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Abstract. We use methods from convex analysis convex, relying on an inge-

nious function of Simon Fitzpatrick, to prove maximality of the sum of two

maximal monotone operators on reflexive Banach space under weak transver-
sality conditions.

1. Introduction and Preliminaries

The central result of this paper, Theorem 5, marries recent work by Simons and
Zalinescu [16] with additional convex analysis to provide an accessible short proof
of the maximality of the sum of two maximal monotone operators.

Recall that the domain of an extended valued convex function, denoted dom (f),
is the set of points with value less than +∞, and that a point s is in the core of a set
S (denoted by s ∈ core S) provided that s lies in S and X =

⋃
λ>0 λ(S − s). For a

concave function g, we use dom g = dom (−g). Recall that x∗ ∈ X∗ is a subgradient
of f : X → (−∞,+∞] at x ∈ dom f provided that f(y)− f(x) ≥ 〈x∗, y − x〉. The
set of all subgradients of f at x is called the subderivative or subdifferential of f at
x and is denoted ∂f(x). We use the convention that ∂f(x) = ∅ for x 6∈ dom f . We
shall need the indicator function ιC(x) which is zero for x in C and +∞ otherwise,
the Fenchel conjugate f∗(x∗) := supx{〈x, x∗〉 − f(x)} and the infimal convolution
f∗2 1

2‖·‖
2
∗(x

∗) := inf{f∗(y∗)+ 1
2‖z

∗‖2
∗ : x∗ = y∗+z∗}. When f is convex and closed

and x is in the domain of f , x∗ ∈ ∂f(x) exactly when f(x) + f∗(x∗) = 〈x, x∗〉.
We say a multifunction F : X 7→ 2X∗

is monotone provided that for any x, y ∈ X,
x∗ ∈ F (x) and y∗ ∈ F (y),

〈y∗ − x∗, y − x〉 ≥ 0,

and we say that T is maximal monotone if its graph is not properly included in
any other monotone graph. The subdifferential of a convex lower semicontinuous
(lsc) function on a Banach space is a typical example of a maximal monotone
multifunction (see [4, 6, 13] wherein other notation and usage may be also followed
up). Indeed we reserve the notation J for the duality map

J(x) :=
1
2

∂‖x‖2 = {x∗ ∈ X∗ : ‖x‖2 = ‖x∗‖2 = 〈x, x∗〉}.

Further applications and a significantly more extended discussion of the techniques
in this note can be found in [1].
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Proposition 1. [4, 6, 13] For a closed convex function f , let fJ := f + 1
2‖ · ‖

2.
Then f∗J =

(
f + 1

2‖ · ‖
2
)∗ = f∗2 1

2‖ · ‖
2
∗ is everywhere continuous. Also

v∗ ∈ ∂f(v) + J(v) ⇔ f∗J (v∗) + fJ(v)− 〈v, v∗〉 ≤ 0.

For any monotone mapping T , we associate the Fitzpatrick function introduced
by Simon Fitzpatrick in [8] but then neglected for many years until re-popularized
in papers by Penot [10], Buracik-Svaiter [7], and others. Some more of the related
history may be found in [1]. Fitzpatrick’s function is

FT (x, x∗) := sup{〈x, y∗〉+ 〈x∗, y〉 − 〈y, y∗〉 : y∗ ∈ T (y), y ∈ dom T},
which is clearly lower semicontinuous and convex as an affine supremum. Moreover,

Proposition 2. [8, 6] For a maximal monotone operator T

FT (x, x∗) ≥ 〈x, x∗〉
with equality if and only if x∗ ∈ T (x).

We recall the version of the Hahn-Banach theorem we need:

Theorem 3. (Hahn-Banach Sandwich, [4, 6, 13]) Suppose f and −g are proper
extended real-valued lsc convex on a Banach space X and that f(x) ≥ g(x), for all
x in X. Assume that

0 ∈ core (dom (f)− dom (g)) .

