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Abstract

We propose and justify a model for seasonal rainfall at a single site using
a checkerboard copula of maximum entropy for the joint probability distri-
bution and a set of two-parameter gamma distributions for the marginal
monthly distributions. The model allows correlation between individual
months and thereby enables an improved model for seasonal variation. A
central theme is the principle of maximum entropy which we use—subject to
clearly stated assumptions—to find the most parsimonious representation for
the underlying distributions required to model the relevant statistical char-
acteristics. We used observations over 109 years from 1905 to 2013 to con-
struct joint distributions for monthly rainfall during the wet season January-
February-March-April at three locations—Cairns, Brisbane and Sydney—on
the east coast of Australia. Empirical evidence from extensive simulations is
used to validate each application. Simulated seasonal rainfall over 109 years
exhibits a high degree of statistical variation at each site. We conclude that
caution should be exercised when using observed records to study rainfall
trends as records are typically too short-lived to capture long-term trends.
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1. Introduction

We propose a model for seasonal rainfall using a checkerboard copula of
maximum entropy to define a joint probability distribution for the monthly
rainfall. To test our model, we used official records from the Australian
Bureau of Meteorology (BoM) for the period 1905–2013 at three typical BoM
stations on the east coast of Australia—031036 Cairns (Kuranda) and 040224
Brisbane (Alderly) in Queensland, and 066062 Sydney (Observatory Hill) in
New South Wales. Cairns has a tropical monsoonal climate with significant
wet and dry seasons. Brisbane and Sydney each have a humid sub-tropical or
temperate climate with no pronounced dry season. The Köppen classification
[1] for Cairns is Am while for both Brisbane and Sydney the classification is
Cfa. Although the annual rainfall is relatively high and the wet season from
January to April1 is generally regarded as reliable, there is ample historical
evidence of extended periods with below average rainfall.

There is consensus amongst climate scientists that summer and autumn
rainfall in eastern Australia is influenced on a recurring basis by the quasi-
periodic seasonal climatic events, El Niño and La Niña. During El Niño,
rainfall is inhibited, and during La Niña, it is enhanced. It is therefore not
especially surprising to find significant correlations in monthly rainfall at
each location during the period January to April—the wettest time of the
year. Our aim is to construct a parsimonious model at each location for a
vector-valued random variable X = (X1, X2, X3, X4) ∈ R4 that can be used
to simulate typical monthly rainfall time series for the months of January,
February, March and April. Repeated simulations with our proposed models
over the same period as the observations show a high degree of variation in the
key sample statistics but importantly the observed statistics lie well within
the commonly accepted empirical confidence intervals established by these
simulations. Our models generate stationary time series for both monthly and
seasonal rainfall and the simulations suggest that even seemingly significant
trends in the observed data could be due to chance alone.

To illustrate both the problem and the proposed solution we compared
graphs of the observed data in the form of a time series to graphs of the corre-
sponding simulated data generated by a joint probability distribution defined

1April is wetter than December at both Cairns and Sydney though not at Brisbane.
On balance we chose January–April rather than December–March as a representative wet
season for this study. Either way a similar analysis can be applied.
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by the appropriate checkerboard copula of maximum entropy. The observed
time series for monthly and seasonal rainfall totals over 109 years during the
period January-February-March-April at BoM station 031036 Cairns (Ku-
randa) are shown in Figure 1. Our aim in this paper is to construct simu-
lated time series that respect the key monthly and seasonal statistics from
the observed rainfall time series. In particular the model is designed to in-
corporate the observed monthly correlations and thereby provide a realistic
model for the seasonal variance. The simulated time series for the monthly
and seasonal rainfall at BoM station 031036 Cairns (Kuranda) in a typical
Trial #(C13, 109) are shown in Figure 2.

Similar time series can be displayed for the other two locations. We
will show later that sample statistics at each location are highly variable
in trial simulations over a period of 109 years. This certainly suggests the
possibility that the observed sample statistics may not necessarily be an
accurate representation of the true population statistics.

2. A brief literature review

A comprehensive review of the literature on rainfall modelling is not fea-
sible here. Indeed we shall refer only to articles on rainfall modellng that are
directly relevant to the methods used in this paper.

The principle of maximum entropy, enunciated by the physicist E. T.
Jaynes [2, 3] in 1957, is fundamental to the methods used in this paper.
We will apply this principle in two ways. We find a checkerboard copula
of maximum entropy using the notion of discrete entropy and we justify
our use of the gamma distribution by arguing that this distribution maxi-
mizes the continuous entropy when fitting a probability distribution to a set
of strictly positive monthly rainfall totals. The modern notion of discrete
entropy [4] was introduced by John von Neumann in his 1927 treatise on
quantum mechanics in which he defined the entropy of a statistical operator
ρ = {pn, ψn}n, where pn > 0 and

∑
n pn = 1 and where {ψn} is a com-

plete orthonormal system of basis vectors as the weighted ensemble average
S(ρ) = −k 〈ρ loge ρ〉n = −kTr(ρ loge ρ) = −k∑n pn loge pn. See ([5], pp.
348–353) for more details.

This measure was adopted in 1948 by C. E. Shannon [6] as a measure
of information in the theory of communication systems. Shannon also in-
troduced the analogous notion of continuous or differential entropy S(f) =
−
∫

Ω
f(x) loge f(x)dx, where f(x) ≥ 0 and

∫
Ω
f(x)dx = 1 for continuous
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Figure 1: Time series for observed monthly and seasonal rainfall totals at BoM station
031036 Cairns (Kuranda) showing January (top), February (second top), March (mid-
dle), April (second bottom) and Seasonal (bottom).
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Figure 2: Time series for Trial #(C13, 109) showing simulated monthly and seasonal
rainfall totals at BoM station 031036 Cairns (Kuranda) showing January (top), February
(second top), March (middle), April (second bottom) and Seasonal (bottom).
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probability distributions. The entropy of a system is a measure of the inher-
ent disorder. Entropy is maximized when the system is in the highest possible
state of disorder subject to any imposed constraints. For a system with a
finite number of states the entropy is maximized when all state probabilities
are equal.

The early work on rainfall modelling, such as the paper by Stern and Coe
[8], follows a classical style that is typical of the physical sciences. However,
the focus has shifted in recent times to a pragmatic approach that is less
concerned with a logical axiomatic basis and more concerned with a utilitar-
ian outcome. In such cases there may be too much emphasis on fitting the
observed data and a lack of awareness about sample variation. Such practices
run the risk of backtest overfitting. See [7] for an extended discussion.

The most relevant recent paper to our work is a comprehensive 2005 re-
port to the Australian Cooperative Research Centre for Catchment Hydrol-
ogy by Srikanthan [9]. We will outline our concerns about the Srikanthan
model but we refer readers to [10] for a more detailed discussion. Although
Srikanthan describes a successful scheme for generation of daily rainfall data
at multiple sites, a substantive difficulty emerges in the accumulation of
simulated daily rainfall totals. This difficulty lies at the very heart of the
problem we address here. Indeed Srikanthan himself makes the following
critical observation.

The generated daily rainfall amounts when aggregated into monthly
and annual totals will not, in general, preserve the monthly and
annual characteristics.

