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OUTLINE of PRESENTATION

A. PART 1. Philosophy of Experimental Math

Whether we scientists are inspired, bored,
or infuriated by philosophy, all our theoriz-
ing and experimentation depends on par-
ticular philosophical background assump-
tions. This hidden influence is an acute
embarrassment to many researchers, and it
is therefore not often acknowledged. (Christof
Koch, 2004)∗

!The abridged version ends here !

B. PART 2. Finding or Proving Things

PART 3. Various Mathematical Models

PART 4. Concluding Remarks
∗In “Thinking About the Conscious Mind,” a review of
John R. Searle’s Mind. A Brief Introduction, OUP
2004.
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DEFINITIONS

mathematics, n. a group of related subjects,
including algebra, geometry, trigonometry and
calculus , concerned with the study of number,
quantity, shape, and space, and their inter-
relationships, applications, generalizations and
abstractions.

Science November 19, 2004

induction, n. any form of reasoning in which
the conclusion, though supported by the premises,
does not follow from them necessarily.
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PART I. EXPERIMENTAL PHILOSOPHY

Intention. To discuss Experimental Mathodology∗

• Its philosophy

- its history

- its current practice

- its proximate future

          Insight taking place  

Enigma

And using concrete entertaining

(I hope) examples to explore

- implications for mathematics

- and for math philosophy

Thereby, to persuade you the traditional
accounting of mathematical learning and
research is largely an ahistorical carica-
ture

∗Bailey, Moll and I invite you to the 2nd Experimental
Mathematics Workshop at Tulane, April 1–3 2005, and
a January 2006 MAA short course.
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I shall talk broadly about experimental and heuris-
tic mathematics, giving accessible, primarily vi-
sual and symbolic, examples. The typographic
to digital culture shift is vexing in math, viz:

• There is still no truly satisfactory way of
displaying mathematics on the web

• We respect authority∗ but value authorship
deeply

• And we care more about the reliability of
our literature than does any other science

The traditional central role of proof in mathe-
matics is arguably under siege.

• Via examples, I intend to ask:

∗Judith Grabiner, “Newton, Maclaurin, and the Author-
ity of Mathematics,” MAA, December 2004
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MY QUESTIONS

F What constitutes secure mathematical knowl-

edge?

F When is computation convincing? Are hu-

mans less fallible?

• What tools are available? What method-

ologies?

• What of the ‘law of the small numbers’?

• Who cares for certainty? What is the role

of proof?

F How is mathematics actually done? How

should it be?
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DEWEY on HABITS

Old ideas give way slowly; for they are

more than abstract logical forms and

categories. They are habits, predispo-

sitions, deeply engrained attitudes of

aversion and preference. · · · Old ques-

tions are solved by disappearing, evapo-

rating, while new questions correspond-

ing to the changed attitude of endeavor

and preference take their place. Doubt-

less the greatest dissolvent in contem-

porary thought of old questions, the

greatest precipitant of new methods,

new intentions, new problems, is the

one effected by the scientific revolution

that found its climax in the “Origin of

Species.” ∗ (John Dewey)

∗The Influence of Darwin on Philosophy, 1910. Dewey
knew ‘Comrade Van’ in Mexico.
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and MY ANSWERS

² “Why I am a computer assisted fallibilist”

F Rigour (proof) follows Reason (discovery)

F Excessive focus on rigour drove us away
from our wellsprings

• Many ideas are false. Not all truths are
provable. Not all provable truths are worth
proving . . .

F Near certainly is often as good as it gets—
intellectual context (community) matters

• Complex human proofs are fraught with er-
ror (FLT, simple groups, · · · )

F Modern computational tools dramatically
change the nature of available evidence
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I Many of my more sophisticated examples

originate in the boundary between mathe-

matical physics and number theory and in-

volve the ζ-function, ζ(n) =
∑∞

k=1
1
kn, and

its relatives.

They often rely on the sophisticated use of In-

teger Relations Algorithms — recently ranked

among the ‘top ten’ algorithms of the century.

• Integer Relation methods were first discov-

ered by our colleague Helaman Ferguson

the mathematical sculptor.

• Other winners: Monte Carlo,Fortran Com-

piler, QuickSort, Simplex Method, FFT,

QR, . . .

See www.cecm.sfu.ca/projects/IntegerRelations/
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FOUR FORMS of EXPERIMENTS

• 1. Kantian example: generating “the

classical non-Euclidean geometries (hyperbolic,

elliptic) by replacing Euclid’s axiom of parallels

(or something equivalent to it) with alternative

forms.”

• 2. The Baconian experiment is a contrived

as opposed to a natural happening, it “is the

consequence of ‘trying things out’ or even of

merely messing about.”

• 3. Aristotelian demonstrations: “apply elec-

trodes to a frog’s sciatic nerve, and lo, the leg

kicks; always precede the presentation of the

dog’s dinner with the ringing of a bell, and lo,

the bell alone will soon make the dog dribble.”
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• 4. The most important is Galilean: “a crit-
ical experiment – one that discriminates be-
tween possibilities and, in doing so, either gives
us confidence in the view we are taking or
makes us think it in need of correction.”

