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Experimental computation with oscillatory integrals

David H. Bailey and Jonathan M. Borwein

Abstract. A previous study by one of the present authors, together with D.
Borwein and I. E. Leonard [8], studied the asymptotic behavior of the p-norm
of the sinc function: sinc(x) = (sin x)/x and along the way looked at closed
forms for integer values of p. In this study we address these integrals with
the tools of experimental mathematics, namely by computing their numerical
values to high precision, both as a challenge in itself, and also in an attempt to
recognize the numerical values as closed-form constants. With this approach,
we are able to reproduce several of the results of [8] and to find new results,
both numeric and analytic, that go beyond the previous study.

1. Introduction

A previous work by one of the present authors, together with D. Borwein and
I. Leonard [8], studied the behavior of the p-norm of the sinc function: sinc(x) =
(sinx)/x. In particular, these authors considered the function I(p) defined by:

I(p) :=
√

p

∫ ∞

0

∣∣∣∣
sin t

t

∣∣∣∣
p

dt.(1)

Plots of I(p) over (0, 10) and (0, 100) are shown in Figures 1 and 2. In this study
we wish to further explore this function, both numerically and analytically. Indeed,
in [8] one finds proofs of the following composite result.

Theorem 1. For all p > 1 one has

I(p) >

√
3π

2
2p

2p + 1
>

√
3π

2

(
1− 1

2p

)
.(2)

Moreover

lim
p→∞

I(p) =

√
3π

2
,(3)
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Figure 1. The function I on [2, 10]

Figure 2. The function I and its limiting value on [2, 100]

and there are real constants cs such that

I(p) ∼ 1
2
√

p

∫ π

−π

∣∣∣∣
sin(x)

x

∣∣∣∣
p

dx

∼
√

3π

2
− 3

20

√
3π

2
1
p

+
∞∑

s=2

cs
1
ps

+ · · · .(4)

A first challenge we set ourselves was to compute the limit value in (3) suffi-
ciently well to recognize the limit from numerical computation. Given the slow rate
of convergence in (4) this is a very hard task, the lower bound being of the correct
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order. The following related conjecture is made in [8] and is well supported by the
plots in Figures 1 and 2.

Conjecture. I is increasing for p above the conjectured global minimum near
3.36 and concave for p above an inflection point near 4.469.

Note that (4) shows that I(p) is concave increasing for sufficiently large p.
While we can not fully resolve this conjecture, we are able—inter alia—to resolve
both the critical point and inflection point to very high precision. We could not
thusly identify a closed form but someone else may be able to determine a closed
form for one or both of these quantities.

2. Quadrature for highly oscillatory integrals

In a previous study of quadrature algorithms for very high precision, one of
the present authors, together with X. S. Li and K. Jeyabalan, found that Gaussian
quadrature is generally the most efficient scheme for regular functions (even at
endpoints), and for moderately high precision levels (up to several hundred digits).
For functions with singularities or other difficulties at the endpoints, or for any
function at very high precision (beyond about 500 digits), these authors found that
the tanh-sinh quadrature algorithm of Takahasi and Mori is generally the most
effective [5] [26].

The tanh-sinh scheme is simply the observation that if x = g(t) = tanh(π/2 sinh t),
then

∫ 1

−1

f(x) dx =
∫ ∞

−∞
f(g(t))g′(t) dt ≈ h

N∑

j=−N

wjf(xj),

where xj = g(hj), wj = g(hj) and N is chosen large enough that the terms of the
summation are smaller than the “epsilon” of the numeric precision being used for
j > N . Note that the resulting quadrature rule is a simple sum of weighted function
values at precalculated abscissas xj , with weights wj — very similar to Gaussian
quadrature in this regard. Because of the nature of the function g(t), the trans-
formed integrand f(g(t))g′(t) rapidly goes to zero (together with all higher deriva-
tives), even in (most) cases where the original integrand function f(x) has blow-up
singularities at the endpoints of the interval [−1, 1]. Thus tanh-sinh quadrature
exhibits “exponential” or “quadratic” convergence for a wide range of integrands—
dividing the interval length h by two (or, equivalently, taking twice as many abscissa
points) typically doubles the number of correct digits.