Consequently he implements a nested a posteriori correction process. The
required correction tacitly acknowledges an axiomatic problem with the orig-
inal model in which correlations in daily rainfall, although undoubtedly very
small, are ignored. We believe it is logically inconsistent to select a gamma
distribution that will generate realistic daily rainfall depths if one then in-
tends to systematically modify the data generated by it. This inevitably
means that the simulated daily rainfall depth distributions will be biased
relative to the observed distributions. For additional remarks see [10]. We
note also that the problem highlighted by Srikanthan can be overcome us-
ing the correlative coherence analysis proposed by Getz [11] or by using a
Tweedie distribution as proposed by Hasan and Dunn [12]. However neither
of these methods allows a detailed model of the individual correlations.
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There is a large number of other papers that we could legitimately cite,
but we mention only a few. For a more comprehensive review, we refer to
Srikanthan and McMahon [13] and to an earlier review by Wilks and Wilby
[14]. The over-dispersion phenomenon that bedevils the Srikanthan model
[9] was studied by Katz and Parlange [15], who suggested that higher order
Markov models can reduce apparent discrepancies in the number of gener-
ated wet days and the number of observed wet days. Rosenberg et al. [16]
constructed a joint density using a Laguerre series to incorporate the cor-
relation between successive months and hence correct the seasonal variance,
but the optimal parametric structure of this model is unclear. Hasan and
Dunn [12] have recently used a Tweedie distribution to model monthly rain-
fall. The model combines a Poisson process to generate wet and dry days
and a collection of correlated gamma distributions to model daily rainfall
depth. There is insufficient freedom in this model to match individual daily
correlations, but it is possible to adjust the correlation parameters, so as to
avoid the over-dispersion problem discussed above.

3. Stationarity for partially observed time-series

In practice, it may be possible to observe only a finite number of terms in
a single realization {xi}Ni=1 of a doubly-infinite time series {xi}∞i=−∞. In such
cases Koutsoyannis [17] argues that it is difficult to tell whether an observed
time series is stationary. Nevertheless, he suggests that it is useful to com-
pare the standard deviation at scale k for the partially observed time series
to the adjusted standard deviation at scale k for simulated observations of
a known stationary time series over the same period. In [10] we used such
a comparison to show that the seasonal rainfall for the months February-
March-April at BoM station 059017 Kempsey (Wide Street) in New South
Wales—between Sydney and Brisbane and also on the east coast—could not
easily be distinguished from random simulations produced by a stationary
distribution. We will not repeat these tests for Cairns, Brisbane and Syd-
ney but refer to [10] for further discussion. We will nevertheless model the
monthly rainfall at each of the current locations as a stationary time-series
and then show retrospectively—as we did in [10] for the Kempsey study—that
apparent trends in the observed monthly rainfall lie well within the empir-
ical 95% confidence limits for phantom trends in simulated data generated
by the stationary model. Thus we justify our assumption that the observed
time-series can reasonably be modelled as a stationary time series.
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4. Modelling monthly rainfall

The gamma distribution is often used to model rainfall accumulations. A
common justification is that it is sufficiently flexible to model a wide range of
observed data. While this may be true the argument is at best vague. The
principle of maximum entropy [2, 3] provides an objective justification. This
argument was presented in [10, 18] but is worth repeating here.

4.1. Maximum entropy and the gamma distribution

We assume X is a random variable and that the observed values {xn}Nn=1

are strictly positive. We seek a probability density f : (0,∞)→ (0,∞) such
that the differential entropy

h(f) = (−1)

∫ ∞
0

f(x) loge f(x)dx (1)

is maximized subject to the additional constraints imposed by the observed
means

E[X] = x =
1

N

N∑
n=1

xn and E[logeX] = loge x =
1

N

N∑
n=1

loge xn. (2)

We can formulate this problem as a convex optimization with linear con-
straints. From the theory of Fenchel duality and the Fenchel-Young inequal-
ity [19, pp. 171-178] we have

p = inf
f∈L1[(0,∞)]

{
−h(f)− 1 | E[1] = 1, E[X] = x,E[logeX] = loge x

}
≥ sup

(α,β,κ)∈R3

{
loge κ− x/β + (α− 1)loge x− κ

∫ ∞
0

xα−1e−x/βdx

}
= sup

(α,β,κ)∈R3

{
loge κ− x/β + (α− 1)loge x− κΓ(α)βα

}
= sup

(α,β,κ)∈R3

ϕ(α, β, κ)

= − loge[Γ(α)β] + (α− 1)ψ(α)− (α + 1) = d (3)

where the parameters α, β and κ are determined by the equations

loge β + ψ(α) = loge x, αβ = x, κ(α, β) =
1

Γ(α)βα
(4)
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and where ψ(α) = Γ ′(α)/Γ(α) is the digamma function. The supremum and
the conditions (4) are found simply by solving the equations ∂ϕ/∂α = 0,
∂ϕ/∂β = 0 and ∂ϕ/∂κ = 0. The function

fα,β(x) =
1

Γ(α)βα
xα−1e−x/β

which arises naturally in (3) when solving the dual optimization problem to
find d is the probability density on (0,∞) for the gamma distribution with
parameters α and β. If X is a random variable with this distribution we
write X ∼ Γ(α, β). In the case where α and β are determined by (4) then
the additional constraints (2) are also satisfied. Since it is easy to show that
−h(fα,β)− 1 = d it follows that p = d and that fα,β is the unique solution to
our original convex optimization problem. Note that the equations (4) are
also the maximum likelihood equations used to estimate α and β if one has
decided a priori to fit a gamma distribution.

Remark 4.1. One may argue with our decision to impose constraints that
the mean of the random variable must equal the mean of the observed data
and the mean of the logarithm of the random variable must equal the mean
of the logarithm of the observed data. Indeed there are various other max-
imum entropy distributions that could be obtained by imposing alternative
constraints. For instance a normal distribution is obtained if one insists that
the mean and variance of the population should equal the mean and variance
of the observed sample. A normal distribution is clearly not appropriate here
because it allows negative values. We believe that the constraints used to
derive the maximum entropy gamma distribution are more appropriate in
this instance than any of the standard alternatives. For a more extensive
discussion we refer, once again, to [10].

5. Modelling monthly rainfall using a gamma distribution

The observed monthly rainfall totals for December, January, February
and March (months i = 1, . . . , 4) at each location for the period 1905 to 2013
are all strictly positive. If we assume that the monthly rainfall distributions
are stationary then according to the principle of maximum entropy we may
reasonably propose the following null hypothesis: that the sequence of ob-
served monthly rainfall totals at each location for month i can be modelled
as the independently and successively generated outcomes of a real-valued
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random variable Xi ∼ Γ(αi, βi) where αi > 0 and βi > 0 are obtained
from the observed monthly totals for month i by the method of maximum
likelihood for each i = 1, . . . , 4. At each location we will use the notation
α = (α1, . . . , α4) and β = (β1, . . . , β4) to denote the maximum likelihood
parameters. We obtained the following values.

Cairns:

α = (1.8451, 1.9273, 1.9166, 1.6669),

β = (226.5323, 230.7580, 225.2654, 136.3662);

Brisbane:

α = (1.8683, 1.3665, 1.4058, 1.1635),

β = (88.5816, 121.7345, 99.1313, 77.9525);

Sydney:

α = (1.7141, 1.3498, 1.8642, 1.5012),

β = (62.0237, 85.8447, 70.0515, 80.4501).

Although the independent generation of successive random numbers from
a fixed gamma distribution must necessarily produce a stationary time-series
it is nevertheless true that finite samples of such series may exhibit phantom
trends. Our aim is to compare the trends (if any) in the series of observed
monthly rainfalls for each month with the phantom trends in a large number
of simulated data series of the same length generated successively and inde-
pendently by the appropriate gamma distribution. We will show that the
trends in observed monthly rainfall are so small that they could reasonably
be regarded as phantom trends, due to chance alone.

