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Abstract

Using the results of several extremely large recent computations [17] we
tested positively the normality of a prefix of roughly four trillion hexadecimal
digits of π. This result was used by a Poisson process model of normality of π:
in this model, it is extraordinarily unlikely that π is not asymptotically normal
base 16, given the normality of its initial segment.

1 Introduction

The question of whether (and why) the digits of well-known constants of mathematics
are statistically random in some sense has long fascinated mathematicians. Indeed,
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Table 1: Digit counts in the first trillion hexadecimal (base-16) digits of π. Note
that deviations from the average value 62,500,000,000 occur only after the first six
digits, as expected from the central limit theorem.

Hex Digits Occurrences Hex Digits Occurrences

0 62499881108 8 62500216752
1 62500212206 9 62500120671
2 62499924780 A 62500266095
3 62500188844 B 62499955595
4 62499807368 C 62500188610
5 62500007205 D 62499613666
6 62499925426 E 62499875079
7 62499878794 F 62499937801

Total 1000000000000

one prime motivation in computing and analyzing digits of π is to explore the age-old
question of whether and why these digits appear “random.” The first computation
on ENIAC in 1949 of π to 2037 decimal places was proposed by John von Neumann
to shed some light on the distribution of π (and of e) [3, pp. 277–281].

Since then, numerous computer-based statistical checks of the digits of π, for
instance, so far have failed to disclose any deviation from reasonable statistical norms.
See, for instance, Table 1, which presents the counts of individual hexadecimal digits
among the first trillion hex digits, as obtained by Yasumasa Kanada. By contrast,
the early computations did reveal provable abnormalities in the behavior of e [5,
§11.2]. Figure 2 shows π as a random walk drawn as we describe below.

We use the normality for strings introduced and studied in [6]: a sequence whose
prefixes are normal is normal, but the converse is not true. Using the results of
several extremely large recent computations [17], we tested positively the normality
of a prefix of roughly four trillion hexadecimal digits of π. This result was used by a
Poisson process model of normality of π: in this model, it is extraordinarily unlikely
that π is not asymptotically normal base 16, given the normality of its initial segment.

2 Normality of real numbers

In the pictures in Figures 2 through 5, a digit string for a given number is used
to determine the angle of unit steps (multiples of 120 degrees base 3, 90 degrees
base four, etc), while the color is shifted up the spectrum after a fixed number of
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steps (red-orange-yellow-green-cyan-blue-purple-red). In Figure 2 we show a walk
on the first billion base 4 digits of π. This may be viewed in more detail on-
line at http://gigapan.org/gigapans/e76a680ea683a233677109fddd36304a. We
note that the random walks in Figures 3 and 5 and look entirely different from the
expected behavior of a genuine pseudorandom walk as in Figure 1, which is similar
to the random walk in Figure 2.

Figure 1: A uniform pseudo-random walk.

In the following, given some positive integer base b, we will say that a real number
α is b-normal if every m-long string of base-b digits appears in the base-b expansion of
α with precisely the expected limiting frequency 1/bm. It follows, from basic measure
theory, that almost all real numbers are b-normal for any specific base b and even for
all bases simultaneously. But proving normality for specific constants of interest in
mathematics has proven remarkably difficult.

Borel was the first to conjecture that all irrational algebraic numbers are b-normal
for every integer b ≥ 2. Yet not a single instance of this conjecture has ever been
proven. We do not even know for certain whether or not the limiting frequency of
zeroes in the binary expansion of

√
2 is one-half, although numerous large statistical

analyses have failed to show any significant deviation from statistical normals.
Recently two of the present authors, together with Richard Crandall and Carl

3

http://gigapan.org/gigapans/e76a680ea683a233677109fddd36304a


Pomerance, proved the following: If a real y has algebraic degree D > 1, then the
number #(|y|, N) of 1-bits in the binary expansion of |y| through bit position N
satisfies

#(|y|, N) > CN1/D (1)

for a positive number C (depending on y) and all sufficiently large N [1]. For
example, there must be at least

√
N 1-bits in the first N bits in the binary ex-

pansion of
√

2, in the limit. A related and more refined result has been ob-
tained by Hajime Kaneko of Kyoto University in Japan. He obtained the bound
in C(logN)3/2/[(log(6D))1/2(log logN)1/2] and extended his results to a very general
class of bases and algebraic irrationals [10]. However, each of these results falls far
short of establishing b-normality for any irrational algebraic in any base b, even in
the single-digit sense.