Even armed with advanced quadrature techniques, numerical evaluation of (1)
to high precision (say several hundred digits) presents numerous challenges. To
begin with, it is first necessary to rewrite this integral as one or more integrals on
finite intervals. For most integrands this is handled by a simple transformation
such as: ∫ ∞

0

f(t) dt =
∫ 1

0

f(t) dt +
∫ 1

0

f(1/t) dt

t2

Unfortunately, in the case of integrals such as (1), this transformation yields, as
the second integrand, the function sin(1/t)/t2, which oscillates wildly near the
origin. Partly for such reasons, this integral (with p = 1, and without the absolute
value) was selected to be one of 15 test integrals in the above-mentioned study of
quadrature algorithms [5].
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As it turns out, when p is an even integer (so that the absolute value signs
can be replaced by simple parentheses), such integrals can be efficiently computed
by applying a clever technique recently introduced by Ooura and Mori [23]. Let
x = g(t) = Mt/(1− exp(−2π sinh t)). Then in the case of p = 2, for instance,
∫ ∞

0

(
sin x

x

)2

dx =
∫ ∞

−∞

(
sin g(t)

g(t)

)2

· g′(t) dt ≈ h

N∑

k=−N

(
sin g(hk)

g(hk)

)2

· g′(hk)

Now note that if one chooses M = π/h, then for large k, the g(hk) values are all
very close to kπ, so the sin(g(hk)) values are all very close to zero. Thus the sum
can be truncated after a modest number of terms, as in tanh-sinh quadrature. In
practice, this scheme is very effective for oscillatory integrands such as this.

When p is not an even integer, neither than tanh-sinh nor the Ooura-Mori
scheme can be used, because the condition of regularity except at endpoints is not
met due to the absolute value signs in (1). What happens is that convergence is
very slow, and even with high precision arithmetic and many abscissa-weight pairs,
accuracy is typically only a few digits. One response is to write, for integer N and
2N − 1 > |θ|,

∫ ∞

0

(∣∣∣∣
sin (t)

t

∣∣∣∣
)2 N+θ

dt

=
∞∑

n=0

θn

n! 2n

∫ ∞

0

(
sin (t)

t

)2 N
(

log
(

sin(t)
t

)2
)n

dt(5)

on expanding the θ-power as an exponential series. This eliminates the absolute
value signs, but unfortunately the log sin term results in singularities at every inte-
ger multiple of π, and thus, sadly, is also not suitable for high-precision quadrature
computation as it stands. We shall return to this type of integral in Section 4.

An alternate strategy is to employ the Hurwitz zeta function, which is defined
as:

ζ(p, x) :=
∞∑

n=0

1
(n + x)p

With this definition, we can derive:

I(p) :=
√

p

∫ ∞

0

∣∣∣∣
sin (x)

x

∣∣∣∣
p

dx =
√

p

πp−1

∫ 1

0

sinp (πx) ζ (p, x) dx.(6)

This can be obtained by breaking the integral in (5) on the intervals [nπ, (n + 1)π]
and gathering up the translations.

We recall that the Bateman project [15, (7), p. 24] records

ζ (s, v) =
1

Γ (s)

∫ 1

0

xv−1 (− ln (x))s−1

1− x
dx.

An even more efficient scheme is given by the following formula supplied by Richard
Crandall [3]:

Lemma 1 (Crandall). The complete analytic continuation of ζ(s, a) for a ∈
(0, 1), s 6= 1 + 0i, is given by

ζ(s, a) =
1

Γ(s)

∑

n≥0

Γ(s, λ(n + a))
(n + a)s

+
1

Γ(s)

∑

m≥0

(−1)mBm(a)
m!

λm+s−1

m + s− 1
,
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with the following interpretations: Γ(s, ·) is the standard incomplete gamma func-
tion, Bn is the standard Bernoulli polynomial, λ is a free parameter with |λ| < 2π.
For any case of integer s = −n ≤ 0, the Γ(s) divergence cancels a divergent m-
summand, and so ζ(−n, a) = −Bn+1(a)/(n + 1).

We chose not to use this formula because it requires access to the incom-
plete gamma function. Instead, for our purposes here it suffices to use the Euler-
Maclaurin summation formula [2, pg. 180]. Let m ≥ 0 and n ≥ 1 be integers, and
define h = (b − a)/n and xj = a + jh for 0 ≤ j ≤ n. Further assume that the
function f(x) is at least (2m + 2)-times continuously differentiable on [a, b]. Then
the Euler-Maclaurin summation formula is:

h

n∑

j=0

f(xj) =
∫ b

a

f(x)dx +
h

2
(f(a) + f(b))

+
m∑

i=1

h2iB2i

(2i)!

