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Motivation

Bauschke, Borwein and Combettes provided a new explicit
construction for the subdifferential operator ∂f as follows:

For every x ∈ X ,

∂f (x) = Ndom f (x) + conv [(∂f )int(x)]
w*

w*

,

where

dom f is the domain of f ;

Ndom f is the normal cone operator of dom f ;

(∂f )int is the operator whose graph is the norm-weak∗ closure of
gra∂f ∩ (int dom f × X ∗).

We now extend it into every maximally monotone operator.
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Notation and definitions

Throughout this talk,

X is a general real Banach space, with continuous dual X ∗, with
the pairing 〈·, ·〉 and norm ‖ · ‖.

Let A : X ⇉ X ∗. The graph of A, gra A := {(x , x∗) | x∗ ∈ Ax}.

dom A := {x ∈ X | Ax 6= ∅} and ran A := A(X ).

We say a net (aα)α∈Γ in X is eventually bounded if there exist
α0 ∈ Γ and M ≥ 0 such that

‖aα‖ ≤ M, ∀α �Γ α0.

The closed unit ball in X is BX :=
{

x ∈ X | ‖x‖ ≤ 1
}

, and
Bδ(x) := x + δBX .
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Notation and definitions

A : X ⇉ X ∗ is monotone ⇔ 〈x∗ − y∗, x − y〉 ≥ 0, whenever
(x , x∗), (y , y∗) ∈ gra A.

We say (x , x∗) ∈ X × X ∗ is monotonically related to gra A if

〈x − y , x∗ − y∗〉 ≥ 0, ∀(y , y∗) ∈ gra A.

A monotone mapping A : X ⇉ X ∗ is maximally monotone if no
proper enlargement of A is monotone.
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Figure: The graph of a monotone operator
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Figure: The graph of a maximally monotone operator
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Notation and definitions

f is convex ⇔ f
(
(1 − λ)x + λy

)
≤ (1 − λ)f (x) + λf (y), λ ∈ ]0,1[.

Let C ⊆ X . The interior of C is int C and C is the norm closure of
C.

The convex hull of C is conv C.

For the set D ⊆ X ∗, D
w*

is the weak∗ closure of D, and the norm
× weak∗ closure of C × D is C × D

‖·‖×w*
.

The indicator function ιC is defined by

ιC(x) :=

{
0, if x ∈ C;

+∞, otherwise.

Subdifferential operator ∂f : X ⇉ X ∗ via

x∗ ∈ ∂f (x) ⇔ (∀y ∈ X ) f (x) + 〈y − x , x∗〉 ≤ f (y).
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The normal cone operator of C , NC := ∂ιC , The tangent cone
operator of C is TC .

The duality map on X , J := ∂ 1
2‖ · ‖2.

Let A be such that dom A 6= ∅ and consider a set S ⊆ dom A. We
define AS : X ⇉ X ∗ by

gra AS := gra A ∩ (S × X ∗)
‖·‖×w*

=
{
(x , x∗) | ∃ a net (xα, x∗

α)α∈Γ in gra A ∩ (S × X ∗)

such that xα −→ x , x∗
α ⇁w* x∗

}
.

Set Aint := Aint dom A. We note that

gra Adom A = gra A
‖·‖×w* ⊇ gra A.
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Auxiliary results

Fact 1. (Banach–Alaoglu, 1932)
The closed unit ball BX∗ in X ∗ is weak∗ compact.

Fact 2. (Rockafellar, 1970)
Let f : X → ]−∞,+∞] be a proper lower semicontinuous convex
function. Then ∂f is maximally monotone.

Fact 3. (Rockafellar, 1969)
Let A : X ⇉ X ∗ be monotone with int dom A 6= ∅. Then A is locally
bounded at x ∈ int dom A, i.e., there exist δ > 0 and K > 0 such that

sup
y∗∈Ay

‖y∗‖ ≤ K , ∀y ∈ (x + δBX ) ∩ dom A.
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Auxiliary results

Fact 4. (Rockafellar, 1969)
Let A : X ⇉ X ∗ be maximal monotone with int dom A 6= ∅. Then
int dom A = int dom A and dom A is convex.