Then there is a continuous linear function λ such that

f(x)− g(y) ≥ 〈λ, x− y〉,
for all x ∈ dom f, y ∈ dom − g in X.

Proof. The value function h(u) := infX f(x)−g(x−u) is convex. It is continuous
at 0—indeed the constraint qualification and semi-continuity of the data force h
to be bounded above around zero—by a Baire category type argument [17, 14, 6].
Hence there is some −λ ∈ ∂h(0). This provides the linear part of the asserted affine
separator. Indeed, we have

f(x)− g(u− x) ≥ h(u)− h(0) ≥ λ(u− 0),

as required. 2

The next result, implicit in the literature [14], avoids needing to renorm a reflex-
ive space to have a single-valued duality map with a single-valued inverse.

Proposition 4. [14, 11, 12, 6] A monotone multifunction T is maximal if and only
if the mapping T (·+w)+J is surjective for all w in X. [When J and J−1 are both
single valued, a monotone mapping T is maximal if and only if T +J is surjective.]

Proof. We prove the ‘if’. The ‘only if’ is completed in Corollary 7. Assume
(w,w∗) is monotonically related to the graph of T . By hypothesis, we may solve
w∗ ∈ T (x + w) + J(x). Thus w∗ = t∗ + j∗ where t∗ ∈ T (x + w), j∗ ∈ J(x).

0 ≤ 〈w∗ − t∗, w − (w + x)〉 = −〈w∗ − t∗, x〉 = −〈j∗, x〉 = −‖x‖2 ≤ 0.

Hence x = 0, j∗ = 0 and we are done.
The refined equivalence when J, J−1 are single-valued may be found in [14, Thm

10.6]. 2
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2. The Main Result

We now prove our asserted result—whose proof originally very hard and due to
Rockafellar [12]—has been revisited over many years culminating in [14, 7, 10, 16, 6]
among others. The proof we give is perhaps the first to avoid using either renorming
[12] or some preliminary minimax arguments [14]:

Theorem 5. Let X be any reflexive space with given norm. Let T be maximal
monotone and f closed and convex. Suppose that

0 ∈ core {conv dom (T )− conv dom (∂f)}.
Then
(a) ∂f + T + J is surjective;
(b) ∂f + T is maximal monotone;
(c) ∂f is maximal monotone.

Proof. (a) As in [16], we consider the Fitzpatrick function FT (x, x∗) and further
introduce fJ(x) := f(x) + 1/2‖x‖2. Let G(x, x∗) := −fJ(x) − f∗J (−x∗). Observe
that

FT (x, x∗) ≥ 〈x, x∗〉 ≥ G(x, x∗)
pointwise thanks to Proposition 2, and the Fenchel-Young inequality : for any func-
tion f(x) + f∗(x∗) ≥ 〈x, x∗〉,∀x, x∗. Now, the (CQ)

0 ∈ core {conv dom (T )− conv dom (∂f)}
assures the Sandwich theorem applies. Indeed, by Proposition 1, f∗J is everywhere
finite and in consequence zero is in the core of dom FT − dom G.

Then there are w ∈ X and w∗ ∈ X∗ such that

FT (x, x∗)−G(z, z∗) ≥ w(x∗ − z∗) + w∗(x− z)(1)

so that for all x∗ ∈ T (x), x ∈ dom (T ) and for all z∗, z we have

〈x∗ − w∗, x− w〉+ [fJ(z) + f∗J (−z∗) + 〈z, z∗〉] ≥ 〈w∗ − z∗, w − z〉.
Now use the fact that −w∗ ∈ dom (∂f∗J ), by Proposition 1, to deduce that for

some v, −w∗ ∈ ∂fJ(v) and so

〈x∗ − w∗, x− w〉+ [fJ(v) + f∗J (−w∗) + 〈v, w∗〉] ≥ 〈w∗ − w∗, w − v〉 = 0.

