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Maximal(ly) monotone operator theory has just has turned fifty.
| iIntend to briefly survey the history of the subject.

| shall try to explain why maximal monotone operators are both
Interesting and important--- culminating with a description of
the remarkable progress made during the past decade.

4 (2010), 473-490.

"The object of mathematical rigor is to sanction and legitimize the conquests of
intuition, and there was never any other object for it." — Jacques Hadamard




Monotone networks*

By G. J. MaNTY{ Proc R. Soc. Lond. 1960
— 1980_ 1990 Department of Mathematics, Duke University, Durham, N.C., US.A.

(Communicated by J. L. Synge, F.R.S.—Received 12 June 1959—
— 1990-2000 Revised 4 February 1960)

- 2 000'2 O 1 2 Fundamental existence and uniqueness theorems for electrical networks of non-linear

resistors are proved in an abstract form, as theorems of pure mathematics. The two groups

from which the ‘currents’ and ‘voltage drops’ are drawn are permitted to be either the real

o W h a t We n OW k n OW numbers, or discrete subgroups of the reals. It is found that the uniqueness theory is deriv-

able from extremum principles for certain convex functions associated with the networks,
. ) and that the existence theory is derivable from a single new theorem of graph theory.

() A n d Stl I I d O n t k n OW The abstract approach, besides revealing the logical structure of the subject more clearly

than the ‘concrete’ approach, also (1) reveals the mathematical problem of solving a non-

linear network to be identical with certain extremum problems arising in non-electrical

: ° applications, (2) contributes a numerical method, since the constructions for the discrete

o Sto rl eS fl rst case are algorithmic, and (3) permits the application of the theorems to problems of pure

mathematics.
Applications are not fully discussed; they will be treated at greater length in the

(] M a t h e m at i C S I a St appropriate technical journals,

1. INTRODUCTION

A well-known theorem, proved incorrectly by Poincaré (19o1) and correctly by

“in after years | have deeply regretted that | did not proceed far enough at least to understand
something of the great leading principles of mathematics, for men thus endowed seem to
have an extra sense.” - Charles Darwin




BACKGROUND

e First introduced by for networks
Felix Browder

— and then for subgradients, variational inequalities,
algorithms, mathematical economics ...

— By 1975, the main ideas were clear — if not easy —in
Hilbert (reflexive Banach) space

A monotone operator from a Hausdorff locally convex space E to its dual
E* is a subset T of F x E* such that (z* — y*,x — y) > 0 for all (z*,z) and
(y*,y) from T, where (-,-) denotes the duality pairing between E and E*.

"He [Gauss] is like the fox, who effaces his tracks in the sand with
his tail.” - Niels Abel, 1802-1829




THREE CORE EXAMPLES

1

Ix(z) = 50l = {2 € X*: |l = | = (&, ")}
e SKEW LINEAR OPERATORS (have no ¢ part: “acyclic”)
(Sz,y) = —(Sy,x The non-cyclic rotation
cos (f)  sin (0) ]
0 A All LP pairs Sy =
€<——1 become — sin (9) COS (9)

—AT 0

skew Vs is only n-monotone for 6 := 7 /n.

— these are in some sense the extreme cases (/Asplund)

 LAPLACIANS (p-Laplacians, Elliptic PDEs)

— weak solutions in appropriate Sobolev space, say, to
Dirichlet’s equation:




A NONLINEAR ROTATION OPERATOR

Theorem [Wiersma-JMB, 07] Define S : R* — R? by

S(z,y) = (~y,z) for 2° +y* < 1.

for ||z| > 1. Asplund’s Pareto result:

Then the unique maximal monotone extension S of S
with range restricted to the unit disc is acyclic and has:

- 1 [x 1
S(x) = /1 - I
@) \/ O 2

can decompose T'=0f + A
where A has no more cyclic part.
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2009 all minimal monotone radially symmetric
mappings are acyclic (Musev-Ribarska)
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Laplacians as Maximal Monotone Operators

9.3.2 (Elliptic partial differential equations [195, 131, 273]).T Much early impe-
tus for the study of maximal monotone operators came out of partial differential
equations and takes place within the confines of Sobclev space —and so we con-
tent ourselves with an example of what is possible.