• The only form which will make Experimen-
tal Mathematics a serious enterprise.

A Julia set From Peter Medawar

(1915–87) Advice to a

Young Scientist (1979)
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A PARAPHRASE of HERSH

In any event mathematics is and will remain a

uniquely human undertaking. Indeed Reuben

Hersh’s arguments for a humanist philosophy

of mathematics, as paraphrased below, become

more convincing in our computational setting:

1. Mathematics is human. It is part of

and fits into human culture. It does not

match Frege’s concept of an abstract,

timeless, tenseless, objective reality.

2. Mathematical knowledge is fallible.

As in science, mathematics can advance

by making mistakes and then correct-

ing or even re-correcting them. The

“fallibilism” of mathematics is brilliantly

argued in Lakatos’ Proofs and Refuta-

tions.
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3. There are different versions of proof
or rigor. Standards of rigor can vary
depending on time, place, and other
things. The use of computers in formal
proofs, exemplified by the computer-
assisted proof of the four color theorem
in 1977 (1997), is just one example of
an emerging nontraditional standard of
rigor.

A 4-coloring

4. Empirical evidence, numerical ex-
perimentation and probabilistic proof all
can help us decide what to believe in
mathematics. Aristotelian logic isn’t
necessarily always the best way of de-
ciding.
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5. Mathematical objects are a special
variety of a social-cultural-historical ob-
ject. Contrary to the assertions of cer-
tain post-modern detractors, mathemat-
ics cannot be dismissed as merely a
new form of literature or religion. Nev-
ertheless, many mathematical objects
can be seen as shared ideas, like Moby
Dick in literature, or the Immaculate
Conception in religion.

I “Fresh Breezes in the Philosophy of Math-
ematics”, MAA Monthly, Aug 1995, 589–
594.

A 2-coloring?
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THREE Humanist VIGNETTES: I

By 1948, the Marxist-Leninist ideas about the

proletariat and its political capacity seemed

more and more to me to disagree with reality

... I pondered my doubts, and for several

years the study of mathematics was all that

allowed me to preserve my inner equilibrium.

Bolshevik ideology was, for me, in ruins. I

had to build another life.

Jean Van Heijenoort (1913-1986) With Trotsky in

Exile, in Anita Feferman’s From Trotsky to Gödel
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II. It’s Obvious . . .

Aspray: Since you both [Kleene and
Rosser] had close associations with Church,
I was wondering if you could tell me
something about him. What was his
wider mathematical training and inter-
ests? What were his research habits? I
understood he kept rather unusual work-
ing hours. How was he as a lecturer?
As a thesis director?

Rosser: In his lectures he was painstak-
ingly careful. There was a story that
went the rounds. If Church said it’s
obvious, then everybody saw it a half
hour ago. If Weyl says it’s obvious,
von Neumann can prove it. If Lefschetz
says it’s obvious, it’s false. ∗

∗One of several versions in The Princeton Mathemat-
ics Community in the 1930s. This one in Transcript
Number 23 (PMC23)
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III. The Evil of Bourbaki

“There is a story told of the mathe-

matician Claude Chevalley (1909–84),

who, as a true Bourbaki, was extremely

opposed to the use of images in geo-

metric reasoning.

He is said to have been giving a very abstract and

algebraic lecture when he got stuck. After a moment

of pondering, he turned to the blackboard, and, try-

ing to hide what he was doing, drew a little diagram,

looked at it for a moment, then quickly erased it,

and turned back to the audience and proceeded with

the lecture. . . .

. . . The computer offers those less expert, and less

stubborn than Chevalley, access to the kinds of im-

ages that could only be imagined in the heads of

the most gifted mathematicians, . . . ” (Nathalie Sin-

claira)

aChapter in Making the Connection: Research and Practice in
Undergraduate Mathematics, MAA Notes, 2004 in Press.
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SYDNEY BRENNER

And it is one of the ironies of this entire
field that were you to write a history of
ideas in the whole of DNA, simply from
the documented information as it ex-
ists in the literature - that is, a kind of
Hegelian history of ideas - you would
certainly say that Watson and Crick
depended on Von Neumann, because
von Neumann essentially tells you how
it’s done. But of course no one knew
anything about the other. It’s a great
paradox to me that this connection was
not seen. Of course, all this leads to
a real distrust about what historians of
science say, especially those of the his-
tory of ideas. (Sidney Brenner)

The 2002 Nobelist talking about von Neumann’s
essay on The General and Logical Theory of
Automata on pages 35–36 of My life in Science
as told to Lewis Wolpert.
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MY MOTIVATION and GOALS

INSIGHT – demands speed ≡micro-parallelism

• For rapid verification.

• For validation; proofs and refutations; “mon-
ster barring”.

