k unless one needs
accuracy beyond about e ~(k—1/2)Re(z)
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@ Along the same lines, one does not need to compute all of
the sums involving G, for large k unless one needs
accuracy beyond about e ~(k—1/2)Re(z)

@ In addition to choosing an optimal N, one can also adjust
the intervals in dividing the integral on [0, o). In particular,
the sum arising out of an interval on (a,b) expanded at k
converges like

0 ((b — a)e—aRe@)

max(|k —a|", b — k|")
(k2 +1)n/2 )
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Our computation scheme has some advantages over the
traditional ascending-asymptotic switching scheme:

@ Our series are all uniformly geometrically convergent,
whereas some asymptotic formulas are divergent series,
and some are only algebraically convergent (i.e., like n=¢
rather than 2—").

D. Borwein, J. M. Borwei Effective Computation of Bessel Functions, Part Il


Jon
Rectangle


Our computation scheme has some advantages over the
traditional ascending-asymptotic switching scheme:

@ Our series are all uniformly geometrically convergent,
whereas some asymptotic formulas are divergent series,
and some are only algebraically convergent (i.e., like n=¢
rather than 2—").

@ Each summand in our series is a product of functions that
depend only on v or only on z, and thus these values can
be stored and recycled for one-v-many-z or one-z-many-v
computations. Note also that each of these functions is
eventually decreasing.
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Our computation scheme has some advantages over the
traditional ascending-asymptotic switching scheme:

@ Our series are all uniformly geometrically convergent,
whereas some asymptotic formulas are divergent series,
and some are only algebraically convergent (i.e., like n=¢
rather than 2—").

@ Each summand in our series is a product of functions that
depend only on v or only on z, and thus these values can
be stored and recycled for one-v-many-z or one-z-many-v
computations. Note also that each of these functions is
eventually decreasing.

The following table compares the performance between the
ascending series, the standard divergent asymptotic series,
and our series for J,, with the choice N = 1.
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Table: Comparison between various series for J,,(z).
Absolute value of the difference between the true value and
(v,2) M Ascending Series | Asymptotic Series Exp-arc Series
10 1022 10-32 10—°
v=26.2 50 104t 10-76 1018
z =100 100 1022 1089 1033
150 10-19 10-79 10—49
200 10-7° 1055 1064
10 1018 1023 107
v=123 30 1017 10-41 1010
z="50 50 108 1045 107
70 10-11 10—42 10-23
100 1045 1028 1033
10 10%7 104 1083
v=123 50 1038 1048 107
z =75+57 | 100 1014 1059 1033
120 102 1056 103
150 1031 1047 1048
200 1089 1020 1064
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@ Thank you for your attention!
@ The paper is in press in JMAA.

@ A preprint is available at the AARMS docserver
http://1ocutus.cs. dal.ca: 8088/archi ve/ 00000371/
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