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Abstract. The questions listed here do not necessarily represent the most

significant problems from the areas of Non-smooth Analysis, Optimisation

theory and Banach space theory, but rather, they represent a selection of
problems that are of interest to the authors.

1. Weak Asplund spaces

Let X be a Banach space. We say that a function ϕ : X → R is Gâteaux
differentiable at x ∈ X if there exists a continuous linear functional x∗ ∈ X∗ such
that

x∗(y) = lim
λ→0

ϕ(x + λy)− ϕ(x)
λ

for all y ∈ X.

In this case, the linear functional x∗ is called the Gâteaux derivative of ϕ at x ∈ X.
If the limit above is approached uniformly with respect to all y ∈ BX -the closed
unit ball in X, then ϕ is said to be Fréchet differentiable at x ∈ X and x∗ is called
the Fréchet derivative of ϕ at x.

A Banach space X is called a weak Asplund space [Gâteaux differentiability
space] if each continuous convex function defined on it is Gâteaux differentiable
at the points of a residual subset (i.e., a subset that contains the intersection of
countably many dense open subsets of X) [dense subset] of its domain.

Since 1933, when S. Mazur [55] showed that every separable Banach space is
weak Asplund, there has been continued interest in the study of weak Asplund
spaces. For an introduction to this area see, [61] and [32]. Also see the seminal
paper [1] by E. Asplund.

The main problem in this area is given next.

Question 1.1. Provide a geometrical characterisation for the class of weak As- 1001 ?
plund spaces.

Note that there is a geometrical dual characterisation for the class of Gâteaux
differentiability spaces, see [67, §6]. However, it has recently been shown that
there are Gâteaux differentiability spaces that are not weak Asplund [58]. Hence
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the dual characterisation for Gâteaux differentiability spaces cannot serve as a
dual characterisation for the class of weak Asplund spaces.

The description of the next two related problems requires some additional def-
initions.

Let A ⊆ (0, 1) and let KA := [(0, 1]× {0}] ∪ [({0} ∪A)× {1}]. If we equip this
set with the order topology generated by the lexicographical (dictionary) ordering
(i.e., (s1, s2) ≤ (t1, t2) if, and only if, either s1 < t1 or s1 = t1 and s2 ≤ t2) then
with this topology KA is a compact Hausdorff space [46]. In the special case of
A = (0, 1), KA reduces to the well-known “double arrow” space.

Question 1.2. Is (C(KA), ‖ · ‖∞) weak Asplund whenever A is perfectly meagre?? 1002

Recall that a subset A ⊆ R is called perfectly meagre if for every perfect subset
P of R the intersection A ∩ P is meagre (i.e., first category) in P . An affirmative
answer to this question will provide an example (in ZFC) of a weak Asplund
space whose dual space is not weak∗ fragmentable, see [58] for more information
on this problem. For example, it is shown in [58] that if A is perfectly meagre
then (C(KA), ‖·‖∞) is almost weak Asplund i.e., every continuous convex function
defined on (C(KA), ‖·‖∞) is Gâteaux differentiable at the points of an everywhere
second category subset of (C(KA), ‖ · ‖∞). Moreover, it is also shown in [58] that
if (C(KA), ‖ · ‖∞) is weak Asplund then A is obliged to be perfectly meagre.

Our last question on this topic is the following well-known problem.

Question 1.3. Is (C(K(0,1)), ‖ · ‖∞) a Gâteaux differentiability space?? 1003

The significance of this problem emanates from the fact that (C(K(0,1)), ‖ · ‖∞)
is not a weak Asplund space as the norm ‖ · ‖∞ is only Gâteaux differentiable at
the points of a first category subset of (C(K(0,1)), ‖ · ‖∞), [32]. Hence a positive
solution to this problem will provide another, perhaps more natural, example of a
Gâteaux differentiability space that is not weak Asplund.

2. Bishop-Phelps Problem

For a Banach space (X, ‖ · ‖), with closed unit ball BX , the Bishop-Phelps
set is the set of all linear functionals in the dual X∗ that attain their maximum
value over BX ; that is, the set {x∗ ∈ X∗ : x∗(x) = ‖x‖ for some x ∈ BX}. The
Bishop-Phelps Theorem [4] says that the Bishop-Phelps set is always dense in X∗.