We tested the null hypothesis by a linear regression on the observed time
series of monthly rainfall totals and on each of 20000 simulated time series
of monthly rainfall totals over the same period of N = 109 years with each
simulated series generated by the proposed gamma distribution. Let {ri(t)}
denote the rainfall in month i and year t. We used Matlab to find (pi, qi),
such that

∑N
t=1 |ri(t)− (pit+ qi)|2 is minimized. The slope, pi, of this line is

the trend-slope.
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The trend-slopes for the observed datasets and the corresponding 95%
confidence intervals for the trend-slopes of the simulated datasets at Cairns
(Kuranda) were p1 = −0.5967 ∈ [−1.78, 1.86] in January, p2 = 1.8298 ∈
[−1.91, 1.94] in February, p3 = 0.6333 ∈ [−1.87, 1.85] in March and p4 =
−0.4887 ∈ [−1.06, 1.07] in April. We also tested the observed seasonal
rainfall against the simulated seasonal rainfall using a maximum likelihood
gamma distribution Xt ∼ Γ(αt, βt) with αt = 5.7335 and βt = 265.4147. We
found pt = 1.3777 ∈ [−3.72, 3.77]. Similar tests were carried out at the other
sites. Overall there was only one failure in a total of fifteen tests.

We conclude that there is insufficient evidence to reject the hypothesis
that the observed rainfall totals are the outcomes of a stationary random
variable. This means that the apparent observed trends could reasonably be
regarded as due to chance alone. The results of our simulations for the trend-
slopes of the monthly rainfalls at BoM station 031036 Cairns (Kuranda) are
shown in Figures 3 and 4.

Although most climate scientists expect rainfall events in eastern Aus-
tralia to become more extreme and although such changes could conceivably
lead to more extreme monthly rainfall distributions, we believe there is cur-
rently no firm agreement about such rainfall trends.

2000
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0�3 3
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0
0�3 3

Figure 3: Trend-slope histograms for 20000 simulated rainfall datasets at BoM Station
031036 Cairns (Kuranda) generated by maximum likelihood gamma distributions for Jan-
uary (left) and February (right). The vertical red lines show trend-slopes for the observed
datasets lying inside the empirical 95% confidence intervals for the simulated trend-slopes.
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Figure 4: Trend-slope histograms for 20000 simulated rainfall datasets at BoM Station
031036 Cairns (Kuranda) generated by maximum likelihood gamma distributions for
March (left) and April (right). The vertical red lines show trend-slopes for the observed
datasets lying inside the empirical 95% confidence intervals for the simulated trend-slopes.

6. Q-Q Plots to test the Goodness-of-Fit for the simulated time
series of monthly rainfalls

We demonstrated the goodness-of-fit for the observed monthly rainfall
data to the designated gamma distributions using Q-Q plots.

Firstly, we used the designated gamma distribution to generate 1000 sim-
ulated datasets for each month at each location. Then, we plotted the sim-
ulated quantiles against the theoretical quantiles. The results for January
rainfall at BoM station 031036 Cairns (Kuranda) are shown in Figure 5 on
the left. These plots show the full range of variation expected for the des-
ignated gamma random variable from 1000 samples, each of size N = 109.
By discarding the bottom 25 and top 25 values for each quantile from the
simulated datasets, we found empirical 95% confidence intervals.

Secondly, we plotted the observed quantiles against the theoretical quan-
tiles using the designated gamma distribution for each month at each loca-
tion. The results for January rainfall at BoM station 031036 Cairns (Ku-
randa) are shown in Figure 5 on the right. We used grey bars on these plots
to show the empirical 95% confidence intervals for the quantiles obtained
from the simulated datasets described above.

Similar plots were produced for all months at each location. Overall the
Q-Q plots showed there are no recognised statistical grounds to reject the
hypothesis that the monthly rainfall totals can be modelled by the designated
maximum likelihood gamma distributions.
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Figure 5: Q-Q plots of January quantiles at BoM station 031036 Cairns (Kuranda) for 1000
simulated datasets each covering a period of 109 years versus corresponding theoretical
quantiles for X1 ∼ Γ(α1, β1) (left) and Q-Q plots for observed January quantiles at BoM
station 031036 Cairns (KUranda) versus theoretical quantiles for X1 ∼ Γ(α1, β1) (right)
where the vertical grey bars show empirical 95% confidence intervals for the simulated
quantiles generated by X1 ∼ Γ(α1, β1).

Remark 6.1. We have been taken to task by some for not comparing our
proposed model to other models currently in popular use. Nevertheless, our
model is based on well-established scientific methodology. We use the princi-
ple of maximum entropy to argue that the maximum likelihood gamma dis-
tribution is the most appropriate model for rainfall accumulations in which
the observed totals are strictly positive. While it is true that we make an
arbitrary decision to use the sample means of the observed data and log-
data as axiomatic constraints, we note that in any modelling process, some
assumptions are necessary. At the very least the assumptions and the sub-
sequent logic are clearly defined. Once the numerical parameters have been
calculated we test our model by showing that the observed data lies well
within the empirical 95% confidence intervals established by repeated sim-
ulations using the model. The conclusion is clear: there are no reasonable
statistical grounds for rejecting the model. The argument that other models
may provide a better fit to the observed data is essentially irrelevant. In-
deed, this criticism embraces a fundamental misconception that an observed
sample is always a true representation of the entire population. Moreover,
the suggested iterative correction methods used by Srikanthan and others
are subject to concerns about overfitting [7]. A legitimate criticism of our
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model would need to argue either that the principle of maximum entropy is
inappropriate or else that we should incorporate more suitable constraints
on the observed data.

6.1. The transformed data—removal of seasonal effects

If Xi ∼ Γ(αi, βi) where Fi(x) = Fαi,βi(x) for month i at a given location
then the transformed monthly rainfalls Ui = Fi(Xi) are uniformly distributed
on (0, 1) and so seasonal factors are removed from the observed data. Figure
6 shows the histogram for the transformed observed January rainfall totals
ui,j = Fi(xi,j) for j = 1, . . . , 109 at BoM station 031036 Cairns (Kuranda).
We used the binomial distribution with N = 109, p = 0.1 and q = 0.9 to
calculate approximate 95% confidence intervals I = (p − 1.96

√
pq/N, p +

1.96
√
pq/N) = (0.044, 0.156) for the heights of the bars. Similar plots were

produced for all months at each location. Overall the plots showed that
there were no recognised statistical grounds to reject the hypothesis that the
transformed totals were uniformly distributed.

0.16

0.20

0.12

0.08

0.04

0.00
0 0.2 0.4 0.6 0.8 1

Cairns: January transformed observed data

Figure 6: Histogram for the transformed observed January rainfall totals u1,j = F1(x1,j)
for j = 1, . . . , 109 at BoM station 031036 Cairns (Kuranda) where F1 = Fα1,β1

is the
cumulative distribution for Γ(α1, β1). The horizontal lines show the mean value and the
upper and lower bounds for the 95% confidence intervals.
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7. A joint probability distribution for the seasonal rainfall

The next step in the modelling process is to construct a joint probability
distribution for the entire four-month time period at each location. We will
do this in what we believe is the most natural way—by using the princi-
ple of maximum entropy. Past studies of rainfall accumulations over several
months [15, 16] have concluded that the variance of the simulated time series
of seasonal rainfall totals generated by models with independent marginal
distributions is often not consistent with the observed variance. In particu-
lar if the observed monthly marginal distributions show an overall positive
correlation we would expect the observed variance in seasonal rainfall to be
higher than one would find with independent marginal monthly distribu-
tions. In any event we cannot expect a model with independent marginal
distributions to correctly simulate the seasonal rainfall patterns generated by
correlated marginal distributions.