The second term on the left is zero and so w∗ ∈ T (w) by maximality. Substitution
of x = w and x∗ = w∗ in (1), and rearranging yields

〈w∗, w〉+ {〈−z∗, w〉 − f∗J (−z∗)}+ {〈z,−w∗〉 − fJ(z)} ≤ 0,

for all z, z∗. Taking the supremum over z and z∗ produces 〈w∗, w〉 + fJ(w) +
f∗J (−w∗) ≤ 0. This shows −w∗ ∈ ∂fJ(w) = ∂f(w) + J(w) on using the sum
formula for subgradients, implicit in Proposition 1.

Thus, 0 ∈ (T + ∂fJ)(w) and, since all range translations of T + ∂f may be
used, ∂f + T + J is surjective which completes (a). Additionally, since all domain
translations may be used, ∂f + T is maximal by the easy part of Proposition 4,
which yields (b).

Finally, setting T ≡ 0 we recover the reflexive case of the maximality for a lsc
convex function ∂f which is (c). 2

Note that we have exploited the beautiful inequality

FT (x, x∗) + f(x) + f∗(−x∗) ≥ 0, ∀x ∈ X, x∗ ∈ X∗,(2)
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valid for any maximal monotone T and any convex function f .

3. Some Corollaries

We first recover the so called Brezis-Attouche theorem:

Corollary 6. [14] The sum of two maximal monotone operators T1 and T2 is
maximal monotone if 0 ∈ core [conv dom (T1)− conv dom (T2)].

Proof. Theorem 5 applies to the maximal monotone mapping T (z) := (T1(x), T2(y))
and the indicator function f(x, y) = ι{x=y}. Finally, check that the given transver-
sality condition implies the needed (CQ). We obtain that T + JX⊗X + ∂ι{x=y} is
surjective. Thus, so is T1 + T2 + 2J and we are done. 2

We next recover the Rockafellar-Minty surjectivity theorem:

Corollary 7. A maximal monotone on a reflexive space has range (T + J) = X∗.

Proof. Let f ≡ 0 in Theorem 5. 2

Recall that T is coercive on C if infy∗∈(T+∂ιC)(y)〈y, y∗〉/‖y‖ → ∞ as y ∈ C goes
to infinity in norm, with the convention that inf ∅ = +∞. A variational inequality
requests a solution y ∈ C and y∗ ∈ T (y) to

〈y∗, x− y〉 ≥ 0 ∀x ∈ C.

We denote the variational inequality by V (T ;C).

Corollary 8. Suppose T is maximal monotone on a reflexive Banach space and is
coercive on the closed convex set C. Suppose also that 0 ∈ core (C− conv dom (T )).
Then V (T,C) has a solution.

Proof. Let f := ιC , the indicator function. For n = 1, 2, 3 · · · , let Tn := T + J/n.
We solve

0 ∈ (Tn + ∂ιC) (yn) = (T + ∂ιC) +
1
n

J(yn)(3)

and take limits as n goes to infinity. More precisely, we observe that using our key
Theorem 5, we find yn in C, and y∗n ∈ (T + ∂ιC) (yn), j∗n ∈ J(yn)/n with y∗n = −j∗n.
Then

〈y∗n, yn〉 = − 1
n
〈j∗n, yn〉 = − 1

n
‖yn‖2 ≤ 0

so coercivity of T + ∂ιC implies that ‖yn‖ remains bounded and so j∗n → 0. On
taking a subsequence we may assume yn ⇁ y. Since T + ∂ιC is maximal monotone
(again by Theorem 5), it is demi-closed [6]. It follows that 0 ∈ (T + ∂ιC)(y) as
required. 2

Letting C = X we deduce:

Corollary 9. Every coercive maximal monotone multifunction on a Banach space
is surjective if (and only if) the space is reflexive.

Proof. To complete the proof we recall that, by James’ theorem, surjectivity of J
is equivalent to reflexivity of the corresponding space. 2

Details of these and other Corollaries are to be found in [1].
Finally, warm thanks are due to Jean-Paul Penot and to Jim Zhu for their very

helpful and detailed comments about this note.
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