As an application of their study of existence of eigenvectors of second order
nonlinear elliptic equations in Ls(£), the authors of [273] assume that @ C
R?, (n > 1) is a bounded open set with boundary belonging to ¢ for some o >
0. They assume that one has functions |a;(z, )| < v (1 < i < n)and |ag(z, u)| <
v|u| +a(z) for some a € Ly(Q) and v > 0; where all a; are measurable in = and
continuous in ¢ (a.e. ). They then consider the normalized eigenvalue problem

monotonicity

i
du
Au—}—)\{Zai(I,u)a—i—ao(:c,u)} —0, zeQ, (9.3.8)
i=1 ¢
where|Au = —V?u = =577 | g% is the classical Laplaciarn|. To make thisl
accessible to Sobolev theory, a weak solution s requested to (9.3.8) for 0 < A < 1

when u € W22(0) N W,>*(Q). In this setting, a solution of

Au+Tu = f(x)
for all 7 > 0 and all f € Lo (and with ||u|2 = 1) is assured.| Minty’s surjectivity
condition (Proposition 9.3.1) implies 7' := A ig linear and maximal monotone

on L3(Q) with domain W22(Q) N W,>*(Q). Of course, one THust Trst check
monotonicity of /A using integration by parts in the form

S /g}(v,L\u)-/ﬂ(Vu,Vu),

for all v € W=52(Q),u ¢ C2(0) € W2 (). One is now able to provide a
Fredholm alternative type result for (9.3.8) [273, Theorem 10]. In like-fashion
one can make sense of the assertion that for 2 < p < co the p-Laplacian /A, is
maximal monotone: Ayu is given by

Apu = —div(|[Vul[P~2Vu) ¢ W-14(Q)
for u e WHP(Q) with 1/p+1/9 = 1.

maximality




Key Advances: 1959-1970

Zarantonello, etc., lay down foundations

— Minty surjectivity theorem R(T+J,=X") if X is reflexive
(1962 Hilbert) [and J, is 1-1 with 1-1 inverse] (proof at end)

— application to variational inequalities (V1)

0€T(x)+ dic(x) & ™ € T'(x),x € C,sup{z™,c—x) <0,
cel

— sol’n techniques for (V1) or elliptic PDEs (Galerkin
approximates) demand idea of maximality or at least
“demiclosedness”

z, € T(xy),x, —5 0,2, =4 =0 T (x)

Minty, G., On some aspects of the theory of monotone operators. 1969 Theory and Appl. of Monotone
Operators (Proc. NATO Adv. Study Inst., Venice, 1968) 67-82. “This is mainly a review article on
monotone operators: the author points out their relation to Kirszbraun's theorem and to convexity
theory, and sketches applications to Hammerstein's equation and to variational inequalities.”




1959-1970

— characterizes

Ry:= (T +\x) '] Ty = (T +AJ5Y) |

What Hilbert space (CAT(0)) buys you is nonexpansivity
— J,=1 (J, and (J,)* are both smooth only on H)

. . . r—vyY T+VYy
— T, is non-expansive; indeed (z,y) e P& ( R ) eT

— T is monotone iff P is non-expansive (singleton)

— proximal point (below) and Krasnoselskii algorithms equivalent in H

— Valentine-Kirzbraun theorem. (1945-1932) Every non expansive P on
A C H extends to a nonexpansive P* with D(P*) = H.
Quick Proof: P~ T T +— P* (T any maximal extension of T).

Now D(P*) = R(T"+I) = H by Minty’s theorem.




* Rockafellar, R. T., Monotone operators and the proximal point
algorithm. SIAM J. Control Optimization 14 (1976), 877-898.