Fact 5.
Let A : X ⇉ X ∗ be monotone and x ∈ int dom A. Then there exist δ > 0
and M > 0 such that x + δBX ⊆ dom A and supa∈x+δBX

‖Aa‖ ≤ M.
Assume that (z, z∗) is monotonically related to gra A. Then

〈z − x , z∗〉 ≥ δ‖z∗‖ − (‖z − x‖+ δ)M.
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Local boundedness properties

Lemma 1. [Strong directional boundedness]
Let A : X ⇉ X ∗ be monotone and x ∈ int dom A. Then there exist δ > 0
and M > 0 such that x + 2δBX ⊆ dom A and supa∈x+2δBX

‖Aa‖ ≤ M.
Assume also that (x0, x∗

0 ) is monotonically related to gra A. Then

sup
a∈[x+δBX , x0[, a∗∈Aa

‖a∗‖ ≤ 1
δ
(‖x0 − x‖+ 1) (‖x∗

0‖+ 2M) ,

where [x + δBX , x0[ :=
{
(1 − t)y + tx0 | 0 ≤ t < 1, y ∈ x + δBX

}
.
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Figure: Strong directional boundedness
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Eventual boundedness

Theorem 1. [Voisei] Let A : X ⇉ X ∗ be monotone such that
int dom A 6= ∅. Then every norm × weak∗ convergent net in gra A is
eventually bounded.
Proof. We can and do suppose that 0 ∈ int dom A. Let (aα,a∗

α)α∈Γ in
gra A be such that

(aα,a∗
α) norm × weak∗ converges to (x , x∗).

Clearly, it suffices to show that

(a∗
α)α∈Γ is eventually bounded.

Suppose to the contrary that (a∗
α)α∈Γ is not eventually bounded. We

can and do suppose that

lim
α

‖a∗
α‖ = +∞.

By Fact 5, there exist δ > 0 and M > 0 such that

〈aα,a∗
α〉 ≥ δ‖a∗

α‖ − (‖aα‖+ δ)M, ∀α ∈ Γ.
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Proof of Theorem 1

Then we have

〈aα,
a∗
α

‖a∗
α‖

〉 ≥ δ − (‖aα‖+ δ)M
‖a∗

α‖
, ∀α ∈ Γ. (∗)

By Fact 1 (Banach-Alaoglu theorem), there exists a weak* convergent
subnet (a∗

β)β∈I of (a∗
α)α∈Γ, say

a∗

β

‖a∗

β
‖ ⇁w* a∗

∞ ∈ X ∗. (∗∗)

Then taking the limit along the subnet in (∗), we have

〈x ,a∗
∞〉 ≥ δ. (△)

On the other hand, since a∗
α⇁w* x∗, we have

〈x ,a∗
α〉 −→ 〈x , x∗〉.

Dividing by ‖a∗
α‖ in both sides of above equation, then by (∗∗) we take

the limit along the subnet again to get

〈x ,a∗
∞〉 = 0, which contradicts (△).
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Corollary 1.
Let A : X ⇉ X ∗ be maximally monotone such that int dom A 6= ∅. Then

gra A is norm × weak∗ closed, i.e., gra A = gra A
‖·‖×w*

.

Example 1. [Failure of graph to be norm-weak ∗ closed]
Borwein, Fitzpatrick, and Girgensohn showed statement of Corollary 1
cannot hold without the assumption of the nonempty interior domain:
The following example is as simplified by Bauschke and Combettes.

Let f : ℓ2(N) → ]−∞,+∞] be defined by

x 7→ max
{

1 + 〈x ,e1〉, sup
2≤n∈N

〈x ,
√

nen〉
}
,

where en := (0, . . . ,0,1,0, · · · ,0) : the nth entry is 1 and the others
are 0. Then f is proper lower semicontinuous and convex, but

∂f is not norm × weak∗ closed.
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Corollary 2
Let A : X ⇉ X ∗ be maximally monotone with int dom A 6= ∅. Assume
that S ⊆ dom A. Then

1 gra AS ⊆ gra A.

2 conv [AS(x)]
w* ⊆ Ax ,∀x ∈ dom A.

