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A CLOSED FORM FOR THE DENSITY FUNCTIONS OF
RANDOM WALKS IN ODD DIMENSIONS

JONATHAN M. BORWEIN and CORWIN W. SINNAMON

Abstract

We derive an explicit piecewise-polynomial closed form for the probability density function of the
distance traveled by a uniform random walk in an odd-dimensional space, based on recent work of
Borwein, Straub, and Vignat [1] and by R. Garcia-Pelayo [3].

2010 Mathematics subject classification: Primary 60G50; Secondary 33C20.

Keywords and phrases: short random walks, generalized hypergeometric functions, Bessel integrals.

1. Preliminaries

In [1], the authors explore the distance traveled by a uniform n-step random walk in R?
with unit step length. Following their lead, we denote the probability density function
of this distance by p,(m — 1/2; x), where m = ‘%.

We recall that the density can be expressed in terms of an integral engaging the

normalized Bessel function of the first kind of order v, defined by

(=24}

Skl +»)!” (I.1)

Jv(x) =v! (;) Jy(x) = v!

With this normalization, we have j,(0) = 1 and obtain:

Theorem 1 (Bessel representation [1, 4]). The probability density function of the
distance to the origin in d > 2 dimensions after n > 2 steps is, for x > 0,

—m+1/2

pn(m -1/2;x) = m A (l‘X)mH/ZJmf1/2(1)6)]3171/2(1‘) dz, (1.2)

wherein m = ‘12;1.

The study of the density p,(v; x) is quite classical, originating in the early 20th century
[2, 4=7]. The most fundamental cases are that of two dimensions [2] and three
dimensions [7]. The Bessel representation of the density is valuable for its generality
and its analytically-pleasing structure, which form the basis for many related results

[1, 4]. Additionally, when Theorem 1 is used for half-integer m, one can symbolically
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integrate any given small-order case, although the structure of the closed form is
obscured in the process.

While some probabilistic results such as Theorem 1 hold in all dimensions, many
arithmetic and analytic results are distinct between odd and even dimensions. Indeed,
even dimensional results often involve elliptic integrals [1, 2], while odd dimensional
results are typically resolvable in terms of elementary functions. For instance, noting
that j;2(x) = sinc(x) = sin(x)/x partly explains why analysis in three-dimensional
space is relatively simple. More generally, j,(x) is elementary when v is a proper half-
integer [1, 4, 7]. In light of this discussion, it is striking that the next result is very
recent.

THeEOREM 2 (Convolution formula for density in odd dimensions [3]). Assume that the
dimension d = 2m + 1 is an odd number. Then for x > 0,

Q) Tm)( 1 d\"
“Tam (‘aa) Py () (1.3)

where P, is the piecewise polynomial obtained from convolving

Fen+1/2) (1= ifxel-1,1]
T(1/2)T(m)

pn(m—1/2;x) =

Jm(x) =

otherwise
n — 1 times with itself.

The expression in Theorem 2 above is both elegant and compact. It shows easily that
in odd dimensions the density is a piecewise polynomial, but it can be difficult to
manipulate or compute with or without a computer algebra system such as Maple or
Mathematica. Note also that p,(m — 1/2; x) = p,(m — 1/2; —x) in all cases.

2. Main result

We now use Theorem 2 to obtain an entirely explicit and tractable, convolution and
differentiation free formula for p,(m — 1/2;x), valid for all lengths and in all odd
dimensions. We begin with a preliminary result which simplifies P,,,(x). We shall
employ the Heaviside step function H(x) which has H(x) = 1 for x > 0, H(x) = 0 for
x < 0, and H(0) = 1/2. We also use the notation [x/]Q(x) to denote the coefficient of
x/ in a polynomial Q.

ProrosiTioN 3. Letn > 1 and m > 1. Then for |x| < n we have P, ,(x) =

rem) \" < (n oy
(2mr(m)) ;(r)(—l) H(n—2r + x)

Gl (n—2r + x)y™-1+J

(mn—-1+ ))!

[xj]Cm(x)rCm(_x)n—r

j=0
2.1)

where

 (m—1+k)!