Question 2.1. Suppose that (X, ‖ · ‖) is a Banach space. If the Bishop-Phelps set? 1004
is a residual subset of X∗ (i.e., contains, as a subset, the intersection of countably
many dense open subsets of X∗) is the dual norm necessarily Fréchet differentiable
on a dense subset of X∗?

The answer to this problem is known to be positive in the following cases:
(i) if X∗ is weak Asplund, [36, Corollary 1.6(i)];
(ii) if X admits an equivalent weakly mid-point locally uniformly rotund norm

and the weak topology on X is σ-fragmented by the norm, [59, Theorem
3.3 and Theorem 4.4];
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(iii) if the weak topology on X is Lindelöf, [49].
The assumptions in (ii) can be slightly weakened, see [37, Theorem 2]. It is

also known that each equivalent dual norm on X∗ is Fréchet differentiable on
a dense subset on X∗ whenever the Bishop-Phelps set of each equivalent norm
on X is residual in X∗, [57, Theorem 4.4]. Note that in this case X has the
Radon-Nikodým property.

For an historical introduction to this problem and its relationship to local uni-
formly rotund renorming theory see, [48].

Next, we give an important special case of the previous question.

Question 2.2. If the Bishop-Phelps set of an equivalent norm ‖ · ‖ defined on 1005 ?
(`∞(N), ‖ · ‖∞) is residual, is the corresponding closed unit ball dentable?

Recall that a nonempty bounded subset A of a normed linear space X is dentable
if for every ε > 0 there exists a x∗ ∈ X∗ \ {0} and a δ > 0 such that

‖ · ‖ − diam{a ∈ A : x∗(a) > sup
x∈A

x∗(x)− δ} < ε.

It is well-known that if the dual norm has a point of Fréchet differentiability
then BX is dentable [75].

3. The Complex Bishop-Phelps Property

For S a subset of a (real or complex) Banach space X, we may recast the
notion of support functional as follows: a nonzero functional ϕ ∈ X∗ is a support
functional for S and a point x ∈ S is a support point of S if |ϕ(x)| = supy∈S |ϕ(y)|.

Let us say a set is supportless if there is no such ϕ.

As Phelps observed in [66] while the Bishop-Phelps construction resolved Klee’s
question [51] of the existence of support points in real Banach space, it remained
open in the complex case. Lomonosov, in [52], gives the first example of a closed
convex bounded convex set in a complex Banach space with no support functionals.

Question 3.1. Characterise (necessarily complex) Banach spaces which admit 1006 ?
supportless sets.

It is known that they must fail to have the Radon-Nikodým property [52, 53].

A Banach space X has the attainable approximation property (AAP) if the set
of support functionals for any closed bounded convex subset W ⊆ X is norm dense
in X∗. In [53] Lomonosov shows that if a uniform dual algebra R of operators on
a Hilbert space has the (AAP) then R is self-adjoint.

Question 3.2. Characterise complex Banach spaces with the AAP. In particular 1007 ?
do they include L1[0, 1]?

4. Biorthogonal Sequences and Support Points

Uncountable biorthogonal systems provide the easiest way to produce sets with
prescribed support properties.
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4.1. Constructible Convex Sets and Biorthogonal Families. A closed con-
vex set is constructible [10] if it is expressible as the countable intersection of
closed half-spaces. Clearly every closed convex subset of a separable space is con-
structible.

More generally:

Theorem 4.1. [10] Let X be a Banach space, then the following are equivalent.

(i) There is an uncountable family {xα} ⊆ X such that

xα 6∈ conv({xβ : β 6= α})

for all α.
(ii) There is a closed convex subset in X that is not constructible.
(iii) There is an equivalent norm on X whose unit ball is not constructible.
(iv) There is a bounded uncountable system {xα, φα} ⊆ X × X∗ such that

φα(xα) = 1 and |φα(xβ)| ≤ a for some a < 1 and all α 6= β.

Example 4.1. [10] The sequence space c0 considered as a subspace of `∞ is not
constructible. Consequently, no bounded set with nonempty interior relative to c0 is
constructible as a subset of `∞. In particular the unit ball of c0 is not constructible
when viewed as a subset of `∞.