3 Ax = AS(x),∀x ∈ S and hence Ax = Aint(x),∀x ∈ int dom A.
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Technical parts

Proposition 1
Let D,F be nonempty subsets of X ∗, and C be a convex set of X with
int C 6= ∅. Assume that x ∈ C and that for every v ∈ int TC(x),

sup〈D, v〉 ≤ sup〈F , v〉 < +∞.

Then

D ⊆ conv F + NC(x)
w*
.

Next is our key technical part.

Proposition 2
Let A : X ⇉ X ∗ be maximally monotone with S ⊆ int dom A 6= ∅ such
that S is dense in int dom A. Assume that x ∈ dom A and
v ∈ int Tdom A(x). Then there exists x∗

0 ∈ AS(x) such that

sup
〈
AS(x), v

〉
=

〈
x∗

0 , v
〉
= sup

〈
Ax , v

〉
.

In particular, dom AS = dom A.
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Outline proof of Proposition 2

Proof. By Corollary 2, gra AS ⊆ gra A and hence

sup
〈
AS(x), v

〉
≤ sup

〈
Ax , v

〉
. (∗)

Appealing now to v ∈ int Tdom A(x), we can and do suppose that
v = x0 − x , where x0 ∈ int dom A = int dom A by Fact 4.

Using Lemma 1 select M, δ > 0 such that x0 + 2δBX ⊆ dom A and

sup
a∈[x0+δBX , x[, a∗∈Aa

‖a∗‖ ≤ M < +∞. (∗∗)
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Proof continued:

Let t ∈ ]0,1[. Then,

x + tBδ(v) = (1 − t)x + tx0 + tδBX ⊆ int dom A = int dom A. (∗∗∗)

Then by the monotonicity of A,

t〈a∗ − x∗,w〉
= 〈a∗ − x∗, x + tw − x〉 ≥ 0, ∀a∗ ∈ A(x + tw), x∗ ∈ Ax ,w ∈ Bδ(v).

There exists a sequence (x∗
n )n∈N in Ax such that

〈x∗
n , v〉 −→ sup〈Ax , v〉. (△)

Combining above two equations, we have

〈a∗ − x∗
n , v + w − v〉 ≥ 0, ∀a∗ ∈ A(x + tw), w ∈ Bδ(v), n ∈ N.
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Proof continued:

Fix 1 < n ∈ N. Thus, appealing to (∗∗) and the above equation yields,

〈a∗, v〉 ≥ 〈x∗
n , v〉 − 〈a∗ − x∗

n ,w − v〉
≥ 〈x∗

n , v〉 − (M + ‖x∗
n‖) · ‖w − v‖ ∀a∗ ∈ A(x + tw), w ∈ Bδ(v).

Take εn := min{ 1
n(M+‖x∗

n ‖)
, δ} and tn := 1

n .

Since S is dense in int dom A and x + tnBεn(v) ⊆ int dom A by (∗∗∗),
S ∩ [x + tnBεn(v)] 6= ∅. Then there exists wn ∈ X such that

wn ∈ Bεn(v), x + tnwn ∈ S and then x + tnwn −→ x . (△△)

Thus,

〈a∗, v〉 ≥ 〈x∗
n , v〉 −

1
n
, ∀a∗ ∈ A(x + tnwn).
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Proof concluded

Let a∗
n ∈ A(x + tnwn). Then by the previous equation,

〈a∗
n, v〉 ≥ 〈x∗

n , v〉 −
1
n
. (△△△)

By (∗∗) and (∗∗∗), (a∗
n)n∈N is bounded. Then by the Banach-Alaoglu

theorem, there exists a weak* convergent subnet of (a∗
α)α∈I of (a∗

n)n∈N

such that

a∗
α⇁w* x∗

0 ∈ X ∗.

Then by (△△), x∗
0 ∈ AS(x) and thus by (△△△)& (△)

sup
〈
AS(x), v

〉
≥

〈
x∗

0 , v
〉
≥ sup

〈
Ax , v

〉
.

Hence by (∗), we obtain sup
〈
AS(x), v

〉
=

〈
x∗

0 , v
〉
= sup

〈
Ax , v

〉
.
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Reconstruction of A, I

We next recall an alternate recession cone description of Ndom A.
Consider

rec A(x) :=
{

x∗ ∈ X ∗ | ∃tn → 0+, (an,a∗
n) ∈ gra A such that

an −→ x , tna∗
n ⇁w* x∗

}
.