F What is “easy” changes: HPC & HPN blur,
merging disciplines and collaborators — de-
mocratizing mathematics but challenging
authenticity.

• Parallelism ≡ more space, speed & stuff.

• Exact ≡ hybrid ≡ symbolic ‘+’ numeric
(Maple meets NAG).

• In analysis, algebra, geometry & topology.
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. . . Moreover

• Towards an Experimental Mathodology —

philosophy and practice.

I Intuition is acquired — mesh computa-

tion and mathematics.

• Visualization — 3 is a lot of dimensions.

I “Monster-barring” (Lakatos) and “Caging”:

– randomized checks: equations, linear al-

gebra, primality.

– graphic checks: equalities, inequalities,

areas.

18



. . . Graphic Checks

• Comparing y−y2 and y2−y4 to −y2 ln(y) for
0 < y < 1 pictorially is a much more rapid
way to divine which is larger than tradi-
tional analytic methods.

• It is clear that in the later case they cross,
it is futile to try to prove one majorizes
the other. In the first case, evidence is
provided to motivate a proof.

Graphical comparison of
y − y2 and y2 − y4 to − y2 ln(y) (red)
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OUR EXPERIMENTAL MATHODOLOGY

1. Gaining insight and intuition

2. Discovering new patterns and relationships

3. Graphing to expose math principles

4. Testing and especially falsifying conjectures

5. Exploring a possible result to see if it merits
formal proof

6. Suggesting approaches for formal proof

7. Computing replacing lengthy hand deriva-
tions

8. Confirming analytically derived results

20



A BRIEF HISTORY OF RIGOUR

• Greeks: trisection, circle squaring, cube
doubling and

√
2

• Newton and Leibniz: fluxions/infinitesimals

• Cauchy and Fourier: limits and continuity

• Frege and Russell, Gödel and Turing
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THE PHILOSOPHIES OF RIGOUR

• Everyman: Platonism—stuff exists (1936)

• Hilbert: Formalism—math is invented; for-

mal symbolic games without meaning

• Brouwer: Intuitionism-—many variants; (‘em-

bodied cognition’)

• Bishop: Constructivism—tell me how big;

(not ‘social constructivism’)

f Last two deny excluded middle: A∨ Ã and

resonate with computer science—as does

some of formalism.

Ξ Absolutism versus Fallibilism.
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SOME SELF PROMOTION

• Today Experimental Mathematics is being
discussed widely

From Scientific American, May 2003
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From Science News April 2004
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PART II. FINDING vs PROVING THINGS

Donald Knuth∗ asked for a closed form evalu-
ation of:
∞∑

k=1

{
kk

k! ek
− 1√

2π k

}
= −0.084069508727655 . . . .

2000 CE. It is easy to compute 20 or 200
digits of this sum The ‘smart lookup’ facility
in the Inverse Symbolic Calculator † rapidly re-
turns

0.084069508727655 ≈ 2

3
+

ζ (1/2)√
2π

.

We thus have a prediction which Maple 9.5
on a laptop confirms to 100 places in under 6
seconds and to 500 in 40 seconds.

Arguably we are done. 2

∗Posed as MAA Problem 10832, November 2002.
†At www.cecm.sfu.ca/projects/ISC/ISCmain.html

27



In the same vein . . .

Consider the following two Euler sum identities
both discovered heuristically.

• Both merit quite firm belief—more so than
many proofs.

Why?

• Only the first warrants significant effort for
its proof.

Why and Why Not?
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I. A MULTIPLE ZETA VALUE

Euler sums or MZVs are a wonderful general-

ization of the classical ζ function.

For natural numbers

ζ(i1, i2, . . . , ik) :=
∑

n1>n2>ṅk>0

1

n
i1
1 n

i2
2 · · ·n

ik
k

¦ Thus ζ(a) =
∑

n≥1 n−a is as before and

ζ(a, b) =
∞∑

n=1

1 + 1
2b + ·+ 1

(n−1)b

na

X k is the sum’s depth and i1 + i2 + · · ·+ ik
is its weight.

• This clearly extends to alternating and char-

acter sums.
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• MZV’s satisfy many striking identities, of

which the simplest are

ζ(2,1) = ζ(3) 4ζ(3,1) = ζ(4).

• MZV’s have recently found interesting in-

terpretations in high energy physics, knot

theory, combinatorics . . .

X Euler found and partially proved theorems

on reducibility of depth 2 to depth 1 ζ’s

• ζ(6,2) is the lowest weight ‘irreducible’.

X High precision fast ζ-convolution (see EZ-

Face/Java) allows use of integer relation

methods and leads to important dimen-

sional (reducibility) conjectures and amaz-

ing identities.
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A Striking CONJECTURE open for all n > 2

is:

8n ζ({−2,1}n) ?
= ζ({2,1}n)

There is abundant evidence amassed since it

was found in 1996.

c© For example, very recently Petr Lisonek

checked the first 85 cases to 1000 places in

about 41 HP hours with only the expected

error. And N=163 in ten hours.