In particular, if X admits an uncountable biorthogonal system then it admits
an non-constructible convex set. Under additional set-theoretic axioms, there
are nonseparable Banach spaces in which all closed convex sets are constructible.
These are known to include: (i) the C(K) space of Kunen constructed under the
Continuum Hypothesis (CH) [64], and (ii) the space of Shelah constructed under
the diamond principle [73]. In consequence, these non-separable spaces of Kunen
and Shelah have the property that for each equivalent norm, the dual unit ball is
weak∗-separable, [10].

Question 4.1. Can one construct an example of a nonseparable space whose dual? 1008
ball is weak∗ separable for each equivalent norm using only Zermelo-Fraenkel set
theory along with the Axiom of Choice?

In contrast, it is shown in [10] that there are general conditions under which
nonseparable spaces are known to have uncountable biorthogonal systems. Sup-
pose X is a nonseparable Banach space such that

(i) X is a dual space, or
(ii) X = C(K), for K compact Hausdorff, and one assumes Martin’s axiom

along with the negation of the Continuum Hypothesis.

Then X admits an uncountable biorthogonal system. Part(ii) is a deep recent
result of S. Todorcevic, see for example, [41, p. 5].

Question 4.2. When, axiomatically, does a continuous function space always? 1009
admit an uncountable biorthogonal system?
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4.2. Support Sets. In a related light, consider the question:

Question 4.3. Does every nonseparable C(K) contain a closed convex set entirely? 1010
composed of support points (the tangent cone is never linear)?

In [9] it is shown that this is equivalent to C(K) admitting an uncountable
semi-biorthogonal system, i.e., a system {xα, fα}1≤α<ω1 ⊆ X × X∗ such that
fα(xβ) = 0 if β < α, fα(xα) = 1 and fα(xβ) ≥ 0 if β > α. Moreover, [9] observes
that Kunen’s space is an example where this happens without there being an
uncountable biorthogonal system assuming the Continuum Hypotheses. Thus,
the answer is ‘yes’ except perhaps when Martin’s Axiom fails (along with CH).

4.3. Supportless Sets. For a set C in a normed space X, x ∈ C is a weakly
supported point of C if there is a linear functional f such that the restriction of f
to C is continuous and nonzero. Fonf [35], extending work of Klee [50] (see also
Borwein-Tingley [8]) proves the following result which is in striking contrast to
the Bishop-Phelps theorem in Banach spaces: Every incomplete separable normed
space X contains a closed bounded convex set C such that the closed linear span
of C is all of X and C contains no weakly supported points.

Let us call such a closed bounded convex set supportless. It is known that
there are Fréchet spaces (complete metrizable locally convex spaces) which admit
supportless sets. In [65] Peck shows that for any sequence of nonreflexive Banach
spaces {Xi}, in the product space E =

∏∞
i=1 Xi, there is a closed bounded convex

set that has no E∗-support points. Peck also provides some positive results.

Question 4.4. Characterise when a Fréchet space contains a closed convex sup- 1011 ?
portless convex set?

5. Best Approximation

Even in Hilbert spaces and reflexive Banach spaces some surprising questions
remain open.

Question 5.1. Is there a non-convex subset A of a Hilbert space H with the 1012 ?
property that every point in H \A has a unique nearest point?

Such a set is called a Chebyshev set and must be closed and bounded. For a
good up-to-date general discussion of best approximation in Hilbert space we refer
to [27]. Asplund [2] shows that if non-convex Chebysev sets exist then among
them are so called Asplund caverns—complements of open convex bodies. In
finite dimensions, the Motzkin-Klee theorem establishes that all Chebyshev sets
are convex. Four distinct proofs are given in [7, §9.2] which highlight the various
obstacles in infinite dimensions.

Question 5.2. Is there a closed nonempty subset A of a reflexive Banach space 1013 ?
X with the property that no point outside A admits a best approximation in A? Is
this possible in an equivalent renorm of a Hilbert space?
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The Lau-Konjagin Theorem (see [5]) states that in a reflexive space, for every
closed set A there is a dense (or generic) set in X \A which admits best approxi-
mations if and only if the norm has the Kadec-Klee property. Thus, any counter
example must have a non-Kadec-Klee norm and must be unbounded—via the
Radon-Nikodym property. In [5], a class of reflexive non-Kadec Klee norms is
exhibited for which some nearest points always exist.

By contrast, in every non-reflexive space, James Theorem [34] provides a closed
hyperplane H with no best approximation: equivalently H + BX is open. More
exactingly, two closed bounded convex sets with nonempty interior are called com-
panion bodies and anti-proximinal if their sum is open. Such research initiates with
Edelstein and Thompson [31].

