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A CLOSED FORM FOR THE DENSITY FUNCTIONS OF
RANDOM WALKS IN ODD DIMENSIONS

JONATHAN M. BORWEIN and CORWIN W. SINNAMON

Abstract

We derive an explicit piecewise-polynomial closed form for the probability density function of the
distance traveled by a uniform random walk in an odd-dimensional space, based on recent work of
Borwein, Straub, and Vignat [1] and by R. García-Pelayo [3].
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1. Preliminaries

In [1], the authors explore the distance traveled by a uniform n-step random walk in Rd

with unit step length. Following their lead, we denote the probability density function
of this distance by pn(m − 1/2; x), where m = d−1

2 .
We recall that the density can be expressed in terms of an integral engaging the
normalized Bessel function of the first kind of order ν, defined by

jν(x) = ν!
(
2
x

)ν
Jν(x) = ν!

∑
k≥0

(−x2/4)k

k!(k + ν)!
. (1.1)

With this normalization, we have jν(0) = 1 and obtain:

Theorem 1 (Bessel representation [1, 4]). The probability density function of the
distance to the origin in d ≥ 2 dimensions after n ≥ 2 steps is, for x > 0,

pn(m − 1/2; x) =
2−m+1/2

Γ(m + 1/2)

∫ ∞

0
(tx)m+1/2Jm−1/2(tx) jnm−1/2(t) dt, (1.2)

wherein m = d−1
2 .

The study of the density pn(ν; x) is quite classical, originating in the early 20th century
[2, 4–7]. The most fundamental cases are that of two dimensions [2] and three
dimensions [7]. The Bessel representation of the density is valuable for its generality
and its analytically-pleasing structure, which form the basis for many related results
[1, 4]. Additionally, when Theorem 1 is used for half-integer m, one can symbolically
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integrate any given small-order case, although the structure of the closed form is
obscured in the process.
While some probabilistic results such as Theorem 1 hold in all dimensions, many
arithmetic and analytic results are distinct between odd and even dimensions. Indeed,
even dimensional results often involve elliptic integrals [1, 2], while odd dimensional
results are typically resolvable in terms of elementary functions. For instance, noting
that j1/2(x) = sinc(x) = sin(x)/x partly explains why analysis in three-dimensional
space is relatively simple. More generally, jν(x) is elementary when v is a proper half-
integer [1, 4, 7]. In light of this discussion, it is striking that the next result is very
recent.

Theorem 2 (Convolution formula for density in odd dimensions [3]). Assume that the
dimension d = 2m + 1 is an odd number. Then for x ≥ 0,

pn(m − 1/2; x) =
(2x)2mΓ(m)

Γ(2m)

(
−

1
2x

d
dx

)m

Pm,n(x) (1.3)

where Pm,n is the piecewise polynomial obtained from convolving

fm(x) :=
Γ(m + 1/2)
Γ(1/2)Γ(m)


(
1 − x2

)m−1
if x ∈ [−1, 1]

0 otherwise

n − 1 times with itself.

The expression in Theorem 2 above is both elegant and compact. It shows easily that
in odd dimensions the density is a piecewise polynomial, but it can be difficult to
manipulate or compute with or without a computer algebra system such as Maple or
Mathematica. Note also that pn(m − 1/2; x) = pn(m − 1/2;−x) in all cases.

2. Main result

We now use Theorem 2 to obtain an entirely explicit and tractable, convolution and
differentiation free formula for pn(m − 1/2; x), valid for all lengths and in all odd
dimensions. We begin with a preliminary result which simplifies Pm,n(x). We shall
employ the Heaviside step function H(x) which has H(x) = 1 for x > 0, H(x) = 0 for
x < 0, and H(0) = 1/2. We also use the notation [x j]Q(x) to denote the coefficient of
x j in a polynomial Q.