• This is the only identification of its type of

an Euler sum with a distinct MZV.

• Can even just the case n = 2 be proven

symbolically as is the case for n = 1?
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II. A CHARACTER EULER SUM

Let

[2b,−3](s, t) :=
∑

n>m>0

(−1)n−1

ns

χ3(m)

mt
,

where χ3 is the character modulo 3. Then for
N = 0,1,2, . . . [2b,−3](2N + 1,1)

=
L−3 (2N + 2)

41+N
− 1 + 4−N

2
L−3 (2N + 1) log (3)

+
N∑

k=1

1− 3−2N+2 k

2
L−3 (2N − 2 k + 2)α (2 k)

−
N∑

k=1

1− 9−k

1− 4−k

1 + 4−N+k

2
L−3 (2N − 2 k + 1)α (2 k + 1)

− 2L−3 (1)α (2N + 1) .

X Here α is the alternating zeta function and
L−3 is the primitive L-series modulo 3.

X One first evaluates such sums as integrals

32



COINCIDENCE OR FRAUD

• Coincidences do occur

The approximations

π ≈ 3√
163

log(640320)

and

π ≈
√

2
9801

4412
occur for deep number theoretic reasons—the

first good to 15 places, the second to eight

By contrast

eπ − π = 19.999099979189475768 . . .

most probably for no good reason.

X This seemed more bizarre on an eight digit

calculator
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Likewise, as spotted by Pierre Lanchon recently

e = 10.10110111111000010101000101100 . . .

while

π = 11.0010010000111111011010101000 . . .

have 19 bits agreeing in base two—with one

read right to left

• More extended coincidences are almost al-

ways contrived . . .

• And strong heuristics exist for believing re-

sults like the three preceding examples

r But recall the Skewes number and the Merten

Conjecture counter-examples
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DICTIONARIES ARE LIKE TIMEPIECES

I Samuel Johnson observed of watches that
“the best do not run true, and the worst
are better than none.” The same is true
of tables and databases. Michael Berry
“would give up Shakespeare in favor of Prud-
nikov, Brychkov and Marichev.”

• That excellent compendium contains

∞∑

k=1

∞∑

l=1

1

k2
(
k2 − kl + l2

) =
π∝√3

30
,(1)

where the “∝” is probably “4” [volume 1,
entry 9, page 750].

F Integer relation methods suggest that no
reasonable value of ∝ works

Forensic Mathematics (CSI-Math). What
is intended in (1)?
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POLYA and HEURISTICS

“[I]ntuition comes to us much earlier

and with much less outside influence

than formal arguments which we can-

not really understand unless we have

reached a relatively high level of logical

experience and sophistication.” (George

Polya)∗

∗In Mathematical Discovery: On Understanding, Learn-
ing and Teaching Problem Solving, 1968.
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Polya on Picture-writing

Polya’s illustration of the change solution

Polya, in his 1956 American Mathematical Monthly

article provided three provoking examples of

converting pictorial representations of problems

into generating function solutions. We discuss

the first one.

1. In how many ways can you make change

for a dollar?

37



This leads to the (US currency) generating

function
∑

k≥0 Pkxk =

1

(1− x)(1− x5)(1− x10)(1− x25)(1− x50)

which one can easily expand using a Mathe-

matica command,

Series[

1/((1-x)*(1-x^5)*(1-x^10)*(1-x^25)*(1-x^50))

,{x,0,100}]

to obtain P100 = 292 (243 for Canadian cur-

rency, which lacks a 50 cent piece but has a

dollar coin).

• Polya’s diagram is shown in the Figure.∗

∗Illustration courtesy the Mathematical Association of
America
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• To see why, we use geometric series and

consider the so called ordinary generating

function

1

1− x10
= 1 + x10 + x20 + x30 + · · ·

for dimes and

1

1− x25
= 1 + x25 + x50 + x75 + · · ·

for quarters etc.

• We multiply these two together and com-

pare coefficients

1

1− x10

1

1− x25
= 1 + x10 + x20 + x25

+ x30 + x35 + x40 + x45

+ 2x50 + x55 + 2x60 + · · ·

We argue that the coefficient of x60 on the

right is precisely the number of ways of making

60 cents out of identical dimes and quarters.
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• This is easy to check with a handful of
change or a calculator, The general ques-
tion with more denominations is handled
similarly.

• I leave it open whether it is easier to de-
code the generating function from the pic-
ture or vice versa. In any event, symbolic
and graphic experiment provide abundant
and mutual reinforcement and assistance
in concept formation.

“In the first place, the beginner must
be convinced that proofs deserve to be
studied, that they have a purpose, that
they are interesting.” (George Polya)

While by ‘beginner’ George Polya intended young
school students, I suggest this is equally true
of anyone engaging for the first time with an
unfamiliar topic in mathematics.
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SIMON and RUSSELL on INDUCTION

This skyhook-skyscraper construction

of science from the roof down to the

yet unconstructed foundations was pos-

sible because the behaviour of the sys-

tem at each level depended only on a

very approximate, simplified, abstracted

characterization at the level beneath.13

This is lucky, else the safety of bridges

and airplanes might depend on the cor-

rectness of the “Eightfold Way” of look-

ing at elementary particles.