2kk1(m = 1 = k)1

m—
Cp(x) :=
k=0

(2.2)



Densities of random walks in odd dimensions 3
Note that C,,(x) satisfies the useful recurrence
Cin(x) = 2Zm = 3) x Cpp1 (%) + Cr—2(x).

Moreover, in terms of hypergeometric functions C,,(x) = 2Fo(m, 1 — m; ; —x/2).

Proor. By the convolution theorem for the Fourier transform,
Tm+1/2) (! -l "
F (Pun(x)) = F ( (X)) = (— 1—x e x|
( ) ) ra/2rim) J_, ( )

Observe that, for m > 3, F (f,,(x)) satisfies the recurrence

_@m-1)2m-3)

Tm Wz (Tm—l - Tm—2)
which is also satisfied by
m—1 T
I'2m) m—-1+k)! 2cos(w + 5(m + k))
G, = -" .
™) (2mr(m))z P —1—f ik

k=0

This can be checked by hand. It can also easily be shown with the following Maple 18
code.

with (inttrans , fourier ):
f:=m —> piecewise(—-1<=x and x<=1,
GAMMA(m+1/2)/(GAMMA(m) *«GAMMA(1/2)) * (1-x722)"(m-1),0):
F:=m —> fourier (f(m),x,w):
simplify (F(m)—(2¥m—1)%(2+m-3)/w 2% (F(m-1)-F(m-2)));

The above code returns O to indicate that F (f,,(x)) satisfies the recurrence.
Correspondingly, we may execute the following Maple 18 code.

G :

m —> (GAMMA(2+m)/ (2" m+«GAMMA(m)))

sum( (m—1+k)!/ (2 k=k!*x(m—1-k)!)

(-D™"m % (2xcos(w+Pi/2«(mt+k))/wr(m+k)), k=0..m-1 ):
simplify (G(m)—(2*m—1)*(2+m—3)/w"2%(G(m-1)-G(m—-2)));

*  *

This returns 0 to show that G,,(x) satisfies the same recurrence.

We can easily check that ¥ (f,,(x)) and G,,(x) agree for m = 1 and m = 2, and so we
may conclude that ¥ (f,,(x)) = G,,(x) for all m > 1.
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»—AO

rem) \' (" m—-1+k)! (=1 "9 m-1+k!  (=1)ye™

k=0
() @) @) e )
—| Cul—]+e — | Cul|l—
iw iw iw iw
[ T@m) \" < (n)e™2 m 1Y -1\""
() 20T (e o (5)

n n (m=Dn " _iv(n-2r)
— ( r(zm) ) Z (n)(_l)mr Z e_ .[xj]cm(x)rcm(_x)n_r'
r=0 Jj=0

Therefore,
(rem (S m-t+k! 2005w+ Fm+ k)Y

F (Pua(x)) = (2mr(m)) Z 25k (m — 1 — k)! =D wm+k ]
) ( rm) )n L Y oy PWHEHR) | miw=iZ k) )
\2rTm) ) | & 24k m = 1 - k! wmtk
(Tem V' (S m-1+k)! (=1ykei 4 g’
_(2mr(m)) Z2kk'(m—1—k)' 1 (iwymk ]

2T (m) r (iw)mntJ

We can now reconstruct P, ,(x) from its Fourier transform, since

. eiw(n—Zr) (l’l —2r+ x)mn—l+/ H( .- ) 1 (I’l 2r + x)mn 1+j
- | = n—2r+x)— =
(iw)mntJ (mn—-1+ j)! 2 (mn-1+))!