Question 5.3. Characterise Banach spaces (over R) that admit companion bodies.? 1014

Such spaces include c0 [31, 22, 6] and again do not include any space with the
Radon-Nikodym property [5].

6. Metrizability of compact convex sets

One facet of the study of compact convex subsets of locally convex spaces is
the determination of their metrizability in terms of topological properties of their
extreme points. For example, a compact convex subset K of a Hausdorff locally
convex space X is metrizable if, and only if, the extreme points of K (denoted
Ext(K)) are Polish (i.e., homeomorphic to a complete separable metric space),
[23].

Since 1970 there have been many papers on this topic (e.g. [23, 24, 45, 54, 69]
to name but a few).

Question 6.1. Let K be a nonempty compact convex subset of a Hausdorff locally? 1015
convex space (over R). Is K metrizable if, and only if, A(K) - the continuous real-
valued affine mappings defined on K, is separable with respect to the topology of
pointwise convergence on Ext(K)?

The answer to this problem is known to be positive in the following cases:
(i) if Ext(K) is Lindelöf, [60];
(ii) if Ext(K) \ Ext(K) is countable, [60].

Question 6.1 may be thought of as a generalisation of the fact that a compact
Hausdorff space K is metrizable if, and only if, Cp(K) is separable. Here Cp(K)
denotes the space of continuous real-valued functions defined on K endowed with
the topology of pointwise convergence on K.

7. The Boundary Problem

Let (X, ‖ · ‖) be a Banach space. A subset B of the dual unit ball BX∗ is called
a boundary if for any x ∈ X, there is x∗ ∈ B such that x∗(x) = ‖x‖. A simple
example of boundary is provided by the set Ext(BX∗) of extreme points of BX∗ .
This notion came into light after James’ characterisation of weak compactness [44],
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and has been studied in several papers (e.g. [74, 70, 76, 38, 39, 19, 17, 16, 40, 18]).
In spite of significant efforts, the following question is still open (see [38, Question
V.2] and [30, Problem I.2]):

Question 7.1. Let A be a norm bounded and τp(B) compact subset of X. Is A 1016 ?
weakly compact?

The answer to the boundary problem is known to be positive in the following
cases:

(i) if A is convex, [74];
(ii) if B = Ext(BX∗), [12];
(iii) if X does not contain an isomorphic copy of l1(Γ) with |Γ| = c, [17, 18];
(iv) if X = C(K) equipped with their natural norm ‖ · ‖∞, where K is an

arbitrary compact space, [16].

Case (i) can be also obtained from James’ characterisation of weak compactness,
see [39]. The original proof for (ii) given in [12] uses, among other things, deep
results established in [11]. Case (iii) is reduced to case (i): if l1(Γ) 6⊂ X, |Γ| = c,
and C ⊂ BX∗ is 1-norming (i.e., ‖x‖ = sup{|x∗(x)| : x∗ ∈ C}), it is proved
in [17, 18] that for any norm bounded and τp(C)-compact subset A of X, the closed
convex hull coτp(C)(A) is again τp(C)-compact; the class of Banach spaces fulfilling
the requirements in (iii) is a wide class of Banach spaces that includes: weakly
compactly generated Banach spaces or more generally weakly Lindelöf Banach
spaces and spaces with dual unit ball without a copy of βN. The techniques
used in case (iv) are somewhat different, and naturally extend the classical ideas
of Grothendieck, [42], that led to the fact that norm bounded τp(K)-compact
subsets of spaces C(K) are weakly compact. It should be noted that it is easy to
prove that for any set Γ, the boundary problem has also positive answer for the
space `1(Γ) endowed with its canonical norm, see [16, 18].

We observe that the solution in full generality to the boundary problem without
the concourse of James’ theorem of weak compactness would imply an alternative
proof of the following version of James’ theorem itself: a Banach space X is
reflexive if, and only if, each element x∗ ∈ X∗ attains its maximum in BX .

Finally, we point out that in the papers [71, 79], it has been claimed that the
boundary problem was solved in full generality. Unfortunately, to the best of our
knowledge both proofs appear to be flawed.