(
f (2i−1)(b)− f (2i−1)(a)

)
+ E,

where B2i denote the Bernoulli numbers, and

E =
h2m+2(b− a)B2m+2f

2m+2(ξ)
(2m + 2)!

for some ξ ∈ (a, b).
As written, this formula is not particularly effective to numerically evaluate

series. The strategy is instead to evaluate a series manually for, say, N = 1000
terms, then to use the Euler-Maclaurin formula to evaluate only the tail of the
series, namely

∑
j>1000 f(xj). The Bernoulli numbers B2k, which are required

here, can be easily computed by recalling that for k > 0 [1, pg. 807],

ζ(2k) =
(2π)2k|B2k|

2(2k)!
.

This can be rewritten as
B2k

(2k)!
=

2(−1)k+1ζ(2k)
(2π)2k

.

The Riemann zeta function at integer arguments can, in turn, be computed using
the formula due to Peter Borwein [10].

With a scheme to compute the Hurwitz zeta in hand, formula (6) can be used,
in conjunction with a high-precision quadrature routine, to compute I(p).

One question here is whether to use Gaussian quadrature or tanh-sinh. Because
the integrand function sinp(πx)ζ(p, x) for various p seems quite well-behaved, our
first inclination was to use Gaussian quadrature. This works quite well for p = 3,
for instance, but then we found that it gave very poor results for p = 3.5 — even
with a very small h and a correspondingly large number of evaluation points, the
accuracy was only a few digits. We naturally suspected a programming “bug,”
but after observing the same behavior whether we coded the algorithm in our own
ARPREC software [4] or in Mathematica, we looked elsewhere.

As it turns out, this strange behavior is due to the fact that when p = 3.5,
while the integrand function and its derivatives are well-behaved up to the third
derivative, the fourth derivative exhibits severe blow-up singularities at 0 and 1.
This is illustrated in Figure 3, which shows the function sinp(πx)ζ(p, x) for p = 3
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Figure 3. Integrand function for p = 3 (blue) and p = 3.5 (red).
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Figure 4. Fourth derivative of integrand function for p = 3 (blue)
and p = 3.5 (red).

(blue) and p = 3.5 (red), and Figure 4, which shows the fourth derivatives of these
functions with the same color scheme. Because of these singularities in the higher-
order derivatives, Gaussian quadrature gives poor results. The tanh-sinh scheme,
in contrast, is not bothered by these singularities and gives excellent exponential
convergence to high-precision values.

We should add, more generally, that if p > 0 is not an integer, then the func-
tion sinp(πt)ζ(p, t) will exhibit singular behavior on [0, 1] beginning with the k-th
derivative, where k = bpc+ 1.

Our first goal with this computer program was to find the minimum of the
function I(p) near p = 3.36 and also the point of inflection near p = 4.46. We did
this by starting with a “comb” of four equispaced abscissa values (five in the case
of the inflection point) near 3.36 (4.46 for the inflection point). We evaluated I(p)
for these values of p, then used polynomial regression to fit these (p, I(p)) pairs to
a quartic curve (quintic for the inflection point). We then used Newton iteration
to calculate a new estimate for the zero of the derivative of this function (zero of
the second derivative, for the inflection point). This new estimate for the p at the
critical point was then taken as a new element of the “comb,” and the process was
repeated, until successive new elements differed by an amount roughly equal to the
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square root of the “epsilon” of the numeric precision being used, which is as good
as can be expected.

This scheme appeared to work quite well. We obtained the results below and
believe them to be accurate to the precision shown:

• p at critical point (conjectured minimum):
3.36354876022451532816334301553541106982340973010200

93393024274526853624322808822111780630522743546839
65168546672961485462827077846841786411218613089950
8745727158152731

• I(p) at critical point (conjectured minimum):
2.09002860269180412254956491550781177353834974949186

75161558946115770419271274624491776411344314758189
93461306711846030747363223735023118868888017902470
29802232734781888386061734850631082243846394257215
38511911622108100945818827513170410889481080593453
364388301851618971531246883340068963419076

• p at inflection point:
4.46987788658564578917780820674988693171596919867299

11634253975525983837941459705451646979509928424279
4233718363336416486397093

With regards to the Hurwitz zeta function, we mention here a related result
(communicated to us by M. Coffey) that may be of use both in computation and
analysis:

Theorem 2. Given an integer M > 0, the following holds for all Re(p) > −M
and uniformly for all 0 < t ≤ 1:

ζ(p, t) = t−p + (t + 1)−p +
M∑
0

(−p

m

)
(ζ(p + m)− 1)tm + O(tM+1)

Proof. This follows from

ζ(p, t) = t−p + (t + 1)−p +
∞∑

j=2

j−p(1 + t/j)−p

= t−p + (t + 1)−p +
∞∑

m=0

(
p

m

)
(ζ(p + m)− 1)tm.