¦ Herbert A. Simon, The Sciences of the Ar-

tificial, MIT Press, 1996, page 16. (An

early experimental computational scientist.)
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13... More than fifty years ago Bertrand
Russell made the same point about the
architecture of mathematics. See the
“Preface” to Principia Mathematica “...
the chief reason in favour of any the-
ory on the principles of mathematics
must always be inductive, i.e., it must
lie in the fact that the theory in ques-
tion allows us to deduce ordinary math-
ematics. In mathematics, the great-
est degree of self-evidence is usually
not to be found quite at the begin-
ning, but at some later point; hence
the early deductions, until they reach
this point, give reason rather for believ-
ing the premises because true conse-
quences follow from them, than for be-
lieving the consequences because they
follow from the premises.” Contempo-
rary preferences for deductive formalisms
frequently blind us to this important
fact, which is no less true today than
it was in 1910.
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FROM ENIAC: Integrator and Calculator

SIZE/WEIGHT: ENIAC had 18,000 vacuum
tubes, 6,000 switches, 10,000 capacitors, 70,000
resistors, 1,500 relays, was 10 feet tall, occu-
pied 1,800 square feet and weighed 30 tons

SPEED/MEMORY: A 1.5GHz Pentium does
3 million adds/sec. ENIAC did 5,000 — 1,000
times faster than any earlier machine. The first
stored-memory computer, ENIAC could store
200 digits.
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ARCHITECTURE: Data flowed from one ac-
cumulator to the next. After each accumulator
finished a calculation, it communicated its re-
sults to the next in line

The accumulators were connected to each other
manually

• The 1949 computation of π to 2,037 places
suggested by von Neumann, took 70 hours

• It would have taken roughly 100,000 ENI-
ACs to store the Smithsonian’s picture!

⊗
Now after 40 years of Moore’s law . . .

“Moore’s Law” is now taken to be
the assertion that semiconductor tech-
nology approximately doubles in ca-
pacity and performance roughly every
18 to 24 months
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. . . To MOORE’S LAW

The complexity for minimum compo-
nent costs has increased at a rate of
roughly a factor of two per year. . . .
Over the longer term, the rate of in-
crease is a bit more uncertain, although
there is no reason to believe it will not
remain nearly constant for at least 10
years. (Gordon Moore,∗ Intel co-founder,
1965)

∗‘Expect at least another decade.’ (Moore et al)
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I An astounding record of sustained expo-
nential progress without peer in history of
technology

• Math tools are now being implemented on
parallel platforms, providing much greater
power to the research mathematician

xNERSC’s 6656cpu Seaborgy
727-fold speed-

up of quadra-

ture on the 1K

G5’s at Virginia

Tech reduces

3hrs to 15secs

I Amassing huge amounts of processing power
will not solve many mathematical problems.
There are few math ‘Grand-challenge prob-
lems’ —more value in very rapid ‘Aha’s.
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VISUAL DYNAMICS

• In recent continued fraction work, we needed
to study the dynamical system t0 := t1 := 1:

tn ←↩
1

n
tn−1 + ωn−1

(
1− 1

n

)
tn−2,

where ωn = a2, b2 for n even, odd respectively.
X Think of this as a black box.

¤ Numerically all one sees is tn → 0 slowly.
¤ Pictorially we learn significantly more∗:

∗. . . “Then felt I like a watcher of the skies, when a new
planet swims into his ken.” (Chapman’s Homer)
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• Scaling by
√

n, and coloring odd and even

iterates, fine structure appears. We now

predict and validate:

The attractors for various |a| = |b| = 1
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RAMANUJAN’S FRACTION

Chapter 18 of Ramanujan’s Second Notebook

studies the beautiful:

Rη(a, b) =
a

η +
b2

η +
4a2

η +
9b2

η + ...

(1.1)

for real, positive a, b, η > 0. Remarkably, R
satisfies an AGM relation

Rη

(
a + b

2
,
√

ab

)
=
Rη(a, b) +Rη(b, a)

2
(1.2)

A scatter plot experi-

ment discovered the domain

of convergence for a/b ∈ C.

This is now fully explained

with a lot of dynamics work.
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HADAMARD and GAUSS

The object of mathematical rigor is to
sanction and legitimize the conquests
of intuition, and there was never any
other object for it.

¦ J. Hadamard quoted at length in E. Borel,
Lecons sur la theorie des fonctions, 1928.

Pauca sed Matura

Carl Friedrich Gauss, who drew (carefully) and
computed a great deal, once noted, I have the
result, but I do not yet know how to get it.∗
∗Likewise the quote!
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Novus in analysi campus se nobis aperuit

An excited young Gauss writes: “A new field

of analysis has appeared to us, evidently in the

study of functions etc.” (October 1798)
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HALES and KEPLER

• Kepler’s conjecture: the densest way to
stack spheres is in a pyramid is the oldest
problem in discrete geometry.