Our aim will be to construct a joint distribution that not only preserves
the desired monthly rainfall characteristics, but also replicates the observed
variance in the seasonal rainfall totals. We will do this by incorporating
marginal correlations using a checkerboard copula of maximum entropy.

8. Copulas with prescribed correlation

An m-dimensional copula, where m ≥ 2, is a cumulative probability
distribution C(u) ∈ [0,∞) defined on the m-dimensional unit hypercube
u = (u1, u2, . . . , um) ∈ [0, 1]m for a vector-valued random variable U =
(U1, U2, . . . , Um) with uniform marginal probability distributions for the real-
valued random variables U1, U2, . . . , Um. See [20, 21]. The correlation coeffi-
cients for the joint distribution are defined by

ρr,s =
E[(Ur − 1/2)(Us − 1/2)]√

E[(Ur − 1/2)2]E[(Us − 1/2)2]
= 12E[UrUs]− 3 (5)

for each 1 ≤ r < s ≤ m. In order to model the joint probability distribu-
tion for a vector-valued random variable X = (X1, X2, . . . , Xm) ∈ (0,∞)m

with known marginals ui = Fi(xi) we simply construct uniformly distributed
random variables Ui = Fi(Xi) ∈ (0, 1) for each i = 1, 2, . . . ,m and use the m-
dimensional copula C(u) = C(F (x)) = C(F1(x1), F2(x2), . . . , Fm(xm)). We
say that the grade correlation coefficients for X are simply the correlation
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coefficients for U = (U1, U2, U3, U4) defined above. That is

ρr,s =
E[(Fr(Xr)− 1/2)(Fs(Xs)− 1/2)]√

E[(Fr(Xr)− 1/2)2]E[(Fs(Xs)− 1/2)2]

= 12E[Fr(Xr)Fs(Xs)]− 3 (6)

for each 1 ≤ r < s ≤ m. We distinguish between the Spearman rank correla-
tion coefficients defined from the observed data {xr,j}j=1,...,N and {xs,j}j=1,...,N

for 1 ≤ r < s ≤ m as the Pearson correlation coefficients of the ranks of the
observed data [21] and the grade correlation coefficients ρ = [ρr,s] defined by
(6). Although the two measurements are similar they are not the same. For
all samples in this paper we will use the observed grade correlation coefficients
defined by

ρ̂r,s =

∑N
j=1(ur,j − ūr)(us,j)− ūs)√∑N

j=1(ur,j − ūr)2
∑N

j=1(us,j)− ūs)2

(7)

for each 1 ≤ r < s ≤ m where ui,j = Fi(xi,j) and ūi =
∑N

j=1 ui,j/N for each
i = 1, . . . ,m. The observed grade correlation coefficients ρ̂r,s are simply the
Pearson correlation coefficients for the transformed data {ur,j}j=1,...,N and
{us,j}j=1,...,N for 1 ≤ r < s ≤ m. The Spearman rank correlations could
be used throughout for all samples—the observed data and the simulated
data—in place of the observed grade correlation coefficients. Similar results
will be obtained.

9. Modelling the joint probability with a checkerboard copula

We construct a joint distribution using a checkerboard copula of maxi-
mum entropy [22, 23]. A 4-dimensional checkerboard copula is a probability
distribution defined by subdividing the unit 4-dimensional hypercube into n4

congruent small hypercubes with constant density on each one. If the density
on Iijk` is given by n3hijk` then the marginal distributions will be uniform if∑
j,k,`

hijk` = 1 ∀i,
∑
i,k,`

hijk` = 1 ∀j,
∑
i,j,`

hijk` = 1 ∀k,
∑
i,j,k

hijk` = 1 ∀`.

In such cases we say that h = [hijk`] is quadruply-stochastic. We wish to
construct a joint density in this form with the desired correlations. For suf-
ficiently large n there are many ways that this can be done. The principle
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of maximum entropy suggests that the best such distribution is the most dis-
ordered or least prescriptive solution—the quadruply-stochastic hyper-matrix
h which has the most equal subdivision of probabilities but still allows the
required correlations.

Problem 9.1 (The primal problem). Find the hyper-matrix h = [hi] ∈ R`

where i = (i1, . . . , im) and ` = nm to maximize the entropy

J(h) = (−1)

 1

n

∑
i ∈ {1,...,n}m

hi loge hi + (m− 1) loge n

 (8)

subject to the multi-stochastic constraints∑
j 6=r, ij∈{1,...,n}

hi = 1 (9)

for all ir ∈ {1, . . . , n} and each r = 1, . . . ,m and hi ≥ 0 for all i ∈
{1, . . . , n}m and the grade correlation coefficient constraints

12

 1

n3
·

∑
i ∈ {1,...,n}m

hi(ir − 1/2)(is − 1/2)

− 3 = ρ̂r,s (10)

for 1 ≤ r < s ≤ m where ρ̂r,s is known for all 1 ≤ r < s ≤ m.

Problem 9.1 is solved using the theory of Fenchel duality. See [22, 23]
for details of the solution and [19, 24] for the underlying theory. The m-
dimensional copula of maximum entropy is defined by m(m − 1)/2 real
parameters—the grade correlation coefficients—defined in equation (6).

9.1. A model for January–February–March–April rainfall at Cairns

The quadruply-stochastic hyper-matrix h ∈ R6×6×6×6 with m = 4 and
n = 6 defining the quadrivariate checkerboard copula of maximum entropy
for rainfall at BoM station 031036 Cairns (Kuranda) during the January-
February-March-April season was calculated using a special Matlab pro-
gram. The copula is shown to four decimal place accuracy in Appendix A.
The grade correlation coefficients were constrained by setting ρ = ρ̂ where ρ̂
is the matrix of observed grade correlation coefficients. The entropy was cal-
culated using (8) and was found to be J(h) ≈ −0.05904. Similar results are
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obtained if the copula of maximum entropy is replaced by a checkerboard
normal copula although numerical calculation of the latter is considerably
more difficult and the entropy is slightly less. More information about the
definition and computation of these two checkerboard copulas can be found
in [22, 23].

All numerical calculations were performed in Matlab and the relevant
m-files are freely available from the CARMA website [25] or from the corre-
sponding author Dr. Julia Piantadosi. The Matlab program computed the
relevant hyper-matrix in 11.77 s on a MacBook Pro OS X laptop computer.

Checkerboard copulas of maximum entropy with the same dimensions
were also calculated to model seasonal rainfall in January-February-March-
April at BoM stations 040224 Brisbane (Alderly) and 066062 Sydney (Ob-
servatory Hill). The defining hyper-matrices can be found in the relevant
Matlab m-files on the CARMA website [25].

10. Summary of the key observed statistics

The key observed statistics at each site are shown in the following list.