Therefore, we also have, for example,

lim
p→∞

I(p) = lim
p→∞

√
pπ1−p

∫ 1

0

sinp(πt)
tp

dt.

One other related asymptotic of interest can be deduced from a result in [21].
Define

Qn(0) :=
2
π

∫ ∞

0

(
sin x

x

)n

dx.
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Then we can write for even n that

I(n) =
π
√

n

2
Qn(0)(7)

=

√
3π

2

[
1− 3

20n
− 13

1120n2
+

27
3200n3

+
52791

3942400n4

+
482427

66560000n5
− 124996631

10035200000n6
+ · · · )

]

which, for integer n, is formally a more precise version of the asymptotic in (4)
which was developed from general critical point analysis [22, Theorem 7.1, p. 127].
We should note that [21] makes no claim as to the rigorous properties of this
estimation which comes from the Bernoulli number expansion

log
(

sinx

x

)
= −

∞∑

k=1

Bk

(2k)(2k)!
(2x)2k.

3. The sinc norm at integer values

For integer M ≥ 1, on expressing ζ(M, x) in terms of Ψ(M−1)(x) and integrating
by parts M -times we have also the representation

I(M) =
√

M

πM−1

∫ 1

0

sinM (π x) ζ (M, x) dx

=

√
M

Γ (M)πM−1

∫ 1

0

log Γ (x)
∂M

∂xM
sinM (π x) dx.

Note also that when M is even we may substitute x = 1−x and average to get

I(2N) =
√

2N

π2N−1

∫ 1

0

sin2N (π x) ζ (2N,x) dx

= −
√

N/2
Γ (2N)π2N−1

∫ 1

0

log
(

sin(πx)
π

)
∂2N

∂x2N
sin2N (π x) dx.

We can to use these last two formulae—via their Fourier expansions and Parse-
val’s formula—to recapture the known closed form for even integers and to provide
something new for odd integers. Indeed, we have

− ln
(

sin (π t)
π

)
= log (2 π) +

∞∑
n=1

cos (2nπ t)
n

,(8)

1
2
− t =

1
π

∞∑
n=1

sin (2nπ t)
n

,(9)

log Γ (t) = −1
2

log
(

sin (π t)
π

)
+ (γ + ln (2 π))

(
1
2
− t

)

+
1
π

∞∑
n=1

log (n)
n

sin (2nπ t)(10)
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where the final composite Fourier series is originally due to Kummer [19]. Also, it
is known [6] and easy to show inductively that

sin2N−1(π t) =
1

22N−2

N∑
n=1

(−1)n+1

(
2N − 1
N − n

)
sin

(
(2n− 1) π t

)
(11)

and

sin2N (π t) =
1

22N−1

(
1
2

(
2N

N

)
+

N∑
n=1

(−1)n

(
2N

N − n

)
cos(2nπ t)

)
.(12)

Finally, for completeness, we recall that for 0 ≤ t ≤ 1,

∞∑
n=1

sin(2π nt)
n2N+1

=
(−1)N−1

2
(2π)2N+1 φ2N+1 (t)(13)

and
∞∑

n=1

cos(2 π nt)
n2N

=
(−1)N−1

2
(2π)2Nφ2N (t) ,(14)

where φN (x) is the Nth Bernoulli polynomial, normalized so that the highest-order
coefficient is 1/N !, see [25, p. 430]. Now it transpires that the first two terms of
Kummer’s formula (8) and (9) are orthogonal to (11) and hence