— On the maximality of sums of nonlinear monotone operators. Trans. Amer.
Math. Soc. 149 (1970), 75-88. (highly technical: renorming, Brouwer, local bdd)

— On the maximal monotonicity of subdifferential mappings. Pacific J.
Math. 33 (1970), 209-216. (far from easy—until recently)

— (Maximal) monotonicity is hardly touched in Convex Analysis (1970)

 Kenderov, P.,, Semi-continuity of set-valued monotone mappings.
Fund. Math. 88 (1975), 61--69.

— “So, under some conditions, every maximal set-valued monotone mapping is
single-valued almost everywhere.”

e Gossez, J.-P.,, Opérateurs monotones non linéaires dans les espaces
de Banach non réflexifs. J. Math. Anal. Appl. 34 (1971), 371--376.

— introduced dense type (all of and all reflexive max. mon.) and lifted part of
theory from reflexive space (despite complete failure of R(T+J)=X")

Examples : 1974 Gossez operator (a non-dense type linear max.mon.)
1976 non-unigueness of extensions 1977 non-convexity of range of a max mon




1970-1980

— shows in finite dimensions that a maximal monotone operator
is a.e. (Fréchet) differentiable

— this now provides the canonical proof of Alexandrov’s theorem
and is central to viscosity solution for PDEs

— Itis vaguely possible that it holds in separable Hilbert space

AN ESSENTIALLY STRICTLY CONVEX FUNCTION WITH
NONCONVEX SUBGRADIENT DOMAIN
AND WHICH IS NOT STRICTLY CONVEX

1972 JMB writes MSc
on max mon operators
by a happy mistake:

When his supervisor
recommends wrong
paper of Mosco’s

Example of non-convex
D(of) (with convex closure)

max{(x-2)A2-+yA2-1,-(x*y)A(1/4)}




Key advances: 1980-1990

“In an earlier work E. Krauss (1985) found a representation of monotone
operators with the help of subdifferentials of saddle functions on £ x E. In the
paper under review the author studies a monotone operator T' C (E x E*) by
using the convex function L7 F x E* — R U {400} defined by

Ly(z,2”) =sup{{z",y) + ",z —y): (y,y") €T}

Brezis earlier used Lp without final term (oops)
while JMB-SF proved local boundedness on int D(T)
via continuity of the convex function

fr(x) :=sup{{y*,y — x): (y*,y) € T}.

Algorithmic advances. Spingarn’s partial inverse

and Lions-Mercier monotone splitting: all based on

7 = (T L+




Preiss, David; Phelps, R. R.; Namioka, |., Smooth Banach
spaces, weak Asplund spaces and monotone or usco
mappings. Israel J. Math. 72 (1990), no. 3, 257-279 (1991).

— a maximal monotone operator on a space with a smooth norm is
generically single-valued (also known in Asplund case)

— precursor result (separable) Zarantonello, E.H., Dense single-
valuedness of monotone operators. Israel J. Math 15 (1973), 158--166.
Simons, Stephen, Minimax and monotonicity. Lecture Notes
in Mathematics, 1693. Springer-Verlag, Berlin, 1998.
— first comprehensive treatment within (very subtle) convex analysis
— 2nd edition: From Hahn-Banach to Monotonicity 2008 ( simpler)

1996 H.H. Bauschke shows a linear max. mon. T is
dense type iff NI iff T is monotone

— captured all known counter-examples (Gossez, Fitzpatrick-Phelps)
— all of the form T+ J, and can’t exist on lattice X unless



Key Advances: 2000-2012

— aetalls and

dCCurate Ccitations In NIne O

onvex

Functions (CUP)

T is of dense type (D):
inf(, pyer (™ — 2,2 — 2") > 0]
implies some bounded net
(g, x) €T —yprxs (277, 27)

Key Features

+ Unique focus on the functions themselves, rather than
convex analysis

+ Contains over 600 exercises showing theory and
applications

+ All material has been class-tested

1996 FP operator
T'Ll[O 1] — LOO[O 1] given by

T (x fo s)ds — ft
is skew and £7 not in (D)
(BWY: T in AC?[0,1] non maximal)

Choice “Outstanding
Academic Title” for 2011

Contents

Preface; 1. Why convex?; 2. Convex functions on Euclidean
spaces; 3. Finer structure of Euclidean spaces; 4. Convex
functions on Banach spaces; 5. Duality between smoothness
and strict convexity; 6. Further analytic topics; 7. Barriers and
Legendre functions; 8. Convex functions and classifications
anach spaces; 9. Monotone operators and the Fitzpatrick
funftion; 10. Further remarks and notes; References; Index.