Proposition 3. Let n ≥ 1 and m ≥ 1. Then for |x| ≤ n we have Pm,n(x) =(
Γ(2m)

2mΓ(m)

)n n∑
r=0

(
n
r

)
(−1)mrH(n − 2r + x)

(m−1)n∑
j=0

(n − 2r + x)mn−1+ j

(mn − 1 + j)!
[x j]Cm(x)rCm(−x)n−r

(2.1)

where

Cm(x) :=
m−1∑
k=0

(m − 1 + k)!
2kk!(m − 1 − k)!

xk. (2.2)
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Note that Cm(x) satisfies the useful recurrence

Cm(x) = (2m − 3) x Cm−1(x) + Cm−2(x).

Moreover, in terms of hypergeometric functions Cm(x) = 2F0(m, 1 − m; ; −x/2).

Proof. By the convolution theorem for the Fourier transform,

F
(
Pm,n(x)

)
= F ( fm(x))n =

(
Γ(m + 1/2)
Γ(1/2)Γ(m)

∫ 1

−1

(
1 − x2

)m−1
e−iwxdx

)n

.

Observe that, for m ≥ 3, F ( fm(x)) satisfies the recurrence

Tm =
(2m − 1)(2m − 3)

w2 (Tm−1 − Tm−2)

which is also satisfied by

Gm(w) :=
(

Γ(2m)
2mΓ(m)

) m−1∑
k=0

(m − 1 + k)!
2kk!(m − 1 − k)!

(−1)m 2 cos(w + π
2 (m + k))

wm+k .

This can be checked by hand. It can also easily be shown with the following Maple 18
code.

w i th ( i n t t r a n s , f o u r i e r ) :
f :=m −> p i e c e w i s e (−1<=x and x<=1 ,

GAMMA(m+ 1 / 2 ) / (GAMMA(m)∗GAMMA( 1 / 2 ) ) ∗ (1−x ^ 2 ) ^ (m− 1 ) , 0 ) :
F :=m −> f o u r i e r ( f (m) , x ,w ) :
s i m p l i f y ( F (m) − (2∗m−1)∗ (2∗m−3 ) /w^ 2∗ ( F (m−1)−F (m− 2 ) ) ) ;

The above code returns 0 to indicate that F ( fm(x)) satisfies the recurrence.
Correspondingly, we may execute the following Maple 18 code.

G := m −> (GAMMA(2∗m) / ( 2 ^m∗GAMMA(m) ) )
∗ sum ( (m−1+k ) ! / ( 2 ^ k∗k ! ∗ (m−1−k ) ! )
∗ ( −1)^m ∗ (2∗ cos (w+Pi / 2 ∗ (m+k ) ) / w^ (m+k ) ) , k = 0 . .m−1 ) :

s i m p l i f y (G(m) − (2∗m−1)∗ (2∗m−3 ) /w^ 2∗ (G(m−1)−G(m− 2 ) ) ) ;

This returns 0 to show that Gm(x) satisfies the same recurrence.
We can easily check that F ( fm(x)) and Gm(x) agree for m = 1 and m = 2, and so we
may conclude that F ( fm(x)) = Gm(x) for all m ≥ 1.
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Therefore,

F
(
Pm,n(x)

)
=

(
Γ(2m)

2mΓ(m)

)n
m−1∑

k=0

(m − 1 + k)!
2kk!(m − 1 − k)!

· (−1)m 2 cos(w + π
2 (m + k))

wm+k


n

=

(
Γ(2m)

2mΓ(m)

)n
m−1∑

k=0

(m − 1 + k)!
2kk!(m − 1 − k)!

· (−1)m eiw+i π2 (m+k) + e−iw−i π2 (m+k)

wm+k


n

=

(
Γ(2m)

2mΓ(m)

)n
m−1∑

k=0

(m − 1 + k)!
2kk!(m − 1 − k)!

· (−1)m (−1)m+keiw + e−iw

(iw)m+k


n

=

(
Γ(2m)

2mΓ(m)

)n
m−1∑

k=0

(m − 1 + k)!
2kk!(m − 1 − k)!