Remark
When A is maximally monotone,

(Ndom A =)Ndom A = rec A on dom A.

Theorem 2. [Reconstruction of A, 1]
Let A : X ⇉ X ∗ be maximally monotone with S ⊆ int dom A 6= ∅ and
with S dense in int dom A. Then for every x ∈ X ,

Ax = Ndom A(x) + conv [AS(x)]
w*

= rec A(x) + conv [AS(x)]
w*
.
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Outline proof of Theorem 2

Proof. By Remark (Ndom A = rec A on dom A), we only need show

Ax = Ndom A(x) + conv [AS(x)]
w*
.

Applying Propositions 1&2,

Ax = Ndom A(x) + conv [AS(x)]
w*
, ∀x ∈ X .

We must still show

Ax = Ndom A(x) + conv [AS(x)]
w*
, ∀x ∈ X

Now, for every two sets C,D ⊆ X ∗, we have C + D
w* ⊆ C + D

w*
.

Thus, it suffices to show that for every x ∈ dom A,

Ndom A(x) + conv [AS(x)]
w* ⊆ Ndom A(x) + conv [AS(x)]

w*
.
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Proof continued:

We again can and do suppose that 0 ∈ int dom A and (0,0) ∈ gra A.

Let x ∈ dom A and x∗ ∈ Ndom A(x) + conv [AS(x)]
w*

. Now we show that

x∗ ∈ Ndom A(x) + conv [AS(x)]
w*
.

Then there exists nets (x∗
α)α∈I in Ndom A(x) and (y∗

α)α∈I in conv [AS(x)]
such that

x∗
α + y∗

α ⇁w* x∗.

Now we claim that

(x∗
α)α∈I is eventually bounded.

Suppose to the contrary that (x∗
α)α∈I is not eventually bounded. We

can and do suppose that

lim
α

‖x∗
α‖ = +∞.
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Proof continued:

By 0 ∈ int dom A and x∗
α ∈ Ndom A(x) (for every α ∈ I), there exists

δ > 0 such that δBX ⊆ dom A and hence we have

〈x , x∗
α〉 ≥ sup

b∈BX

〈x∗
α, δb〉 = δ‖x∗

α‖.

Thence, we have

〈x , x∗
α

‖x∗
α‖

〉 ≥ δ. (∗∗)

By Fact 1, there exists a weak* convergent subnet (x∗
β)β∈Γ of (x∗

α)α∈I ,
say

x∗
β

‖x∗
β‖

⇁w* x∗
∞ ∈ X ∗.
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Proof continued:

Taking the limit along the subnet in (∗∗), we have

〈x , x∗
∞〉 ≥ δ. (△)

Since x∗
α + y∗

α ⇁w* x∗, we have

x∗
α

‖x∗
α‖

+
y∗
α

‖x∗
α‖

⇁w* 0.

And so by
x∗

β

‖x∗

β
‖ ⇁w* x∗

∞,

y∗
β

‖x∗
β‖

⇁w*−x∗
∞.

By Corollary 2, conv [AS(x)] ⊆ Ax , and hence (y∗
α)α∈I is in Ax . Since

(0,0) ∈ gra A, we have 〈y∗
α, x〉 ≥ 0 and so

〈 y∗
β

‖x∗
β‖

, x
〉
≥ 0.
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Proof concluded

Using the equation
y∗

β

‖x∗

β
‖ ⇁w* −x∗

∞ and taking the limit along the subnet

in above equation we get

〈
− x∗

∞, x
〉
≥ 0, which contradicts that 〈x∗

∞, x〉 ≥ δ.

Hence, (x∗
α)α∈I is eventually bounded.