Figure 2: A random walk on the first two billion bits of π (normal?).

The same can be said for π and other basic constants, such as e, log 2 and ζ(3).
Clearly any result (one way or the other) for one of these constants would be a
mathematical development of the first magnitude.

We do record the following known stability result [4, pp. 165–166]:
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Theorem 1 If α is normal in base b and r, s are positive rational numbers then
rα + s is also normal in base b.

3 The Champernowne number and relatives

The first mathematical constant proven to be 10-normal is the Champernowne num-
ber, which is defined as the concatenation of the decimal values of the positive inte-
gers, i.e., C10 = 0.12345678910111213141516 . . ., which can also be written as

C10 =
∞∑
n=1

10n−1∑
k=10n−1

k

10kn−9
∑n−1

k=0 10k(n−k)
. (2)

Champernowne proved that C10 is 10-normal in 1933 [8]. This, was later extended
to base-b normality (for base-b versions of the Champernowne constant).

In 1946, Copeland and Erdös established that the corresponding concatena-
tion of primes 0.23571113171923 . . . and also the concatenation of composites
0.46891012141516 . . ., among others, are also 10-normal [9]. In general they proved:

Theorem 2 ([9]) If a1, a2, · · · is an increasing sequence of integers such that for
every θ < 1 the number of ai’s up to N exceeds N θ provided N is sufficiently large,
then the infinite decimal

0.a1a2a3 · · ·
is normal with respect to the base β in which these integers are expressed.

This clearly applies the Champernowne numbers (Figure 3) and to the primes of
the form ak + c with a and c relatively prime in any given base (Figure 4) and to
the integers which are the sum of two squares (since every prime of the form 4k + 1
is included).

In further illustration, using the primes in binary lead to normality in base two
of the number

0.1011101111101111011000110011101111110111111100101101001101011101111 . . . ,

as shown as a random walk in Figure 5.
Some related results were established by Schmidt, including the following [15].

Write p ∼ q if there are positive integers r and s such that pr = qs. Then

Theorem 3 If p ∼ q, then any real number that is p-normal is also q-normal.
However, if p 6∼ q, then there are uncountably many p-normal reals that are not
q-normal.
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Figure 3: A 600,000 step walk on Champernowne’s number base 4 (normal).

Figure 4: A million step walk on 23571113... base 2 (normal?).
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Figure 5: A random walk on the first 100,000 bits of the primes base two (normal).

Queffelec [14] described the above result in a recent survey which also presented
the following theorem:

Theorem 4 (Korobov) Numbers of the form
∑

k p
−2kq−p

2k

, where p > 1 and q > 1
are relatively prime, are q-normal.

We are still completely in the dark as to the b-normality of “natural” constants of
mathematics.

4 Normality for strings

Let x be a (finite) binary string. We denote by Nm
i (x) the number of occurrences

of the ith string of length m (1 ≤ i ≤ 2m), ordered lexicographically, where |x|m =
b|x|/mc is the number of (contiguous, non-overlapping) of length m strings in x. The
prefix of length n of the infinite (binary) sequence x = x1x2 . . . xm . . . is denoted by
x � n = x1x2 . . . xn.

Definition 1 ([6, 7]) Let ε > 0 and m be a positive integer. We say:

1. x is (ε,m)−normal if, for every 1 ≤ i ≤ 2m,∣∣∣∣Nm
i (x)

|x|m
− 1

2m

∣∣∣∣ ≤ ε.
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2. x is m−normal if, for every 1 ≤ i ≤ 2m,∣∣∣∣Nm
i (x)

|x|m
− 1

2m

∣∣∣∣ ≤
√

log2 |x|
|x|

. (3)

3. x is normal if it is m−normal for every 1 ≤ m ≤ log2 (log2 |x|) .

If for every positive integer n, the string x � n is normal, then x is normal, but
the converse is not necessarily true (because x can be normal but with a different
“speed”).