·
(−1)meiw

(−iw)m+k +

m−1∑
k=0

(m − 1 + k)!
2kk!(m − 1 − k)!

·
(−1)me−iw

(iw)m+k


n

=

(
Γ(2m)

2mΓ(m)

)n (
eiw

(
1
iw

)m

Cm

(
−1
iw

)
+ e−iw

(
−1
iw

)m

Cm

(
1
iw

))n

=

(
Γ(2m)

2mΓ(m)

)n n∑
r=0

(
n
r

)
eiw(n−2r)

(iw)mn

(
(−1)mCm

(
1
iw

))r

Cm

(
−1
iw

)n−r

=

(
Γ(2m)

2mΓ(m)

)n n∑
r=0

(
n
r

)
(−1)mr

(m−1)n∑
j=0

eiw(n−2r)

(iw)mn+ j [x j]Cm(x)rCm(−x)n−r.

We can now reconstruct Pm,n(x) from its Fourier transform, since

F −1
(

eiw(n−2r)

(iw)mn+ j

)
=

(n − 2r + x)mn−1+ j

(mn − 1 + j)!
H(n − 2r + x) −

1
2

(n − 2r + x)mn−1+ j

(mn − 1 + j)!
.

Thus, taking the inverse Fourier transform of F
(
Pm,n(x)

)
,

Pm,n(x) =

(
Γ(2m)

2mΓ(m)

)n n∑
r=0

(
n
r

)
(−1)mr

(m−1)n∑
j=0

(n − 2r + x)mn−1+ j

(mn − 1 + j)!
H(n−2r+x)[x j]Cm(x)rCm(−x)n−r

+
1
2

(
Γ(2m)

2mΓ(m)

)n n∑
r=0

(
n
r

)
(−1)mr

(m−1)n∑
j=0

(n − 2r + x)mn−1+ j

(mn − 1 + j)!
[x j]Cm(x)rCm(−x)n−r. (2.3)

It remains only to show that the second term above is zero. Observe that when x < −n,
Pm,n(x) simplifies to

1
2

(
Γ(2m)

2mΓ(m)

)n n∑
r=0

(
n
r

)
(−1)mr

(m−1)n∑
j=0

(n − 2r + x)mn−1+ j

(mn − 1 + j)!
[x j]Cm(x)rCm(−x)n−r. (2.4)

From the definition of convolution, we can easily deduce that Pm,n(x) vanishes for
|x| > n. It follows that (2.4) is zero for x < −n, but since it is a polynomial it must be
zero everywhere. Thus, the latter term in (2.3) is zero, yielding (2.1). �
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Next, we deal with the differential operator in Theorem 2.

Lemma 4. For all F(x) and m ≥ 1,(
−

1
2x

d
dx

)m

F(x) =

m∑
k=1

(−1)k(2m − 1 − k)!
22m−k(m − k)!(k − 1)!

1
x2m−k

(
d
dx

)k

F(x). (2.5)

Proof. We proceed by induction. It is trivial to see that (2.5) is true for m = 1. Suppose
it holds for some m ≥ 1. Then

(
−

1
2x

d
dx

)m+1

F(x) =

(
−

1
2x

d
dx

) m∑
k=1

(−1)k(2m − 1 − k)!
22m−k(m − k)!(k − 1)!

1
x2m−k

(
d
dx

)k

F(x)

=

m∑
k=1

(−1)k+1(2m − 1 − k)!
22m−k+1(m − k)!(k − 1)!

 1
x2m−k+1

(
d
dx

)k+1

F(x) −
2m − k
x2m−k+2

(
d
dx

)k

F(x)


=

m+1∑
k=2

(−1)k(2m − k)!
22m−k+2(m + 1 − k)!(k − 2)!

1
x2m−k+2

(
d
dx

)k

F(x)

+

m∑
k=1

(−1)k(2m − k)!
22m−k+1(m − k)!(k − 1)!