Observations for Cairns: The respective monthly and seasonal means are
given by x̄ = (418, 445, 432, 227) mm and t̄ = 1522 mm. The standard
deviation and variance are s = 685 mm and s2 = 469720 mm2. The
observed grade correlation coefficients are

ρ̂ =


1.0000 0.0729 −0.0191 −0.0536

1.0000 0.2645 0.1459
1.0000 0.1212

1.0000

 .
Observations for Brisbane: The respective monthly and seasonal means

are given by x̄ = (165, 166, 139, 91) mm and t̄ = 562 mm. The standard
deviation and variance are s = 259 mm and s2 = 67332 mm2. The
observed grade correlation coefficients are

ρ̂ =


1.0000 0.0622 0.1834 −0.0286

1.0000 0.1509 0.1179
1.0000 0.0880

1.0000

 .
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Observations for Sydney: The respective monthly and seasonal means
are given by x̄ = (106, 116, 131, 121) mm and t̄ = 474 mm. The stan-
dard deviation and variance are s = 187 mm and s2 = 34959 mm2.
The observed grade correlation coefficients are

ρ̂ =


1.0000 0.1197 −0.0351 −0.1987

1.0000 −0.0754 −0.0627
1.0000 −0.0269

1.0000

 .
11. Experimental results

We tested our model using extensive trials at each location. Each trial
consisted of a sequence of independently and randomly generated seasonal
rainfalls using the relevant copula of maximum entropy. Thus each trial
produced four contemporaneous sequences of monthly rainfall totals at each
location. We conducted 20 basic trials at each site with each trial consist-
ing of 109 successive, independently generated, random simulations of sea-
sonal rainfall. By repeating the trials we were able to compare the observed
statistics to the simulated statistics and empirically investigate the level of
uncertainty in sample statistics for samples of this size. We also carried out
a smaller number of extended trials over a period of 5450 years to generate
larger samples with more stable sample statistics that better approximate
the underlying population statistics for the model. In order to check our
model for the overall seasonal rainfall at each location we also fitted a max-
imum likelihood gamma distribution to the observed data. Although this
is a recognised method for modelling the total seasonal rainfall it cannot
be used in simulation to generate seasonal rainfall totals with corresponding
monthly subtotals. If one uses a maximum likelihood gamma distribution
to model monthly rainfall for each month and then adds together the in-
dependently generated monthly totals to form a seasonal total then many
authors [15, 16] have found that the variance of the simulated sums does not
match the observed variance. The joint distribution defined by the copula of
maximum entropy allows us to simulate individual monthly totals with each
seasonal total. We will also show that it generally provides a much improved
simulation of the seasonal variance especially in situations where there are
significant correlations in monthly rainfall.
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11.1. Results for BoM station 031036 Cairns

The observed seasonal totals for Cairns and the corresponding maximum
likelihood gamma distribution are shown in Figure 7 on the left. To provide
an initial assessment of the model using the checkerboard copula of maximum
entropy we conducted 3 successive trials with each trial covering a period of
5450 years. The histogram for trial #(C1, 5450) is shown in Figure 7 on
the right. The full statistics for the trial are shown below. These should
be compared to the statistics for the observed rainfall shown in the previous
section.
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Figure 7: Histogram of observed seasonal rainfall at BoM station 031036 Cairns (Kuranda)
for January-February-March-April with corresponding maximum likelihood gamma distri-
bution (left) and histogram of Trial #(C1, 5450) (right) from 3 successive trials using the
copula of maximum entropy with each trial covering a period of N = 5450 years showing
typical sample characteristics.

Trial #(C1, 5450): The monthly means were x̄ = (415, 450, 432, 230). The
overall seasonal mean was 1526 with standard deviation s = 627 and
corresponding variance s2 = 393470. The observed grade correlation
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coefficients were

ρ̂ =


1.0000 0.0739 −0.0249 −0.0531

1.0000 0.2659 0.1336
1.0000 0.1076

1.0000

 .
For the seasonal rainfall at Cairns the observed mean was 1522 mm and

the observed standard deviation and variance were respectively 685 mm and
469720 mm2. If the seasonal rainfall is modelled with a maximum likelihood
gamma distribution then the model mean is 1522 mm while the model stan-
dard deviation and variance are respectively 637 mm and 406070 mm2. If the
seasonal rainfall is modelled by the sum of independently distributed maxi-
mum likelihood gamma distributions then the model mean is 1522 and the
model standard deviation and variance are respectively 571 mm and 325570
mm2. For Trial #(C1, 5450) the simulated mean was 1526 and the simulated
standard deviation and variance were respectively 627 mm and 393470 mm2.
It is possible to calculate a theoretical value for the variance of the copula of
maximum entropy. The details can be found in [23].

In order to investigate the likely variation in sample statistics we con-
ducted 20 successive trials with each trial covering the same period of 109
years as the observed rainfall. Histograms for Trial #(C9, 109) with the low-
est mean x̄ = 1386 mm and Trial #(C1, 109) with the highest mean x̄ = 1641
mm are shown in Figure 8. We also note that Trial #(C15, 109) had the low-
est standard deviation s = 545 mm and corresponding variance s2 = 296480
mm2 and that Trial #(C5, 109) had the highest standard deviation s = 693
mm and corresponding variance s2 = 480080 mm2. The time series shown
earlier in Figure 2 are from Trial #(C13, 109). The full details of these trials
are shown below.

Trial #(C1, 109): The monthly means were x̄ = (433, 500, 477, 230) mm.
The overall seasonal mean was 1641 mm with standard deviation s =
684 mm and corresponding variance s2 = 467870 mm2. The observed
grade correlation coefficients were

ρ̂ =


1.0000 −0.0063 0.0114 −0.1573

1.0000 0.2997 0.1069
1.0000 0.0125

1.0000

 .
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Figure 8: Selected histograms for total rainfall from 20 successive trials at BoM station
031036 Cairns (Kuranda) for January-February-March-April with each trial covering a
period of N = 109 years using the copula of maximum entropy. Trial #(C9, 109) (left)
shows the trial with lowest mean and Trial #(C1, 109) (right) shows the trial with highest
mean.

Trial #(C5, 109): The monthly means were x̄ = (413, 411, 440, 223) mm.
The overall seasonal mean was 1487 mm with standard deviation s =
693 mm and corresponding variance s2 = 480080 mm2. The observed
grade correlation coefficients were

ρ̂ =


1.0000 0.0572 −0.0634 0.0122

1.0000 0.3029 0.2314
1.0000 0.3212

1.0000

 .
Trial #(C9, 109) The monthly means were x̄ = (387, 400, 409, 190) mm.

The overall seasonal mean was 1386 mm with standard deviation s =
561 mm and corresponding variance s2 = 314280 mm2. The observed
grade correlation coefficients were

ρ̂ =


1.0000 0.0553 −0.0611 −0.0899

1.0000 0.4353 0.0858
1.0000 0.1528

1.0000

 .
Trial #(C13, 109) The monthly means were x̄ = (389, 458, 474, 207) mm.

The overall seasonal mean was 1528 mm with standard deviation s =
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662 mm and corresponding variance s2 = 437650 mm2. The observed
grade correlation coefficients were

ρ̂ =


1.0000 0.2285 −0.0545 −0.0167

1.0000 0.0898 0.3402
1.0000 0.1459

1.0000

 .
Trial #(C15, 109) The monthly means were x̄ = (417, 434, 472, 212) mm.