5 Testing normality of prefixes of π

In 1996, one of the present authors (Bailey), together with Peter Borwein (brother
of Jonathan Borwein) and Simon Plouffe, published what is now known as the BBP
formula for π [2], [4, Ch. 3]:

π =
∞∑
k=0

1

16k

(
4

8k + 1
− 2

8k + 4
− 1

8k + 5
− 1

8k + 6

)
. (4)

We had access to an extremely large dataset, thanks to recent record computa-
tions by Kondo and Yee, of π initially to five trillion hexadecimal (base 16) places in
August 2010 and then to ten trillion in October 2011 [17]. We first converted these
bits — which Kondo and Yee had confirmed by a computation with (4) — to a true
binary string of bits using the Python module binascii.

All input lines contained an even number of characters so it was easy to convert
pairs of hexadecimal digits to bytes.

import sys, binascii

for line in sys.stdin.readlines():

sys.stdout.write(binascii.unhexlify(line.strip()))

For our normality test we needed to split a big binary string of length n into
bn/kc pieces (non-overlapping strings) of length k = 1, 2, . . . , log log n. We use the
term string to denote a binary string of length k. We then proceeded to calculate
the minimum and maximum occurrences of such strings.

This calculation is done by running the following Algorithm 1 once for each
different value of k.
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Algorithm 1: Frequency range of strings of a given length.

Input: Binary string X, string length k
Output: Minimum and maximum counts over all possible 2k strings of length

k in string X
integer array counts[0, . . . , 2k − 1] = [0, 0, . . . , 0];
for i = 0 to |X| − k step k do

w = integer(X[i, . . . , i+ k − 1]);
increment counts[w];

return min(counts), max(counts);

It is essential to do an efficient streaming implementation of Algorithm 1 so that
the actual bits of input X are only read into main memory as needed.

Finally to check that these minimum and maximum frequencies satisfy the ex-
pected range for the normality test we used the following Python code snippet to
generate a table using our earlier formula (3):

import math, sys

n=int(sys.argv[1]) # n = |X|

r = int(math.floor(math.log(math.log(n,2),2))) # r = lg lg n

m1,m2=[0]*(r+1),[0]*(r+1)

sqrtV = math.sqrt(math.log(n,2)/n)

for k in range(1,r+1):

floorNk = math.floor(n/k)

m1[k] = int(math.floor(((1.0/2.0**i)-sqrtV)*floorNk))

m2[k] = int(math.ceil((sqrtV+(1.0/2.0**k))*floorNk))

print "expected range k=",k, "[",m1[k],"...",m2[k],"]"

We tested normality for the prefix of N = 15, 925, 868, 541, 400 bits of π—nearly
16 trillion bits—calculated with the y-cruncher-multi-threaded pi program [16] and
we have found it to be within the normality range as described above. The frequency
counts passed our expectedCheck.py test script as shown in Table 2.

6 Normality of π

We have tested the prefix of N = 15, 925, 868, 541, 400 bits of π—nearly 16 trillion
bits—and we have found it to be normal as described above.
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Table 2: Frequency summary for N = 15, 925, 868, 541, 400 bits of π.

m min frequency found max frequency found expected range

1 7962933149184 7962935392216 7962907842460, . . . , 7962960698940
2 1990732495242 1990735357049 1990720353555, . . . , 1990746781795
3 663576589836 663579050172 663569046478, . . . , 663586665305
4 248841171873 248842651924 248835088899, . . . , 248848303020
5 99535989611 99537473460 99531392735, . . . , 99541964032

Does this “information” tell us anything about the classical normality of π? In
the next subsection, we will use a Poisson process model to provide an affirmative
answer to this question.

6.1 A Poisson process model

We denote by
b = b (1) b (2) . . . b (n) . . .

the (infinite) binary expansion of π (b is a computable function) and by

b � n = b (1) b (2) . . . b (n)

the finite prefix of b of length n.
We base our model on the distribution on 1s’ and 0’s only, i.e., we work with

N1
1 (b � n), the number of occurrences of 1’s in b � n, so N1

0 (b � n) = n−N1
1 (b � n) .

A similar, slightly more elaborate model, can be developed for strings of any length.
The number N1

1 (b � n) can be connected with π by means of a counting (Poisson)
process [11]:

Yn = # {j | 1 ≤ j ≤ n, b (j) = 1} , n = 1, 2, . . .