I(2N − 1) =
√

2N − 1

Γ (2N − 1) (2π)2N−2

×
∞∑

n=1

∫ 1

0

log (n)
n

sin (2nπ t)
∂2N−1

∂x2N−1
sin2N−1 (π x) dx

=
1
π

√
2N − 1

Γ (2N − 1) (2π)2N−2

∞∑
n=1

N∑
m=1

(−1)m+1
(
2N−1
N−m

)
log (n)

n

×
∫ 1

0

sin (2nπ t)
∂2N−1

∂x2N−1
sin

(
(2m− 1)π t

)
dx

=
(−1)N

√
2N − 1

Γ (2N − 1) 4N−1

∞∑
n=1

N∑
m=1

(−1)m
(
2N−1
N−m

)
(2m− 1)2N−1 log (n)

n

×
∫ 1

0

sin (2nπ t) cos
(
(2m− 1)π t

)
dx

=
1
π

(−1)N
√

2N − 1
Γ (2N − 1)

×
∞∑

n=1

N∑
m=1

(−1)m

(
2N − 1
N −m

) (
m− 1

2

)2N−1 log (n)

n2 − (
m− 1

2

)2

=
1
π

(−1)N
√

2N − 1
Γ (2N − 1)

×
N∑

m=1

(−1)m

(
2N − 1
N −m

)(
m− 1

2

)2N−1 ∞∑
n=1

log (n)

n2 − (
m− 1

2

)2 .
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Let us set

L(x) :=
∞∑

n=2

log(n)
n2 − x2

= −
∞∑

s=1

ζ ′(2s)x2s−2,

where the power series has radius of convergence two, and the derivative (here and
elsewhere) is with respect to the first variable. For general x, we may similarly
write

L(x) =
bxc∑
n=2

log(n)
n2 − x2

−
∞∑

s=1

ζ ′ (2s, dxe) x2s−2,(15)

with radius of convergence dxe. Thence we obtain

I(2N − 1) =
√

2N − 1 · (−1)N

(2N − 2)!

×
N∑

m=1

(−1)m

(
2N − 1
N −m

)(
m− 1

2

)2N−1 L (
m− 1

2

)

π
.(16)

In particular I(1) = ∞ and

I(3) =
3
√

3
2π

∞∑
s=1

9s − 1
4s

ζ ′(2s)(17)

= −2.0930867689497938424321336535746596878058055573140 . . . .

I(5) = −5
√

5
64π

(
1
3
L

(
1
2

)
− 81

2
L

(
3
2

)
+

625
6
L

(
5
2

))
(18)

= 2.1061252846080842088918826986669843292200478501493 . . . ,

since

−L
(

5
2

)
=

4
9

log (2) +
∞∑

s=1

(
ζ ′ (2 s) +

log (2)
22 s

) (
5
2

)2 s−2

while L (
1
2

)
and L (

3
2

)
are as already engaged in (17). Such computations can be

done quite efficiently to much higher precision in either Maple or Mathematica.
Richard Crandall has noted the following pretty formula

I(3) =
3
√

3
8

π + 6
√

3
∫ ∞

0

t2

(t2 + 1) (t2 + 9) (eπ t − 1)
dt.

Herein, the integral term only accounts for 2.5% of the value.
For even integers the computation is much simpler as the Fourier series have

only cosine terms and so are orthogonal on [0, 1]. We arrive at:

I(2N) =
√

2N

∫ ∞

0

(
sin x

x

)2N

dx

=
√

2N · (−1)N

(2N − 1)!
·

N∑
m=0

(−1)m

(
2N

N −m

)
m2N−1 π

2
.(19)

Hence I(2) = π/2, I(4) = 2π/3 = 2.0943951023932 . . . and I(6) = 11
√

6π/40 =
2.1162072197671 . . .. Result (19) can be found in Bromwich [11, Exercise 22, p.
518], where it is attributed to Wolstenholme, and in many other places—including
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two relatively recent articles on integrals of more general products of sinc functions
[7, 9]. We recapitulate with a theorem.

Theorem 3. For integer N ≥ 1 one has

I(2N − 1) =
√

2N − 1 · (−1)N

(2N − 2)!

×
N∑

m=1

(−1)m

(
2N − 1
N −m

)(
m− 1

2

)2N−1 L (
m− 1

2

)

π
,(20)

with L given by (15), while

I(2N) =
√

2N

∫ ∞

0

(
sin x

x

)2N

dx

=
√

2N · (−1)N

(2N − 1)!
·

N∑
m=0

(−1)m

(
2N

N −m

)
m2N−1 π

2
.(21)

For the limit of the I(p), as p →∞ the best we could obtain purely numerically
is 2.1708037537 . . .. This required computing I(p) to high precision, using the
Hurwitz integral representation (6), for p = 4, 16, . . . , up to p = 412, and then
using Richardson extrapolation. This is consistent with the actual closed form√

3π/2 = 2.1708037636748029781 . . . which was given an elementary proof in [8];
but it certainly does not provide compelling evidence. A discussion of the problems
entailed in using formula (21) directly is given in [6].