• The most interesting recent example of com-
puter assisted proof. Published in Annals
of Math with an “only 99% checked” dis-
claimer.

• This has triggered very varied reactions.
(In Math, Computers Don’t Lie. Or Do
They? NYT 6/4/04)

• Famous earlier examples: The Four Color
Theorem and The non existence of a pro-
jective plane of order 10.

• The three raise and answer quite distinct
questions—both real and specious.
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Grocers the world over know the most efficient way to stack spheres — but a mathematical proof for the method has brought reviewers to their knees.

J
ust under five years ago, Thomas Hales
made a startling claim. In an e-mail he
sent to dozens of mathematicians,

Hales declared that he had used a series of
computers to prove an idea that has evaded
certain confirmation for 400 years. The sub-
ject of his message was Kepler’s conjecture,
proposed by the German astronomer
Johannes Kepler, which states that the dens-
est arrangement of spheres is one in which
they are stacked in a pyramid — much the
same way as grocers arrange oranges.

Soon after Hales made his announce-
ment, reports of the breakthrough appeared
on the front pages of newspapers around the
world. But today, Hales’s proof remains in
limbo. It has been submitted to the presti-
gious Annals of Mathematics, but is yet to
appear in print. Those charged with check-
ing it say that they believe the proof is correct,
but are so exhausted with the verification
process that they cannot definitively rule out
any errors. So when Hales’s manuscript
finally does appear in the Annals, probably
during the next year, it will carry an unusual
editorial note — a statement that parts of the
paper have proved impossible to check.

At the heart of this bizarre tale is the use 
of computers in mathematics, an issue that
has split the field. Sometimes described as a
‘brute force’ approach, computer-aided

proofs often involve calculating thousands of
possible outcomes to a problem in order to
produce the final solution.Many mathemati-
cians dislike this method, arguing that it is
inelegant. Others criticize it for not offering
any insight into the problem under consider-
ation.In 1977,for example,a computer-aided
proof was published for the four-colour 
theorem,which states that no more than four
colours are needed to fill in a map so that any
two adjacent regions have different colours1,2.
No errors have been found in the proof, but
some mathematicians continue to seek a
solution using conventional methods.

Pile-driver

Hales, who started his proof at the University
of Michigan in Ann Arbor before moving to
the University of Pittsburgh, Pennsylvania,
began by reducing the infinite number of
possible stacking arrangements to 5,000 con-
tenders. He then used computers to calculate
the density of each arrangement. Doing so
was more difficult than it sounds. The proof
involved checking a series of mathematical
inequalities using specially written computer
code. In all, more than 100,000 inequalities
were verified over a ten-year period.

Robert MacPherson, a mathematician at
the Institute for Advanced Study in Prince-
ton, New Jersey, and an editor of the Annals,

was intrigued when he heard about the
proof.He wanted to ask Hales and his gradu-
ate student Sam Ferguson, who had assisted
with the proof, to submit their finding for
publication,but he was also uneasy about the
computer-based nature of the work.

TheAnnalshad,however,already accepted
a shorter computer-aided proof — the paper,
on a problem in topology, was published this
March3. After sounding out his colleagues on
the journal’s editorial board, MacPherson
asked Hales to submit his paper. Unusually,
MacPherson assigned a dozen mathemati-
cians to referee the proof — most journals
tend to employ between one and three. The
effort was led by Gábor Fejes Tóth of the
Alfréd Rényi Institute of Mathematics in
Budapest, Hungary, whose father, the math-
ematician László Fejes Tóth, had predicted in
1965 that computers would one day make a
proofofKepler’s conjecture possible.

It was not enough for the referees to rerun
Hales’s code — they had to check whether
the programs did the job that they were 
supposed to do. Inspecting all of the code
and its inputs and outputs, which together
take up three gigabytes of memory space,
would have been impossible. So the referees
limited themselves to consistency checks, a
reconstruction of the thought processes
behind each step of the proof, and then a

news feature

Does the proof stack up?
Think peer review  takes too long? One m athem atician has w aited four

years to have his paper refereed, only to hear that the exhausted review ers

can’t be certain w hether his proof is correct. George Szpiro investigates.
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Pyramid power:

Thomas Hales

believes that

computers will

succeed where

humans have failed

in verifying 

his proof.

study ofall of the assumptions and logic used
to design the code. A series of seminars,
which ran for full academic years, was orga-
nized to aid the effort.

But success remained elusive. Last July,
Fejes Tóth reported that he and the other 
referees were 99% certain that the proof is
sound. They found no errors or omissions,
but felt that without checking every line of
the code,they could not be absolutely certain
that the proof is correct.