The overall seasonal mean was 1535 mm with standard deviation s =
545 mm and corresponding variance s2 = 296480 mm2. The observed
grade correlation coefficients were

ρ̂ =


1.0000 −0.0764 −0.0342 −0.0453

1.0000 0.1347 0.0713
1.0000 0.0444

1.0000

 .
It is clear from these trials that a high degree of variation is possible in
simulated seasonal rainfall for Cairns over a period of 109 years with the
proposed model. We do not believe that this is an artefact of the model as
the observed statistics also indicate a high standard deviation. Our results
do however suggest that caution should be exercised when using the observed
sample to construct a population model or to make inferences about likely
trends. We also note that the variance of the proposed model is much closer to
the observed variance than is the case for a model with independent marginal
monthly distributions.

11.2. Results for BoM station 040224 Brisbane

The observed seasonal totals for Brisbane and the corresponding maxi-
mum likelihood gamma distribution are shown in Figure 7 on the left. To
provide an initial assessment of the model using the checkerboard copula of
maximum entropy we conducted 3 successive trials with each trial covering a
period of 5450 years. The histogram for trial #(B3, 5450) is shown in Figure
9 on the right. The full details for the trial are shown below. These should
be compared to the details for the observed totals shown earlier in the paper.

Trial #(B3, 5450): The monthly means were x̄ = (167, 166, 140, 91). The
overall seasonal mean was 564 with standard deviation s = 262 and
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Figure 9: Histogram for observed total rainfall at BoM station 040224 Brisbane (Alderly)
for January-February-March-April with corresponding maximum likelihood gamma distri-
bution (left) and histogram for Trial #(B3, 5450) (right) from 3 successive trials using the
copula of maximum entropy with each trial covering a period of N = 5450 years showing
typical sample characteristics.

corresponding variance s2 = 68729. The observed grade correlation
coefficients were

ρ̂ =


1.0000 0.0597 0.1735 −0.0334

1.0000 0.1590 0.1158
1.0000 0.0913

1.0000

 .
For the seasonal rainfall at Brisbane the observed mean was 562 mm and

the observed standard deviation and variance were respectively 259 mm and
67332 mm2. If the seasonal rainfall is modelled with a maximum likelihood
gamma distribution the mean is 259 mm while the standard deviation and
variance are respectively 252 mm and 63669 mm2. If the seasonal rainfall
is modelled by the sum of independently distributed maximum likelihood
gamma distributions then the mean is 259 and the standard deviation and
variance are respectively 236 mm and 55795 mm2. For Trial #(B3, 5450) the
simulated mean was 564 and the simulated standard deviation and variance
were respectively 262 mm and 68729 mm2.

In order to investigate the likely variation in sample statistics at Brisbane
we conducted 20 successive trials with each trial covering the same period of
109 years as the observed rainfall. Histograms for Trial #(B5, 109) with the

24



lowest mean x̄ = 521 mm and Trial #(B16, 109) with the highest mean x̄ =
613 mm are shown in Figure 10. We also noted that Trial #(B14, 109) had
the lowest standard deviation s = 223 mm and corresponding variance s2 =
49654 mm2 and that Trial #(B3, 109) had the highest standard deviation
s = 302 mm and corresponding variance s2 = 91168 mm2. The full details
of these trials are shown below.

Brisbane: simulated seasonal 109 years
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Figure 10: Selected histograms for total rainfall from 20 successive trials at BoM station
040224 Brisbane (Alderly) for January-February-March-April with each trial covering a
period of N = 109 years using the copula of maximum entropy. Trial #(B5, 109) (left)
shows the trial with lowest mean and Trial #(B16, 109) (right) shows the trial with
highest mean.

Trial #(B3, 109) The monthly means were x̄ = (168, 167, 148, 94) mm. The
overall seasonal mean was 576 mm with standard deviation s = 302
mm and corresponding variance s2 = 91168 mm2. The observed grade
correlation coefficients were

ρ̂ =


1.0000 0.0971 0.3252 −0.0405

1.0000 0.1650 0.2691
1.0000 0.1772

1.0000

 .
Trial #(B5, 109) The monthly means were x̄ = (150, 146, 138, 88) mm. The

overall seasonal mean was 521 mm with standard deviation s = 251
mm and corresponding variance s2 = 62823 mm2. The observed grade
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correlation coefficients were

ρ̂ =


1.0000 0.1400 0.3551 −0.1059

1.0000 0.3009 0.0814
1.0000 0.1143

1.0000

 .
Trial #(B14, 109) The monthly means were x̄ = (165, 165, 162, 81) mm.

The overall seasonal mean was 573 mm with standard deviation s = 223
mm and corresponding variance s2 = 49654 mm2. The observed grade
correlation coefficients were

ρ̂ =


1.0000 −0.0257 0.1210 −0.0685

1.0000 −0.0426 0.0351
1.0000 0.0359

1.0000

 .
Trial #(B16, 109) The monthly means were x̄ = (192, 155, 166, 100) mm.

The overall seasonal mean was 613 mm with standard deviation s = 272
mm and corresponding variance s2 = 74208 mm2. The observed grade
correlation coefficients were

ρ̂ =


1.0000 −0.1259 0.0845 −0.0240

1.0000 0.2538 0.0314
1.0000 0.1387

1.0000

 .
11.3. Results for BoM station 066062 Sydney

The observed seasonal totals for Sydney and the corresponding maximum
likelihood gamma distribution are shown in Figure 11 on the left. To provide
an initial check on the model using the checkerboard copula of maximum
entropy we conducted 3 successive trials with each trial covering a period of
5450 years. The histogram for trial #(S1, 5450) is shown in Figure 11 on
the right. The full details for the trial are shown below. These should be
compared to the details for the observed totals shown earlier in the paper.

Trial #(S1, 5450): The monthly means were x̄ = (108, 114, 130, 123). The
overall seasonal mean was 475 with standard deviation s = 179 and
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Figure 11: Histogram for observed total rainfall at BoM station 066062 Sydney (Obser-
vatory Hill) for January-February-March-April with corresponding maximum likelihood
gamma distribution (left) and histogram for Trial #(S1, 5450) (right) from 3 successive
trials using the copula of maximum entropy with each trial covering a period of N = 5450
years showing typical sample characteristics.

corresponding variance s2 = 32105. The observed grade correlation
coefficients were

ρ̂ =


1.0000 0.1148 −0.0327 −0.1919

1.0000 −0.0906 −0.0675
1.0000 −0.0133

1.0000

 .
For the seasonal rainfall at Sydney the observed mean was 474 mm and

the observed standard deviation and variance were respectively 187 mm and
34959 mm2. If the seasonal rainfall is modelled with a maximum likelihood
gamma distribution the model mean is 474 mm while the model standard
deviation and variance are respectively 179 mm and 31879 mm2. If the sea-
sonal rainfall is modelled by the sum of independently distributed maximum
likelihood gamma distributions then the mean is 474 and the standard de-
viation and variance are respectively 188 mm and 35405 mm2. For Trial
#(S1, 5450) the simulated mean was 475 and the simulated standard devia-
tion and variance were respectively 179 mm and 32105 mm2.

In order to investigate the likely variation in sample statistics at Sydney
we conducted 20 successive trials with each trial covering the same period of
109 years as the observed rainfall. Histograms for Trial #(S9, 109) with the
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lowest mean x̄ = 410 mm and Trial #(S8, 109) with the highest mean x̄ = 502
mm are shown in Figure 12. We also noted that Trial #(S20, 109) had the
lowest standard deviation s = 148 mm and corresponding variance s2 =
21994 mm2 and that Trial #(S5, 109) had the highest standard deviation
s = 216 mm and corresponding variance s2 = 46481 mm2. The full details
of these trials are shown below.
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Figure 12: Selected histograms for total rainfall from 20 successive trials at BoM station
066062 Sydney (Observatory Hill) for January-February-March-April with each trial cov-
ering a period of N = 109 years using the copula of maximum entropy. Trial #(S9, 109)
(left) shows the trial with lowest mean and Trial #(S8, 109) (right) shows the trial with
highest mean.