8. Separate and Joint Continuity

If X, Y and Z are topological spaces and f : X × Y → Z is a function then we
say that f is jointly continuous at (x0, y0) ∈ X × Y if for each neighbourhood W
of f(x0, y0) there exists a product of open sets U ×V ⊆ X ×Y containing (x0, y0)
such that f(U × V ) ⊆ W and we say that f is separately continuous on X × Y if
for each x0 ∈ X and y0 ∈ Y the functions y 7→ f(x0, y) and x 7→ f(x, y0) are both
continuous on Y and X respectively.
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Since the paper [3] of Baire first appeared there has been continued interest
in the question of when a separately continuous function defined on a product of
“nice” spaces admit a point (or many points) of joint continuity and over the years
there have been many contributions to this area (e.g. [15, 20, 21, 25, 26, 49, 63,
56, 68, 72, 77] etc.). Most of these results can be classified into one of two types.
(I) The existence problem, i.e., if f : X × Y → R is separately continuous find
conditions on either X or Y (or both) such that f has at least one point of joint
continuity. (II) The fibre problem, i.e., if f : X × Y → R is separately continuous
find conditions on either X or Y (or both) such that there exists a nonempty
subset R of X such that f is jointly continuous at the points of R× Y .

The main existence problem is, [78]:

Question 8.1. Let X be a Baire space and let Y be a compact Hausdorff space.? 1017
If f : X × Y → R is separately continuous does f have at least one point of joint
continuity?

We will say that a topological space X has the Namioka Property of has prop-
erty N if for every compact Hausdorff space Y and every separately continuous
function f : X × Y → R there exists a dense Gδ-subset G of X such that f is
jointly continuous at each point of G × Y . Similarly, we will say that a compact
Hausdorff space Y has the co-Namioka Property or has property N ∗ if for every
Baire space X and every separately continuous function f : X × Y → R there
exists a dense Gδ-subset G of X such that f is jointly continuous at each point of
G× Y .

The main fibre problems are:

Question 8.2. Characterise the class of Namioka spaces.? 1018

There are many partial results.
(i) Every Namioka space is Baire, [72];
(ii) Every separable Baire space and every Baire p-space is a Namioka space,

[72];
(iii) Not every Baire space is a Namioka space [78];
(iv) Every Lindelöf weakly α-favourable space is a Namioka space, [49]
(v) Every space expressible as a product of hereditarily Baire metric spaces is

a Namioka space, [20].

Question 8.3. Characterise the class of co-Namioka spaces.? 1019

There are many partial results.
(i) βN is not a co-Namioka space, [28];
(ii) Every Valdivia compact is a co-Namioka space, [13, 29];
(iii) The co-Namioka spaces are stable under products, [15];
(iv) All scattered compacts K with K(ω1) = ∅ are co-Namioka, where K(α)

denotes the αth derived set of K, [28];
(v) There exists a non co-Namioka compact space K such that K(ω1) is a

singleton, [43].
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A partial characterisation, in terms of a topological game on Cp(K), is given
in [47] for the class of compact spaces K such that: for every weakly α-favourable
space X and every separately continuous mapping f : X ×K → R there exists a
dense Gδ subset G of X such that f is jointly continuous at each point of G×K.

For an introduction to this topic see, [56, 68]. Also see the seminal paper [62]
by I. Namioka, as well as, the paper [63].
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[3] R. Baire, Sur les fonctions des variable réelles, Ann. Math. Pura Appl. 3 (1899), 1–122.
[4] E. Bishop and R. R. Phelps, A proof that every Banach space is subreflexive, Bull.

Amer. Math. Soc. 67 (1961), 97–98. MR 23 #A503
[5] J. M. Borwein and S. Fitzpatrick, Existence of nearest points in Banach spaces, Canad.

J. Math. 61 (1989), 702–720. MR 90i:46024
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[22] S. Cobzaş, Antiproximinal sets in Banach spaces of continuous vector-valued functions,

J. Math. Anal. Appl. 261 (2001), 527–542. MR 2002f:46060
[23] H. H. Corson, Metrizability of compact convex sets, Trans. Amer. Math. Soc. 151 (1970),

589–596. MR 42 #813

[24] G. Debs, Quelques propriétés des espaces α-favorables et applications aux convexes com-
pacts, Ann. Inst. Fourier 30 (1980), 29–43. MR 81m:54055

[25] , Pointwise and uniform convergence on a Corson compact space, Topology Appl.

23 (1986), 299–303. MR 87i:54069
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