3.1. Another direct proof of the limit
√

3π/2. A referee of this paper was
able to formulate an alternative delightful and direct—if non-elementary—proof of
this limit, as follows. The expression (21) for p = 2N can be rewritten by employing
the Eulerian numbers (found by Euler in 1755), which may be defined by

〈
n
k

〉
=

k+1∑

j=0

(−1)j

(
n + 1

j

)
(k − j + 1)n.

Note that

(−1)N
N∑

m=0

(−1)m

(
2N

N −m

)
m2N−1 =

N∑
m=0

(−1)m2Nm(N −m)2N−1

=
〈

2N − 1
N − 1

〉
= A(2N − 1, N)

in the A notation of [13, pg. 243], namely A(n, k) =
〈

n
k − 1

〉
. Moreover,

A(n,m) counts the number of permutations of the numbers 1 to n in which exactly
m elements are greater than the previous element. This leads to the recursion

A(n,m) = (n−m + 1)A(n− 1,m− 1) + mA(n− 1,m).(22)

Then we have the following beautiful formula:

I(2N)√
2N

=
∫ ∞

0

(
sin x

x

)2N

dx

=
π

2(2N − 1)!

〈
2N − 1
N − 1

〉
=

πA(2N − 1, N)
2(2N − 1)!

.(23)
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With the result (23) in hand, we can apply known asymptotic results for A [17,
6.16], such as

A

(
n,

n− 1
2

)
∼n

2
√

3
e

(
n + 1

e

)n

,

together with Stirling’s formula for Γ(2N), to again deduce that

lim
N→∞

I(2N) =

√
3π

2
.

Note that A(2N−1, N) can be computed “in-place” by starting with a (2N−1)-
long array Ā = (1, 0, 0, 0, · · · , 0), and then applying the recursion

Ā(m) := (n−m + 1)Ā(m− 1) + mĀ(m)

for m = n to 2 in reverse order, repeating for n = 2 to 2N−1. In this way, with N =
10, 000, we calculate A(2N −1, N) = Ā(N) = 8.8886211119258922301 . . .×1077330,
so that I(N) = 2.1707874825835856332 . . ., a value that differs from

√
3π/2 by

1.62811 × 10−5. This calculation, using 56-digit arithmetic, required 341 seconds
run time on a single processor core.

4. More general oscillatory integrals

More complex integrands of the form studied in [7] can be handled by variations
of (6). For example

∫ ∞

−π

∣∣∣∣
sin (x)

x

∣∣∣∣
p ∣∣∣∣

sin (x/2)
x/2

∣∣∣∣
q

dx(24)

=
2

(2π)p+q−1

∫ 1

−1

sinp (πx) sinq
(
π

x

2

)
ζ

(
p + q,

x

2

)
dx

+
∫ π

0

(
sin (x)

x

)p (
sin (x/2)

x/2

)q

dx.

Likewise, logarithmic integrals of the form in (5) can be treated as follows. For
p > 1, q ≥ 0 and q integer we write

I(p, q) :=
∫ ∞

0

∣∣∣∣
sin (t)

t

∣∣∣∣
p (

log
∣∣∣∣
sin(t)

t

∣∣∣∣
)q

dt

=
1

πp−1

∫ ∞

0

∣∣∣∣
sin (πt)

t

∣∣∣∣
p (

log
∣∣∣∣
sin(πt)

π

∣∣∣∣− log |t|
)q

dt

=
1

πp−1

q∑
r=0

(
q

r

)
(−1)r

∫ ∞

0

∣∣∣∣
sin (πt)

t

∣∣∣∣
p (

log
∣∣∣∣
sin(πt)

π

∣∣∣∣
)q−r

(log t)r dt

=
1

πp−1

q∑
r=0

(
q

r

)
(−1)r

∫ ∞

0

|sin (πt)|p
(

log
∣∣∣∣
sin(πt)