November
2009

CONVEX FUNCTIONS
constructions,Characterizations
and Counterexamples

November 2009
555 pages
10 tones [/ 640 exercises
50 worked examples / 45 figures
Hardback / 9780521850056
Price Is Not Yet Set




2000-2010

Here was the current status (NI iff ED iff D)

Relationships between Classes

@ D Subgradient

I 3
A

In general non-reflexive space all implications are strict except for
those marked with “?’. The dotted implication is conjectured only.




WHAT WE KNEW IN 2005

Minty’s theorem with
smoothness hypotheses
removed on X

Decoupling Lemma is just
Fenchel or Hahn-Banach

Theorem 5.1.831 (Rockafellar) Let X be a reflezive Banach spoce and let
T: X — 2% be a mazimal monotone operator. Then range(T + J) = X*.
Here J is the duality map defined by J(z) := 9||z||?/2.

Proof. The Cauchy inequality and (5.1.16) implies that for all z,z*,

Il + [l ]2

FT(IaI*)+ 2

> 0. (5.1.17)

Applying the decoupling result of Lemma 4.3.1 to (5.1.17) we conclude that
there exists a point (w*,w) € X* x X such that

0< Frlz,z*) — (w,z) — (z*,w)

2 * |2
+ * *
|y|2|y”+<w ,y>—|—<y ,w) (5.1.18)

Choosing y € —Jw* and y* € —Jw in inequality (5.1.18) we have

2 ¥ 2
Fir(a,a) = (' 2) = (") > PRI

(5.1.19)
For any z* € Tz, adding {w*,w} to both sides of the above inequality and
noticing Fr(z,z*) = (z*,z) we obtain

el + [l
2

(zF —w™ ',z —w) > + {w*,w) > Q. (5.1.20)
Since (5.1.20) holds for all z* € T'x and T' is maximal we must have w* € Tw.
Now setting z* = w* and z = w in (5.1.20) yields

el + fwt?

5 +{w*, wy =0,

which implies —w* € Jw. Thus, 0 € (I + J)w. Since the argument applies
equally well to all translations of 7', we have range(T' + J) = X* as required.
@




WHAT WE KNEW IN 2005

maximality is
assured

xFExercise 5.1.44 Let X be a reflexive Banach space. Prove that a monotone
mapping T': X — 2% is maximal if and only if the mapping T'(- + z) + J is
jective for all z in X. References: [33, 240].

Theorem 5.1.35 Let X be a reflexive space, let T' be maximal and let f be
closed and convex. Suppose that

0 € core{conv dom(T") — conv dom &(f)}.

Then

(a)0f +T + J is surjective.
(b)Of +T is mazimal monotone.
(c)Of is mazrimal monotone. (Maximality of of for free)

In reflexive space: Fitzpatrick function yields the existence of maximal monotone extensions
from Hahn-Banach in ZF without Axiom of Choice (Bauschke-Wang 2009)

“For many great theorems the necessity of a condition is trivial to prove, but the
trick is to prove sufficiency. That's the hard part.”

— George Minty (1929-86) (quoted by Andrew Lenard)




WHAT WE KNEW IN 2010

FPV
e (D) iff implies cl D(T) is convex
e S, Ttype (D) implies S+T is maximal when
0 € core[D(T)-D(S)]
and S,T are maximal (recovers reflexive case)
* a nonlinear T with unique extension is in (D)
 much about (n-cyclic) Fitzpatrick functions

“The difficulty lies, not in the new ideas, but in escaping the old ones, which
ramify, for those brought up as most of us have been, into every corner of
our minds.” - John Maynard Keynes (1883-1946)




CURRENT REFERENCES

1. Fitzpatrick-Phelps type coincides with dense type and negative-
infimum type, Optimization Letters. E-published, Aug 2011.