Trial #(S5, 109) The monthly means were x̄ = (109, 108, 133, 137) mm.
The overall seasonal mean was 487 mm with standard deviation s = 216
mm and corresponding variance s2 = 46481 mm2. The Spearman rank
correlation coefficients were

ρ̂ =


1.0000 0.1068 −0.0576 −0.1873

1.0000 −0.0226 0.0463
1.0000 −0.0336

1.000

 .
Trial #(S8, 109) The monthly means were x̄ = (118, 117, 135, 131) mm.

The overall seasonal mean was 502 mm with standard deviation s = 202
mm and corresponding variance s2 = 40603 mm2. The Spearman rank
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correlation coefficients were

ρ̂ =


1.0000 0.1967 0.0345 −0.1905

1.0000− 0.0390 −0.1193
1.0000 −0.0157

1.000

 .
Trial #(S9, 109) The monthly means were x̄ = (96, 101, 113, 100) mm. The

overall seasonal mean was 410 mm with standard deviation s = 150
mm and corresponding variance s2 = 22394 mm2. The correlation
coefficients were

ρ̂ =


1.0000 0.0667 0.1166 −0.1580

1.0000 0.1009 −0.0214
1.0000 −0.1633

1.000

 .
Trial #(S20, 109) The monthly means were x̄ = (115, 97, 117, 120) mm.

The overall seasonal mean was 449 mm with standard deviation s = 148
mm and corresponding variance s2 = 21994 mm2. The correlation co-
efficients were

ρ̂ =


1.0000 0.0744 −0.2276 −0.3123

1.0000 −0.0898 −0.1240
1.0000 0.1526

1.000

 .
12. Conclusions and further work

The problem of seasonal rainfall modelling has no obvious solution be-
cause there is no standard joint distribution with marginal gamma distribu-
tions for any given set of specified grade correlation coefficients. Our model
overcomes these problems. Once again we reiterate that our model is de-
rived on a solid theoretical basis, and that the standard tests of observed
data against limits set by repeated trials with the simulated data generated
by the model show there is insufficient evidence to reject the model on sta-
tistical grounds. On the one hand we argue that our model is quite basic and
natural in a conceptual sense—a stationary time series defined by successive
independently generated rainfall totals using a joint probability distribution
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that replicates the observed monthly correlations. On the other hand we note
that although the copula of maximum entropy may seem complicated—the
defining hyper-matrix contains 1296 elements—it is nevertheless easy to com-
pute and can be easily applied using a standard numerical calculation pack-
age such as Matlab. There are many other models that have been proposed
recently for the purpose of modelling catchment hydrology. In most cases,
researchers report on the successful use of these models in the simulation of
catchment rainfall. Although such models are tested extensively to ensure
that the simulated data is a good approximation to the observed data, it
seems there is often no clear axiomatic structural basis.

We have previously considered preliminary applications of this model to
monthly and seasonal rainfall for a season with m = 3 months at both
Kempsey [10, 18] and Sydney [22, 23] on the east coast of Australia in New
South Wales. In each case we used n = 4 equal length subdivisions on each
axis and hence were required to construct a checkerboard copula of maximum
entropy defined by a 3 dimensional hyper-matrix with 43 = 64 elements. In
this paper we have extended the season to m = 4 months with n = 6 equal
subdivisions on each axis and so the checkerboard copula is defined by a
4-dimensional hyper-matrix with 64 = 1296 elements. One could probably
obtain very similar results using a smaller 4-dimensional hyper-matrix with
only n = 4 equal subdivisions on each axis giving 44 = 256 elements. One
reason for considering the larger number of subdivisions relates to the in-
equality

−1 + 1/n2 ≤ ρr,s ≤ 1− 1/n2

for checkerboard copulas established in [22, 23]. Although these limits are
not a direct problem here they could become a problem if one wished to
apply this model to a problem with high pairwise correlation coefficients.
We are currently looking at a model for monthly rainfall at several different
locations within a small geographic region in south-eastern Australia. The
grade correlation coefficients for monthly rainfall at these locations lie in
the range [0.8, 0.93] and so a checkerboard copula for a joint distribution in
this application will certainly require n ≥ 5. Thus the real motivation for
using the larger copula was that we wanted to find out that the numerical
calculations were indeed feasible.

We would like to extend these studies and the current work to model
total seasonal rainfall jointly at several different locations on the east coast
of Australia—perhaps at Cairns, Brisbane, Kempsey and Sydney. Although
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these investigations have not yet commenced we will not be surprised to
find significant positive correlations in seasonal rainfall between the various
locations. Thus the larger copula may become a necessity.

A final interesting and potentially more difficult question relates to a
model for simultaneous generation of monthly and seasonal rainfall at sev-
eral different locations in a similar geographic region—such as the east coast
of Australia.. We envisage a two-tiered model with a checkerboard copula
of maximum entropy at the top level to model correlations in total seasonal
rainfall between different sites and a checkerboard copula of maximum en-
tropy for each site at the bottom level—just as we have done here—to model
local correlations in monthly rainfall. We would first of all use a random
simulation on the checkerboard copula at the top level to generate seasonal
rainfall at each site. At each site we would then use the local checkerboard
copula to define a cumulative probability distribution for all possible combi-
nations of monthly rainfall for the given seasonal total. We would then make
a random selection using this distribution to find the individual monthly to-
tals. In principle this will be no harder than the current simulation except,
of course, that there will be two steps required for each outcome at each site.
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Appendix A. The copula of maximum entropy for Cairns

The quadruply-stochastic hyper-matrix h ∈ R6×6×6×6 with m = 4 and
n = 6 defining the quadrivariate checkerboard copula of maximum entropy
for rainfall at BoM station 031036 Cairns (Kuranda) during the January-
February-March-April season is given by
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h11 = [h11k`] =


0.0110 0.0099 0.0087 0.0076 0.0065 0.0056
0.0088 0.0081 0.0074 0.0067 0.0059 0.0052
0.0068 0.0065 0.0061 0.0057 0.0052 0.0047
0.0051 0.0050 0.0049 0.0047 0.0044 0.0041
0.0038 0.0038 0.0038 0.0037 0.0037 0.0035
0.0027 0.0028 0.0029 0.0029 0.0029 0.0029

 ,

h12 = [h12k`] =


0.0077 0.0072 0.0066 0.0060 0.0055 0.0049
0.0067 0.0065 0.0062 0.0058 0.0054 0.0050
0.0057 0.0057 0.0056 0.0055 0.0052 0.0050
0.0048 0.0049 0.0050 0.0050 0.0049 0.0048
0.0038 0.0040 0.0042 0.0044 0.0045 0.0045
0.0030 0.0032 0.0035 0.0037 0.0039 0.0041

 ,

h13 = [h13k`] =


0.0051 0.0050 0.0049 0.0046 0.0044 0.0041
0.0050 0.0050 0.0050 0.0049 0.0048 0.0046
0.0047 0.0049 0.0050 0.0051 0.0051 0.0051
0.0042 0.0046 0.0049 0.0051 0.0053 0.0054
0.0038 0.0042 0.0046 0.0049 0.0053 0.0056
0.0032 0.0037 0.0042 0.0046 0.0051 0.0056