π

∣∣∣∣
)q−r (log t)r

tp
dt

=
1

πp−1

q∑
r=0

(
q

r

)
(−1)r

∞∑
n=0

∫ 1

0

sinp (πt) logq−r

(
sin(πt)

π

)
logr(n + t)
(n + t)p

dt,

where this last expression has again broken up the integral. On exchanging the
integral and sum, we we arrive at our final theorem:
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Theorem 4. For all real numbers p > 1 and integers q ≥ 0 one has
∫ ∞

0

∣∣∣∣
sin (t)

t

∣∣∣∣
p

logq

∣∣∣∣
sin(t)

t

∣∣∣∣ dt

=
1

πp−1

q∑
r=0

(
q

r

) ∫ 1

0

sinp (πt) logq−r

(
sin(πt)

π

)
ζ(r) (p, t) dt(25)

where derivatives of the Hurwitz zeta function are taken with respect to the first
variable.

Observe that for computational purposes it is preferable to write
∫ ∞

0

∣∣∣∣
sin (t)

t

∣∣∣∣
p

logq

∣∣∣∣
sin(t)

t

∣∣∣∣ dt

=
1

πp−1

∫ 1

0

sinp (πt)
q∑

r=0

(
q

r

)
logq−r

(
sin(πt)

π

)
ζ(r) (p, t) dt.(26)

Note that formula (25) recaptures (6). Observe also that the Fourier series of
log

(
sin(πt)

π

)
was recorded in equation (8).

To illustrate the virtues of Theorem 3, with p = 3 and q = 1, 2, 3 we computed
in Maple that

I(3, 1) = − 0.21269444360025161284678764161199575472915948205259008888
3795304046951433904376033124895536374597320

I(3, 2) = + 0.15046077234624478828956577555259908739964416463107895870
0949532207087021383282901213520074598205646

I(3, 3) = − 0.21673166110791925450854193518248175083146189217945509989
946163130368897719634815944215473455858421

Each hundred digit computation took roughly three minutes on a modern laptop.
We can also handle quite general sinc products of the sort analyzed in [7]. Let

0 < n1 ≤ n2 ≤ · · · ≤ nN be natural numbers. Set L := LCM(n1, n2, . . . , nN ) and
set M := n1 · n2 · . . . · nN . Then

∫ ∞

0

N∏

k=1

sinc
(

x

nk

)
dx =

M/L

(2Lπ)N−1

∫ 1

0

N∏

k=1

sin
(

2L

nk
πx

)
ζ(N, x) dx.(27)

For example,

1
51840000 π6

∫ 1

0

sin4 (10π x) sin3 (6π x)Ψ (6, x) dx

= − 2.81369873784840103 . . . = −286601
320000

π.

Equation (27) is most efficacious when the number of distinct integers nk, and
hence L, is small. The factor of 2 is not needed when each integer occurs an even
number of times. To conclude, we illustrate in Figure 5 the effect of the Hurwitz
kernel for sin2(x)/x2. The increases in the values of the function on [0, 1] exactly
balance the amount needed to compensate for the values on [1,∞].
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Figure 5. sin2(πx)
x2 (blue) and sin2(πx)ζ(2, x) (black).

5. Concluding remarks

We found this study stimulating for several reasons.

(1) Such numerical computations to high or extreme precision are quite diffi-
cult and worthwhile challenges in themselves.

(2) In the integer cases for which we have a closed form we obtain excellent
test integrals for different high-precision numerical methods.

(3) The numerical tools presented new analytic opportunities such as the
discovery of the formula (16) which represented an unexpected windfall.
It is probably possible to emulate that result for integer p, q in (24).

(4) One other unexpected discovery in this study is the fact that the function
sinp(πt)ζ(p, t) (when p = 3.5) is a striking example of a function that
appears entirely smooth and well-behaved, but which in fact cannot be
integrated using Gaussian quadrature to more than a few digits, due to
bad behavior of a higher derivative (the fourth derivative in this case).
And for the same reason it is yet one more example of the power of the
tanh-sinh quadrature algorithm, since the tanh-sinh scheme integrates this
function without difficulty to very high precision.

(5) Even partial failures, like the limited success in numerically computing
limp→∞ I(p) from the integral definition, have left us with a much better
understanding of the issues involved with such experimental techniques.

(6) Finally, our inability to determine closed forms for the critical point or
the inflection point has still resulted in high-precision data sets that can
be revisited if and when inspiration strikes.
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