1
x2m−k+2

(
d
dx

)k

F(x)

=

m+1∑
k=1

(−1)k(2m + 1 − k)!
22m+2−k(m + 1 − k)!(k − 1)!

1
x2m+2−k

(
d
dx

)k

F(x).

Thus, (2.5) holds for all m ≥ 1, proving the lemma. �

We are now ready to approach the probability density. Combining our previous results
will allow us to fully expand pn(m − 1/2; x).

Theorem 5 (Densities in odd dimensions). Let n ≥ 2 and m ≥ 1. Then for x ≥ 0,

pn(m − 1/2; x) =

(
Γ(2m)

2mΓ(m)

)n n∑
r=0

(
n
r

)
(−1)mrH(n − 2r + x)

×

m∑
k=1

(−2)k
(
m − 1
k − 1

)
(2m − 1 − k)!

(2m − 1)!
xk

(m−1)n∑
j=0

(n − 2r + x)mn−1+ j−k

(mn − 1 + j − k)!
[x j]Cm(x)rCm(−x)n−r

(2.6)

where H(x) is the Heaviside step function and

Cm(x) =

m−1∑
k=0

(m − 1 + k)!
2kk!(m − 1 − k)!

xk. (2.7)
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Proof. By Theorem 2, Lemma 4, and Proposition 3, we arrive at

pn(m − 1/2; x) =
(2x)2mΓ(m)

Γ(2m)

(
−

1
2x

d
dx

)m

Pm,n(x)

=
(2x)2mΓ(m)

Γ(2m)

m∑
k=1

(−1)k(2m − 1 − k)!
22m−k(m − k)!(k − 1)!

1
x2m−k

(
d
dx

)k

Pm,n(x)

=

(
Γ(2m)

2mΓ(m)

)n m∑
k=1

(−2)k
(
m − 1
k − 1

)
(2m − 1 − k)!

(2m − 1)!
xk

×

n∑
r=0

(
n
r

)
(−1)mr

mn−n∑
j=0

[x j]Cm(x)rCm(−x)n−r
(

d
dx

)k (n − 2r + x)mn−1+ j

(mn − 1 + j)!
H(n − 2r + x).

We can evaluate the derivative above directly, but we must be careful since there are
jump discontinuities at n − 2r for 0 ≤ r ≤ n. We shall see that these points are not an
issue. Applying the general Leibniz rule, we obtain(

d
dx

)k (n − 2r + x)mn−1+ j

(mn − 1 + j)!
H(n − 2r + x)

=

k∑
a=0

(
k
a

) ((
d
dx

)a (n − 2r + x)mn−1+ j

(mn − 1 + j)!

) ( d
dx

)k−a

H(n − 2r + x)


=

k∑
a=0

(
k
a

)
(n − 2r + x)mn−1+ j−a

(mn − 1 + j − a)!

( d
dx

)k−a

H(n − 2r + x)


We shall see that the terms of this sum vanish except when a = k. Suppose a < k

and consider one such term. Clearly,
(

d
dx

)k−a
H(n − 2r + x) = 0 for x , −n + 2r.

Additionally, since a < k ≤ m and n ≥ 2 the exponent mn−1+ j−a is strictly positive,
so (n − 2r + x)mn−1+ j−a = 0 at x = −n + 2r. Thus, the summand above vanishes for
a < k, yielding(

d
dx

)k (n − 2r + x)mn−1+ j

(mn − 1 + j)!
H(n − 2r + x) =

(n − 2r + x)mn−1+ j−k

(mn − 1 + j − k)!
H(n − 2r + x)

We now apply this relation above and the result follows from a simple rearrangement.
�

The formula we have presented is derived from the convolution form in Theorem 2 and
produces an even function. However, pn(m−1/2; x) is the probability density function
of a non-negative random variable, so it must be 0 for negative values of x. We may
use this fact to significantly reduce the number of terms in our formula, halving the
time needed to compute pn(m − 1/2; x) for given values of n and m.
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Corollary 6. Let n ≥ 2 and m ≥ 1. Then for x ≥ 0,

pn(m − 1/2; x) =

(
Γ(2m)

2mΓ(m)

)n b(n−1)/2c∑
r=0

(
n
r

)
(−1)mrH(n − 2r − x)

×

m∑
k=1

2k
(
m − 1
k − 1

)
(2m − 1 − k)!