Thus, taking the inverse Fourier transform of F (P, ,(x)),

(m-=1)n

. + .
2Kk m — 1 —k)! (—iwym+k = 2k m — 1 —k)!  (iwym+k

],,

n n _ mn—1+j
Pm,n<x)—(r(2’")) Z( )(—1)’” Y Hn= 2 1C () Co—

2T (m) mn—1+ j)!

j=0
(m-1)n

L(rem \" < r (n—2r + xy™=1+i . .
E(2'"“’”)) ,Z_:( )(_) Z (mn—1+ j)! [ 1Cn(x0) Cn(=2)"". (2.3)

It remains only to show that the second term above is zero. Observe that when x < —n,
P, »(x) simplifies to

1(T@m) \' & (n\, . S (= 2r + xym=1+ ) .
E(Zmﬂm)) ;(r)(_l) ,Z: =1+l PG a0 2D

From the definition of convolution, we can easily deduce that P,,,(x) vanishes for
|x| > n. It follows that (2.4) is zero for x < —n, but since it is a polynomial it must be
zero everywhere. Thus, the latter term in (2.3) is zero, yielding (2.1). O
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Next, we deal with the differential operator in Theorem 2.

LEmma 4. Forall F(x) andm > 1,

fem-1-k! 1 (dY
(_ﬁ a) Z 22m— k(m )k — 1)! 2m—k (d ) F(x). 2.5)

Proor. We proceed by induction. Itis trivial to see that (2.5) is true for m = 1. Suppose
it holds for some m > 1. Then

L\ 1 d\S Dfem-1-k! 1 [(dY
(_Tx&) F(x)_(_ﬁﬁ)z 22K (i — )k — 1)! 22 k(d ) F)
M =D Qm = 1= k) 1 d\! 2m—k (d)
= ; sz*k“(m—k)!(k— ! (x2mk+1 (a) F(x) - 2m k+2 (dx) F(x)

m+1

:Z (=DF@2m - k)! 1 (d

22m— k+2(m +1=k)!k-2) x2m—k+2 '\ 4

m 1k _ k
N Z =D*2m - k)! 1 (i) F)

k
) F(x)

k=2

e 22m=k+l(m — k)I(k — 1)) x2m—k+2 \ dx
:’f (—1fQm + 1 - k)! 1 (d)kF(x)
= 22m+2=k(m + 1 — k)!(k — 1)! x2m+2-k \d
Thus, (2.5) holds for all m > 1, proving the lemma. O

We are now ready to approach the probability density. Combining our previous results
will allow us to fully expand p,(m — 1/2; x).

TueoreMm 5 (Densities in odd dimensions). Let n > 2 and m > 1. Then for x > 0,

r 2 n n
palm —1/2;x) = (Zm(annz)) Z (’:)(—I)WH(n _2r+x)

(m—1)n

2m—-1-k)! (n —2r + x)ym-1+i-k , er
X Z( 2)k( _ 1) Xk J_Z(; N [XJ]Cm(X) Cm(_x)

2m—-1)! (mn—-1+j-k)!
(2.6)
where H(x) is the Heaviside step function and
m—1
—-1+k)!
Cr(x) = o140« 2.7)

X
£ 2k (m — 1 = k)!

1l
o
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Proor. By Theorem 2, Lemma 4, and Proposition 3, we arrive at

2m m
(2x)2"T(m) ( 1 d) .

rem) \ 2xdx

_Q0Mm) v DFem-1-k)! 1 (d

k
I'(2m) = 22m7k(m — (k- 1)! 2m—k a) Pryn(x)

pn(m—1/2;x) =

_(TCm) \" < owfm=1\2m—1-k)!
_(2mr(m)) ;( 2) (k—l) Qm - 1)! 4

1 mnn k _ mn—1+j
XD ('rl)(—l)"" JZ(; [xf']cmu)’cm(—x)“( d ) (=27t O - 2r 4 x).

e dx (mn—1+ j)!

We can evaluate the derivative above directly, but we must be careful since there are
jump discontinuities at n — 2r for 0 < r < n. We shall see that these points are not an
issue. Applying the general Leibniz rule, we obtain

d\ (n—2r + x)m1+i
dx (mn—-1+ j)!

k d a(n_2r+x)mn71+j d k—a
a (“) ((a) (mn -1+ j)! )((a) Hn-2r+ x)]

mn—1+j—-a k-a
(k)(n —2r + x)" 14 [(i) H(n-2r+ x))

H(n—-2r+x)

M=~ LM~

al (mn—1+ j—a)! dx

1l
(=

a

We shall see that the terms of this sum vanish except when a = k. Suppose a < k

k—a
and consider one such term. Clearly, (%) Hn—-2r+x) = 0for x # —n + 2r.
Additionally, since a < k < m and n > 2 the exponent mn — 1 + j—a is strictly positive,

so (n — 2r 4+ x)™~1*/=¢ = 0 at x = —n + 2r. Thus, the summand above vanishes for
a < k, yielding

( d )" (n = 2r + xy™ 1+ (=2 e

— Hn-2r+x) =
G) o1l AN = T h
We now apply this relation above and the result follows from a simple rearrangement.