Y0 = 0,

where Yn = N1
1 (b � n) , n = 1, 2, . . .

Theorem 5 If π is normal, then {Yn, n = 0, 1, 2...} can be approximated by a ho-
mogenous Poisson process with intensity λ = 0.5.

Proof. By construction, {Yn, n = 0, 1, 2...} is a Poisson process with an unspeci-
fied parameter λ. Hence Yn is a random variable with parameter nλ with the following
properties: E (Yn) = V (Yn) = nλ, lim

n→∞
Yn =∞ almost sure.
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We apply Chebysev’s inequality, so for every c > 0,

P (|Yn − E (Yn)| < c) ≥ 1− V (Yn)

c2
,

we have

P (|Yn − nλ| < c) ≥ 1− nλ

c2
,

hence

P

(∣∣∣∣Ynn − λ
∣∣∣∣ < c

n

)
≥ 1− nλ

c2
.

In view of (3) we take

c

n
= ε =

√
log2 n

n
,

so we obtain

P

(∣∣∣∣Ynn − λ
∣∣∣∣ < ε

)
≥ 1− nλ

(nε)2
= 1− λ

log2 n
. (5)

If π is normal, then ∣∣∣∣∣N1
1

(
x(n)
)

n
− 1

2

∣∣∣∣∣ ≤ ε =

√
log2 n

n

or ∣∣∣∣Ynn − 1

2

∣∣∣∣ ≤ ε =

√
log2 n

n
. (6)

If we identify the random event in relation (5) and the certain event in relation
(6) we get λ = 1/2 and

P

(∣∣∣∣Ynn − 1

2

∣∣∣∣ <
√

log2 n

n

)
≥ 1− 1

2 log2 n
.

QED

A Poisson process with intensity λ has the following properties [12]:

• The Poisson process {Yn, n = 0, 1, 2, ...} has independent increments.

• For n > r, Yn − Yr has a Poisson distribution with parameter λ (n− r) , and
Yn − Yr is independent of {Yt, t ≤ r}.
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Let us denote the positions where 1s occur (jump moments) by

τr = inf {n | Yn = r} , r = 1, 2, ...

Then

Yn = 0, n < τ1,

Yn = r, τr ≤ n < τr+1.

With the convention τ0 = 0, we can introduce the sojourn times, or inter-arrival
times

Tr = τr − τr−1, r = 1, 2, ....

Note that the sojourn times represent the distances between two successive 1s. Thus,
for the string 10s1 the sojourn time is s+ 1.

• {Tr, r = 1, 2, ...} is a sequence of independent, identical distributed random
variables, with the Exponential distribution Expo (λ) .Then

E (Tr) =
1

λ
, V (Tr) =

1

λ2
.

Note that the jump moments τr = T1 + ...+ Tr have an Erlang distribution with
parameters (r;λ) , hence

E (Tr) =
r

λ
, V (Tr) =

r

λ2
.

Corollary 1 If π is normal, then the sojourn times {Tr, r = 1, 2, ...} form a se-
quence of independent, identical distributed random variables, with the Exponential
distribution Expo (1/2) . Hence

P (Tr > tr, r = 1, ..., k) =
k∏
r=1

(
exp

(
−tr

2

))
= exp

(
−1

2

k∑
r=1

tr

)
.

6.2 Testing the hypothesis “π is normal”

We test the hypothesis H: “π is normal” against the alternative HA: “π is not
normal”. If H is true, then for every d there exists Kd such that the sojourn tine
exceeds the value d if we wait long enough, up to the rank (Kd + 1) :
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P (T1 ≤ d, ..., TKd
≤ d, TKd+1 > d | H true) =

Kd∏
r=1

(
1− exp

(
−d

2

))
· exp

(
−d

2

)
= exp

(
−d

2

)(
1− exp

(
−d

2

))Kd

> 0.

We can base our decision of accepting/rejecting normality (hypothesis H) on the
following implication: “π is a normal sequence” implies “for every d there exists Kd

such that P (T1 ≤ d, ..., TKd
≤ d, TKd+1 > d) > 0”),

As one cannot explore the whole sequence π, we deal with an evidence body
represented by a prefix of π, of length N . In this evidence body, we look for the
largest value dmax for which a rank Kdmax can be identified or, equivalently, we look
for the first value (d+ 1) which is not reached by the sojourn time T. Accordingly, the
decision of accepting/rejecting the hypothesis H : “π is normal” is taken according
to the following algorithm:

• If there is no such dmax in the evidence body, we conclude that the sequence π
is normal.