For a mathematical proof, this was not
enough. After all, most mathematicians
believe in the conjecture already — the proof
is supposed to turn that belief into certainty.
The history of Kepler’s conjecture also gives
reason for caution. In 1993, Wu-Yi Hsiang,
then at the University ofCalifornia,Berkeley,
published a 100-page proofof the conjecture
in the International Journal of Mathematics4.
But shortly after publication, errors were
found in parts of the proof.Although Hsiang
stands by his paper,most mathematicians do
not believe it is valid.

After the referees’ reports had been con-
sidered, Hales says that he received the 
following letter from MacPherson: “The
news from the referees is bad, from my per-
spective. They have not been able to certify
the correctness of the proof, and will not be
able to certify it in the future, because they
have run out of energy … One can speculate
whether their process would have converged
to a definitive answer had they had a more
clear manuscript from the beginning, but
this does not matter now.”

The last sentence lets some irritation shine
through. The proof that Hales delivered was
by no means a polished piece. The 250-page
manuscript consisted of five separate papers,
each a sort of lab report that Hales and Fer-
guson filled out whenever the computer 
finished part of the proof. This unusual 
format made for difficult reading. To make
matters worse, the notation and definitions
also varied slightly between the papers.

Rough but ready
MacPherson had asked the authors to edit
their manuscript. But Hales and Ferguson
did not want to spend another year rework-
ing their paper. “Tom could spend the rest
of his career simplifying the proof,” Fergu-
son said when they completed their paper.
“That doesn’t seem like an appropriate use
of his time.” Hales turned to other chal-
lenges, using traditional methods to solve
the 2,000-year-old honeycomb conjecture,
which states that of all conceivable tiles of
equal area that can be used to cover a floor
without leaving any gaps, hexagonal tiles
have the shortest perimeter5. Ferguson left
academia to take a job with the US Depart-
ment of Defense.

Faced with exhausted referees, the editor-
ial board of the Annalsdecided to publish the
paper — but with a cautionary note. The
paper will appear with an introduction by
the editors stating that proofs of this type,
which involve the use of computers to check
a large number of mathematical statements,
may be impossible to review in full. The 
matter might have ended there, but for
Hales, having a note attached to his proof

was not satisfactory.
This January, he launched the 

Flyspeck project, also known as the
Formal Proof of Kepler.Rather than
rely on human referees, Hales
intends to use computers to verify

news feature

every step of his proof.The effort will require
the collaboration ofa core group ofabout ten
volunteers, who will need to be qualified
mathematicians and willing to donate the
computer time on their machines. The team
will write programs to deconstruct each step
of the proof, line by line, into a set of axioms
that are known to be correct. If every part of
the code can be broken down into these
axioms, the proof will finally be verified.

Those involved see the project as doing
more than just validating Hales’s proof.Sean
McLaughlin, a graduate student at New York
University, who studied under Hales and 
has used computer methods to solve other
mathematical problems, has already volun-
teered. “It seems that checking computer-
assisted proofs is almost impossible for
humans,”he says.“With luck, we will be able
to show that problems of this size can be 
subjected to rigorous verification without
the need for a referee process.”

But not everyone shares McLaughlin’s
enthusiasm. Pierre Deligne, an algebraic
geometer at the Institute for Advanced Study,
is one of the many mathematicians who do
not approve of computer-aided proofs.
“I believe in a proof if I understand it,”he says.
For those who side with Deligne, using com-
puters to remove human reviewers from the
refereeing process is another step in the
wrong direction.

Despite his reservations about the proof,
MacPherson does not believe that math-
ematicians should cut themselves off from
computers.Others go further.Freek Wiedijk,
of the Catholic University ofNijmegen in the
Netherlands, is a pioneer of the use of com-
puters to verify proofs. He thinks that the
process could become standard practice in
mathematics. “People will look back at the
turn of the twentieth century and say ‘that is
when it happened’,”Wiedijk says.

Whether or not computer-checking takes
off, it is likely to be several years before 
Flyspeck produces a result. Hales and
McLaughlin are the only confirmed partici-
pants, although others have expressed an
interest. Hales estimates that the whole
process, from crafting the code to running 
it, is likely to take 20 person-years of work.
Only then will Kepler’s conjecture become
Kepler’s theorem, and we will know for sure
whether we have been stacking oranges 
correctly all these years. n

George Szpiro writes for the Swiss newspapers NZZ

and NZZ am Sonntag from Jerusalem, Israel. His book

Kepler’s Conjecture (Wiley, New York) was published 

in February. 
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Star player:Johannes Kepler’s conjecture has

kept mathematicians guessing for 400 years.
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PART III. MATHEMATICAL MODELS

Felix Klein’s heritage

Considerable obstacles generally present
themselves to the beginner, in study-
ing the elements of Solid Geometry,
from the practice which has hitherto
uniformly prevailed in this country, of
never submitting to the eye of the stu-
dent, the figures on whose properties
he is reasoning, but of drawing per-
spective representations of them upon
a plane. . . .
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Jon Borwein
Text Box
NYT MagazineDecember 2, 2004















I hope that I shall never be obliged to

have recourse to a perspective drawing

of any figure whose parts are not in

the same plane. Augustus de Morgan

(1806–71).