2. Construction of pathological maximally monotone operators on
non-reflexive Banach spaces. Available at
http://arxiv.org/abs/1108.1463.

3. The Brezis-Browder theorem in an arbitrary Banach space. In
revision for J. Functional Analysis, October 2011. Available at
http://carma.newcastle.edu.au/jon/BrBr.pdf



http://arxiv.org/abs/1108.1463�
http://carma.newcastle.edu.au/jon/BrBr.pdf�

2011-2012

Here is the current status (FP iff NI iff D)

“x7 refers to skew operators such as T' in Theorem 3.6, T, in Example 4.1,
A in Example 4.8, A in Corollary 4.11, and A in Corollary 4.12.
“# 7 refers to the operators such as A&T in Theorem 3.6, A,&T, in Example 4.1,
A in Example 4.8, A in Corollary 4.11, A in Corollary 4.12,
and A + (-, ¢)e in Example 4.13.
% %" denotes maximally monotone and unique operators with non aftine graphs.

W

We let (ANA), (FP) and (FPV) respectively denote the other monotone operator classes
“almost negative alignment”, “Fitzpatrick-Phelps™ and “Fitzpatrick-Phelps-Veronas”. Then

| type (FPV)

H )

[ ot Gossez operator ok

type

 —

~

type (D) ——| type (FP) |« | type (NI) | type (ED) —> .u-n'fiq.ue\mezsse.




WHAT WE KNOW NOW

Theorem [Brézis-Browder in general Banach space, 2010] Let A: X — X* be
a monotone linear relation such that graph A is closed. Then the following are
equivalent.

1. A is maximally monotone of type (D).
2. A is maximally monotone of type (NI).
3. A is maximally monotone of type (FP).
4. A* is monotone.

Hence in reflexive space A is maximal iff A* is monotone (Brézis-Browder, 1975).

Recall that the operator adjoint of A, written as A*, is defined by

graph A* = {(z**,2*) € X** x X*: (2%, —z**) € (graph A)'}.

Conjecture. Every maximally monotone operator is BR iff X is reflexive.
(We know non BR, hence non (D), examples exist in nearly all non-reflexive
spaces, see #3.)




In an arbitrary Banach space X:
1. Does S, T maximal imply S+T is maximal if

0 € core[D(T)-D(S)]?
v ifint D(T) Nint D(S) # () then S+T is maximal (JMB 07)
v' the right generalization of (7! + /\J“l)"“]might be useful

2. Are any non-reflexive spaces of type (D) ?

v' i.e., all maximal monotones on X are type (D)

v this seems very unlikely (#3). It fails in all spaces
containing c, (Svaiter) 1, James quasi-reflexive space, ...

3. Does every max mon have cl D(T) convex?

v ¢l R(T) convex characterizes reflexive space
v | conjecture ‘yes’. (It is implied by restricted sum rules)



Simon Fitzpatrick and Regina Burachik

| T
|1

<_THAT’S ALL FOLKS




	  Fifty Years of Maximal Monotonicity: Recent Progress on Maximal Monotonicity
	ABSTRACT
	OUTLINE
	BACKGROUND
	THREE CORE EXAMPLES
	 A NONLINEAR ROTATION OPERATOR
	Laplacians as Maximal Monotone Operators
	Key Advances: 1959-1970
	 1959-1970
	Key Advances: 1970-1980
	 1970-1980
	Key advances: 1980-1990
	Key Advances: 1990-2000
	Key Advances: 2000-2012
	2000-2010
	�WHAT WE KNEW IN 2005
	�WHAT WE KNEW IN 2005
	WHAT WE KNEW IN 2010
	CURRENT REFERENCES
	2011-2012
	�WHAT WE KNOW NOW
	WHAT WE  STILL DON’T KNOW
	Simon Fitzpatrick and Regina Burachik (2004)