Then by Fact 1 (Banach- Alaoglu theorem) again, there exists a weak∗

convergent subset of (x∗
α)α∈I , for convenience, still denoted by (x∗

α)α∈I

which lies in the normal cone, such that x∗
α ⇁w* w∗ ∈ X ∗. Hence

w∗ ∈ Ndom A(x) and y∗
α ⇁w* x∗ − w∗ ∈ conv [AS(x)]

w*
. Hence

x∗ ∈ Ndom A(x) + conv [AS(x)]
w*
.
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Corollary 2. [Convex subgradients]
Let f : X → ]−∞,+∞] be proper lower semicontinuous and convex
with int dom f 6= ∅. Let S ⊆ int dom f be given with S dense in dom f .
Then

∂f (x) = Ndom f (x) + conv [(∂f )S(x)]
w*
, ∀x ∈ X .
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Structure for S ∈ SA

In various classes of Banach space we can choose useful structure for
S ∈ SA, where

SA :=
{

S ⊆ int dom A | S is dense in int dom A
}
.

Corollary 3. [Specification of SA]
Let A : X ⇉ X ∗ be maximally monotone with int dom A 6= ∅. We may
choose the dense set S ∈ SA to be as follows:

1 In a Gâteaux smooth space, entirely within the residual set of
non-σ porous points of dom A,

2 In an Asplund space, to include only a subset of the generic set
points of single-valuedness and norm to norm continuity of A,

3 In a separable Asplund space, to hold only countably many
angle-bounded points of A,
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Structure for S ∈ SA

4 In a weak Asplund space, to include only a subset of the generic
set of points of single-valuedness (and norm to weak∗ continuity)
of A,

5 In a separable space, to include only points of single-valuedness
(and norm to weak∗ continuity) of A whose complement is covered
by a countable union of Lipschitz surfaces.

6 In finite dimensions, to include only points of differentiability of A
which are of full measure.
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A notation and a definition

Let A : X ⇉ X ∗. We define Â : X ⇉ X ∗ by

gra Â :=
{
(x , x∗) ∈ X × X ∗ | x∗ ∈

⋂

ε>0

conv [A(x + εBX )]
w*
}
.

Clearly, we have gra A
‖·‖×w* ⊆ gra Â.

We say A has the upper-semicontinuity property property (Q) if for
every net (xα)α∈J in X such that xα −→ x , we have

⋂

α∈J

conv


 ⋃

β�Jα

A(xβ)




w*

⊆ Ax .

The following directly follows from above:

Â = A ⇒
(

A has property (Q)
)
⇒

(
gra A = gra A

‖·‖×w*
)
.
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Reconstruction of A, 2

Theorem 3. [Reconstruction of A, 2]
Let A : X ⇉ X ∗ be maximally monotone with int dom A 6= ∅. Then

Â = A . In particular, A has property (Q); and so has a norm × weak∗

closed graph.

Recall that

gra Â :=
{
(x , x∗) ∈ X × X ∗ | x∗ ∈

⋂

ε>0

conv [A(x + εBX )]
w*
}
.
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Applications

In general, we do not have

Ax = conv [AS(x)]
w*
, ∀x ∈ dom A.

Example 2
Let C be a closed convex subset of X with S ⊆ int C 6= ∅ such that S
is dense in C. Then

1 NC is maximally monotone and gra(NC)S = C × {0}.

2 NC(x) 6= conv [(NC)S(x)]
w*
,∀x ∈ bdry C.

3
⋂

ε>0 conv [NC(x + εBX )]
w*

= NC(x), ∀x ∈ X .
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Applications

There always exists an operator A even with no interior point such that
Â = A and hence A has property (Q). More generally:

Example 3
Suppose that X is reflexive. Let A : X ⇉ X ∗ be such that gra A is
nonempty closed and convex. Then

Â = A and hence A has property (Q).
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Applications

Example 4
Let p > 1 and f : X → ]−∞,+∞] be defined by

x 7→ ιBX
(x) +

1
p
‖x‖p.

Then for every x ∈ dom f , we have

Ndom f (x) =

{
R+ · Jx , if ‖x‖ = 1;

{0}, if ‖x‖ < 1

(∂f )int(x) =

{
‖x‖p−2 · Jx , if ‖x‖ 6= 0;

{0}, otherwise.

Moreover,
1 ∂f = Ndom f + (∂f )int = Ndom f + ∂ 1

p‖ · ‖p.

2 ∂f (x) 6= (∂f )int(x) = conv [(∂f )int(x)]
w*
,∀x ∈ bdry dom f .

3
⋂

ε>0 conv [∂f (x + εBX )]
w*

= ∂f (x), ∀x ∈ X .
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Thanks for your attention

Thanks for your attention.
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