• If dmax and the corresponding Kdmax exist, we can decide that the sequence π
is not normal. The decision is based on the event{

T1 ≤ dmax, ..., TKdmax
≤ dmax, TKdmax+1 > dmax

}
whose probability is

P
(
T1 ≤ dmax, ..., TKdmax

≤ dmax, TKdmax+1 > dmax

)
= exp

(
−dmax

2

)(
1− exp

(
−dmax

2

))Kdmax

.

We interpret the above probability as the decision “π is normal” has credibility
equal to

1− exp

(
−dmax

2

)(
1− exp

(
−dmax

2

))Kdmax

.
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Table 3: d and Kd values for 400 million bits of π.

d 1 2 3 4 5 6 7

Kd 9 1 14 3 46 56 41

d 8 9 10 11 12 13 14

Kd 78 1276 446 2090 18082 8633 4175

d 15 16 17 18 19 20 21

Kd 239183 5856 56453 218007 643030 363117 2787207

d 22 23 24 25 26 27 28

Kd 13733056 1003213 21127913 100317701 not found 85745944 not found

d 29

Kd not found

6.3 Results

Suppose first that the evidence body is represented by a prefix of 400 million
bits of π. The d−values and their corresponding ranks Kd are given in Table 4;
maxKd=100317701.

The value d = 28 has the property that for every K, the event

{T1 ≤ 28, ..., TK ≤ 28, TK+1 > 28}

has not been identified in the the evidence body, so, based on the algorithm in
Section 8.2, the decision “π is not normal” has credibility

P (Ts ≤ 27, s = 1, ..., 100317701, T100317702 > 27)

=

(
1− exp

(
−27

2

))100317701

· exp

(
−27

2

)
= 2.557 6× 10−66.

Suppose now that the evidence body has increased to the prefix of π of N =
15925868541400 bits. The d−values and their corresponding ranks Kd are given in
following Table 5; maxKd = 9274770297096.

The value d = 43 has the property that for every K, the event

{T1 ≤ 43, ..., TK ≤ 43, TK+1 > 43}

has not been identified in the evidence body, so, based on the algorithm in Section 8.2,
the decision “π is not normal” has credibility

P (Ts ≤ 42, s = 1, ..., 9274770297096, T9274770297097 > 42)
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Table 4: d and Kd values for 15925868541400 bits of π.

d 1 2 3 4 5

Kd 9 1 14 3 46

d 6 7 8 9 10

Kd 56 41 78 1276 446

d 11 12 13 14 15

Kd 2090 18082 8633 4175 239183

d 16 17 18 19 20

Kd 5856 56453 218007 643030 363117

d 21 22 23 24 25

Kd 2787207 13733056 1003213 21127913 100317701

d 26 27 28 29 30

Kd 273575848 85745944 234725219 611367301 1075713943

d 31 32 33 34 35

Kd 703644000 10621041176 27019219636 15063287853 10887127703

d 36 37 38 39 40

Kd 48115888750 19128531469 1218723032299 1334087352175 792460189481

d 41 42 43 44 45

Kd 9274770297096 4368224447710 not found not found not found

=

(
1− exp

(
−42

2

))9274770297096

· exp

(
−42

2

)
= 4.349 7× 10−3064.

This is perhaps ‘incredible’?

7 Conclusion

A prime motivation in computing and analyzing digits of π is to explore the age-old
question of whether and why these digits appear “random.” Numerous computer-
based statistical checks of the digits of π have failed to disclose any deviation from
reasonable statistical norms. A new avenue for studying the normality of π was
explored: we proved that the prefix of length 15, 925, 868, 541, 400 bits of π is
normal when viewed as a binary string [6].

This result was used in a Poisson process model to show that the probability
that π is not normal is extraordinarily small, reinforcing the empirical evidence we
have presented evidence for the normality of π. In future work we intend to look
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methodically at other numerical constants.

Acknowledgement Thanks are due to Dr. Francisco Aragon for his generous
assistance with the pictures of random walks.
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