(2m − 1)!
xk

(m−1)n∑
j=0

(n − 2r − x)mn−1+ j−k

(mn − 1 + j − k)!
[x j]Cm(x)rCm(−x)n−r

(2.8)
Proof. Since our formula 2.6 is even (easily seen in Theorem 2), for x ≥ 0 we have
pn(m − 1/2; x) = pn(m − 1/2;−x)

=

(
Γ(2m)

2mΓ(m)

)n n∑
r=0

(
n
r

)
(−1)mrH(n − 2r − x)

×

m∑
k=1

2k
(
m − 1
k − 1

)
(2m − 1 − k)!

(2m − 1)!
xk

(m−1)n∑
j=0

(n − 2r − x)mn−1+ j−k

(mn − 1 + j − k)!
[x j]Cm(x)rCm(−x)n−r

by Theorem 5. Observe that when r > b(n − 1)/2c, H(n − 2r − x) is zero on (0,∞). At
x = 0, every term is 0 for all values of r. Thus, when x ≥ 0, we may simply omit the
terms where r > b(n− 1)/2c. So we let r range from 0 to b(n− 1)/2c in the sum, which
yields our result directly. �

We finish with two examples echoing the direct analyses in [7]:

Example 7 (Density in three dimensions). In R3, we have C1(x) = 1 so for n ≥ 2 and
x ≥ 0, the density reduces to

pn(1/2; x) =
−x

2n−1

n∑
r=0

(
n
r

)
(−1)rH(n − 2r + x)

(n − 2r + x)n−2

(n − 2)!
.

In particular, we have

p2(1/2; x) =


0 if x < 0

x/2 if x ∈ [0, 2)
0 if x > 2

p3(1/2; x) =


0 if x < 0

1
2 x2 if x ∈ [0, 1)

− 1
4 x2 + 3

4 x if x ∈ [1, 3)
0 if x > 3

p4(1/2; x) =


0 if x < 0

− 3
16 x3 + 1

2 x2 if x ∈ [0, 2)
1

16 x3 − 1
2 x2 + x if x ∈ [2, 4)

0 if x > 4
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Figure 1. pn(1/2; x) for n = 2, 3, 4.

Example 8 (Density in five dimensions). In R5, we have C2(x) = 1 + x so for n ≥ 2
and x ≥ 0, the density reduces to

pn(3/2; x) =

(
3
2

)n−1 n∑
r=0

(
n
r

)
H(n − 2r + x)

×

n∑
j=0

(n − 2r + x)2n−3+ j

(2n − 3 + j)!

(
x2 − x

(n − 2r + x)
(2n − 2 + j)

) j∑
l=0

(−1) j−l
(
r
l

)(
n − r
j − l

)
.

In particular, we have

p2(3/2; x) =


0 if x < 0

− 3
16 x5 + 3

4 x3 if x ∈ [0, 2)
0 if x > 2

p3(3/2; x) =


0 if x < 0

3
560 x8 − 9

40 x6 + 9
16 x4 if x ∈ [0, 1)

− 3
1120 x8 + 9

80 x6 − 9
32 x5 − 9

32 x4 + 81
80 x3 − 243

1120 x if x ∈ [1, 3)
0 if x > 3

As these examples demonstrate, Theorem 5 always provides an explicit, workable
expression for pn(m − 1/2; x) with clearly indicated structure. We finish by observing
that since the moment function is defined by Wn(m−1/2, s) :=

∫ n
x=0 xs pn(m−1/2; x)dx,

we may also obtain an explicit formula for Wn(m − 1/2, s).
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Figure 2. pn(3/2; x) for n = 2, 3.
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