O

The formula we have presented is derived from the convolution form in Theorem 2 and
produces an even function. However, p,(m—1/2; x) is the probability density function
of a non-negative random variable, so it must be 0 for negative values of x. We may
use this fact to significantly reduce the number of terms in our formula, halving the
time needed to compute p,(m — 1/2; x) for given values of n and m.
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CoroLLARY 6. Letn > 2 and m > 1. Then for x > 0,

T(2m) n L(n-1)/2] n .
2’"F(m)) (r)(_l) H(n—-2r —x)

pn(m — 1/2;x)=(
r=0
(m=Dn 27‘— )mn 1+j—k

o —1(mn—1—m' m— . , e
X 22 ( — 1) 2m-1)! Z Y [/ 1Cn(x) Cru(—x)

k=1
(2.8)
Proor. Since our formula 2.6 is even (easily seen in Theorem 2), for x > 0 we have
pn(m —1/2;x) = pu(m — 1/2; —x)

I RACDRNE o (A VNS
"(2mr(no) ;g;(r)( D™ H(n - 2r — x)

m (m=D)n mn—1+j—k

m—1\2m—-1-k)! (n—-2r—x) J : _
X 2k Rt NC,y(x) Cpp(—x)""
2; (k—]) @n=D! " L =T+ -0 LF1Cn(x) Cn(=2)
by Theorem 5. Observe that when r > |[(n — 1)/2], H(n — 2r — x) is zero on (0, c0). At
x = 0, every term is O for all values of r. Thus, when x > 0, we may simply omit the
terms where r > [(n—1)/2]. So we let r range from O to | (n — 1)/2] in the sum, which
yields our result directly. O

We finish with two examples echoing the direct analyses in [7]:
ExampLE 7 (Density in three dimensions). In R?, we have C\(x) = 1 so for n > 2 and
x > 0, the density reduces to

(n—=2r+x)"72

x o (n P
2n125()04)H@—2r+x) T

r=0

pa(1/2;%) =

In particular, we have

0 ifx<0
p2(1/2;x) =3x/2  ifx€[0,2)
0 ifx>2
0 ifx<0
1,2 ; 1
pzn=1 25, FxeloD
—gX +gx ifxe[l,3)
0 ifx>3
0 ifx<0

_343 ¥2 ; 0.2
p4(1/2’x): 1 136.x 1+ lf'.xe[ 5 )
X —Ex +x ifxe[2,4)

0 ifx>4
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0.2 -
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Ficure 1. p,(1/2; x) forn = 2,3,4.

ExawmpLE 8 (Density in five dimensions). In R, we have Co(x) = 1 + x so forn > 2
and x > 0, the density reduces to

n

3 n—1
Pn(3/2;%) = (5) Z

r=0

S (n—2r +x)M 3 (n—2r+x) (r\(n—r
X 2n—3+))! (x - 2+])220'y (X —J

j=0

(n)H(n —2r+x)
’

In particular, we have

0 ifx<0
p2(3/2:0) =3-2x° + 38 ifxe(0,2)
0 ifx>2
0 ifx<0
23250 = a5t — b+ if x € [0,1)
—113—0 8+ 2 xﬁ—%xs—%x +81x3—% ifxel[l,3)
0 ifx>3

As these examples demonstrate, Theorem 5 always provides an explicit, workable
expression for p,(m — 1/2; x) with clearly indicated structure. We finish by observing
that since the moment function is defined by W,(m—1/2, s) := fx 10 x* pp(m—1/2; x)dx,
we may also obtain an explicit formula for W,,(m — 1/2, s).
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Ficure 2. p,(3/2; x) forn = 2,3.
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