 ,

h14 = [h14k`] =


0.0033 0.0034 0.0034 0.0034 0.0034 0.0033
0.0035 0.0037 0.0039 0.0040 0.0041 0.0042
0.0036 0.0040 0.0043 0.0046 0.0048 0.0050
0.0037 0.0041 0.0046 0.0050 0.0055 0.0059
0.0036 0.0041 0.0047 0.0054 0.0060 0.0067
0.0034 0.0040 0.0048 0.0056 0.0064 0.0073

 ,

h15 = [h15k`] =


0.0021 0.0022 0.0024 0.0025 0.0026 0.0026
0.0024 0.0027 0.0029 0.0032 0.0034 0.0036
0.0028 0.0031 0.0036 0.0040 0.0044 0.0048
0.0030 0.0036 0.0042 0.0048 0.0055 0.0061
0.0033 0.0040 0.0048 0.0056 0.0066 0.0077
0.0034 0.0042 0.0053 0.0064 0.0078 0.0093

 ,

h16 = [h16k`] =


0.0012 0.0014 0.0016 0.0017 0.0018 0.0020
0.0016 0.0019 0.0021 0.0024 0.0027 0.0030
0.0020 0.0024 0.0028 0.0033 0.0038 0.0044
0.0024 0.0030 0.0037 0.0044 0.0053 0.0062
0.0029 0.0037 0.0046 0.0057 0.0070 0.0085
0.0033 0.0043 0.0056 0.0072 0.0091 0.0114

 ,

h21 = [h21k`] =


0.0112 0.0098 0.0084 0.0072 0.0061 0.0051
0.0088 0.0080 0.0071 0.0062 0.0054 0.0047
0.0068 0.0063 0.0058 0.0052 0.0047 0.0042
0.0050 0.0048 0.0046 0.0043 0.0039 0.0036
0.0036 0.0036 0.0035 0.0034 0.0032 0.0030
0.0025 0.0026 0.0026 0.0026 0.0025 0.0025

 ,

34



h22 = [h22k`] =


0.0080 0.0073 0.0066 0.0059 0.0052 0.0046
0.0070 0.0066 0.0061 0.0056 0.0051 0.0046
0.0059 0.0057 0.0055 0.0052 0.0049 0.0045
0.0048 0.0048 0.0048 0.0047 0.0045 0.0043
0.0038 0.0039 0.0040 0.0041 0.0041 0.0040
0.0029 0.0031 0.0033 0.0034 0.0035 0.0036

 ,

h23 = [h23k`] =


0.0056 0.0053 0.0050 0.0047 0.0044 0.0040
0.0053 0.0052 0.0051 0.0049 0.0047 0.0044
0.0049 0.0050 0.0051 0.0050 0.0049 0.0048
0.0044 0.0047 0.0048 0.0050 0.0050 0.0050
0.0039 0.0042 0.0045 0.0047 0.0050 0.0051
0.0033 0.0037 0.0040 0.0044 0.0048 0.0051

 ,

h24 = [h24k`] =


0.0037 0.0037 0.0037 0.0036 0.0035 0.0033
0.0039 0.0040 0.0041 0.0042 0.0042 0.0041
0.0040 0.0042 0.0045 0.0047 0.0048 0.0049
0.0039 0.0043 0.0047 0.0051 0.0054 0.0057
0.0038 0.0043 0.0048 0.0053 0.0059 0.0063
0.0035 0.0041 0.0048 0.0055 0.0062 0.0069

 ,

h25 = [h25k`] =


0.0024 0.0025 0.0026 0.0027 0.0027 0.0027
0.0028 0.0030 0.0032 0.0034 0.0035 0.0037
0.0031 0.0035 0.0038 0.0042 0.0045 0.0048
0.0034 0.0039 0.0044 0.0050 0.0056 0.0061
0.0036 0.0042 0.0050 0.0058 0.0066 0.0075
0.0037 0.0045 0.0054 0.0065 0.0077 0.0090

 ,

h26 = [h26k`] =


0.0015 0.0016 0.0018 0.0019 0.0020 0.0021
0.0019 0.0021 0.0024 0.0027 0.0029 0.0032
0.0023 0.0027 0.0032 0.0036 0.0041 0.0046
0.0028 0.0034 0.0040 0.0048 0.0055 0.0064
0.0033 0.0041 0.0050 0.0061 0.0073 0.0087
0.0037 0.0047 0.0060 0.0075 0.0093 0.0114

 ,

h31 = [h31k`] =


0.0113 0.0097 0.0082 0.0068 0.0056 0.0046
0.0088 0.0078 0.0068 0.0058 0.0049 0.0041
0.0067 0.0061 0.0054 0.0048 0.0042 0.0037
0.0049 0.0046 0.0042 0.0039 0.0035 0.0031
0.0035 0.0034 0.0032 0.0030 0.0028 0.0026
0.0024 0.0024 0.0023 0.0023 0.0022 0.0021

 ,

h32 = [h32k`] =


0.0084 0.0075 0.0066 0.0058 0.0050 0.0043
0.0072 0.0066 0.0060 0.0054 0.0048 0.0043
0.0060 0.0057 0.0053 0.0050 0.0046 0.0041
0.0048 0.0047 0.0046 0.0044 0.0042 0.0039
0.0038 0.0038 0.0038 0.0038 0.0037 0.0036
0.0029 0.0030 0.0031 0.0031 0.0032 0.0032

 ,
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h33 = [h33k`] =


0.0060 0.0056 0.0052 0.0047 0.0043 0.0038
0.0057 0.0055 0.0052 0.0049 0.0046 0.0042
0.0052 0.0052 0.0051 0.0049 0.0047 0.0045
0.0046 0.0047 0.0048 0.0048 0.0048 0.0047
0.0040 0.0042 0.0044 0.0045 0.0047 0.0047
0.0033 0.0036 0.0039 0.0042 0.0044 0.0046

 ,

h34 = [h34k`] =


0.0041 0.0041 0.0039 0.0038 0.0036 0.0033
0.0043 0.0043 0.0043 0.0043 0.0042 0.0040
0.0043 0.0045 0.0047 0.0047 0.0048 0.0047
0.0042 0.0045 0.0048 0.0051 0.0053 0.0054
0.0040 0.0044 0.0049 0.0053 0.0057 0.0060
0.0037 0.0042 0.0048 0.0053 0.0059 0.0064

 ,

h35 = [h35k`] =


0.0027 0.0028 0.0029 0.0029 0.0028 0.0028
0.0031 0.0033 0.0035 0.0036 0.0037 0.0037
0.0035 0.0038 0.0041 0.0044 0.0046 0.0048
0.0037 0.0042 0.0047 0.0052 0.0056 0.0061
0.0039 0.0045 0.0052 0.0059 0.0067 0.0074
0.0040 0.0047 0.0056 0.0066 0.0076 0.0087

 ,

h36 = [h36k`] =


0.0018 0.0019 0.0020 0.0021 0.0022 0.0023
0.0022 0.0025 0.0027 0.0029 0.0031 0.0033
0.0027 0.0031 0.0035 0.0039 0.0043 0.0047
0.0032 0.0038 0.0044 0.0051 0.0058 0.0065
0.0037 0.0045 0.0054 0.0064 0.0075 0.0088
0.0041 0.0052 0.0064 0.0078 0.0095 0.0114

 .

The remaining elements h41, . . . ,h66 can be found from the formula

hijk` = hpqrs

where i+ p = j + q = k + r = `+ s = 7.
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