• First President of the LMS, he was equally

influential as an educator and a researcher

• There is evidence young children see more

naturally in three than two dimensions

Donald Coxeter’s

(1907–2003)

octahedral

kaleidoscope

built in

Liverpool

(circa 1925)
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4D

Coxeter

polytope

with 120

do-

decahedral

faces

• In a 1997 paper, Coxeter showed his friend

M.C. Escher, knowing no math, had achieved

“mathematical perfection” in etching Cir-

cle Limit III. “Escher did it by instinct,”

Coxeter wrote, “I did it by trigonometry.”

David Mumford recently noted that Donald

Coxeter placed great value on working out de-

tails of complicated explicit examples:
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In my book, Coxeter has been one of

the most important 20th century math-

ematicians —not because he started a

new perspective, but because he deep-

ened and extended so beautifully an

older esthetic. The classical goal of

geometry is the exploration and enu-

meration of geometric configurations

of all kinds, their symmetries and the

constructions relating them to each other.

The goal is not especially to prove

theorems but to discover these perfect

objects and, in doing this,theorems are

only a tool that imperfect humans need

to reassure themselves that they have

seen them correctly. (David Mumford,

2003)
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20th C. MATHEMATICAL MODELS

Ferguson’s “Eight-Fold Way” sculpture
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The Fergusons won the 2002 Communications

Award, of the Joint Policy Board of Mathemat-

ics. The citation runs:

They have dazzled the

mathematical community

and a far wider public

with exquisite sculptures

embodying mathematical

ideas, along with artful

and accessible essays and

lectures elucidating the

mathematical concepts.

It has been known for some time that the hy-

perbolic volume V of the figure-eight knot

complement is

V = 2
√

3
∞∑

n=1

1

n
(
2n
n

)
2n−1∑

k=n

1

k

= 2.029883212819307250042405108549 . . .
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Ferguson’s “Figure-Eight Knot

Complement” sculpture
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In 1998, British physicist David Broadhurst con-
jectured V/

√
3 is a rational linear combination

of

Cj =
∞∑

n=0

(−1)n

27n(6n + j)2
.(2)

Ferguson’s

subtractive image

of the

BBP Pi formula

Indeed, as Broadhurst found, using PSLQ (Fer-
guson’s Integer Relation Algorithm):

V =

√
3

9

∞∑

n=0

(−1)n

27n
×

{
18

(6n + 1)2
− 18

(6n + 2)2
− 24

(6n + 3)2

− 6

(6n + 4)2
+

2

(6n + 5)2

}
.
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• Entering the following code in the Mathe-

matician’s Toolkit, at www.expmath.info:

v = 2 * sqrt[3] * sum[1/(n*binomial[2*n,n])

* sum[1/k,{k, n,2*n-1}], {n, 1, infinity}]

pslq[v/sqrt[3],

table[sum[(-1)^n/(27^n*(6*n+j)^2),

{n, 0, infinity}], {j, 1, 6}]]

recovers the solution vector

(9, -18, 18, 24, 6, -2, 0)

• The first proof that this formula holds is

given in our recent book

• The formula is inscribed on each cast of

the sculpture—marrying both sides of Hela-

man!
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21st C. MATHEMATICAL MODELS

Knots 10161 (L) and 10162 (C) agree (R)∗

In a NewMedia Cave or Plato’s?
∗KnotPlot: from Little (1899) to Perko (1974) and on
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MORE of OUR ‘METHODOLOGY’

1. (High Precision) computation of object(s)

2. Pattern Recognition of Real Numbers

identify(
√

2. +
√

3.) =
√

2 +
√

3

(Inverse Calculator and ’identify’)∗ or Se-
quences (Salvy & Zimmermann’s ‘gfun’,
Sloane and Plouffe’s Encyclopedia).

3. Much use of ‘Integer Relation Methods’:†

X “Exclusion bounds” are especially useful
X Great test bed for “Experimental Math”

4. Some automated theorem proving (Wilf-
Zeilberger etc)

∗ISC space limits: from 10Mb in 1985 to 10Gb today.
†PSLQ, LLL, FFT. Top Ten “Algorithm’s for the
Ages,” Random Samples, Science, Feb. 4, 2000.
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JOHN MILNOR

If I can give an abstract

proof of something, I’m

reasonably happy. But

if I can get a concrete,

computational proof and

actually produce num-

bers I’m much happier.

I’m rather an addict of

doing things on the com-

puter, because that gives

you an explicit criterion

of what’s going on. I

have a visual way of

thinking, and I’m happy

if I can see a picture of

what I’m working with.
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ZEROES of 0− 1 POLYNOMIALS

Data mining in polynomials

• The striations are unexplained!
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WHAT YOU DRAW is WHAT YOU SEE

The price of metaphor is eternal
vigilance (Arturo Rosenblueth & Nor-
bert Wiener)
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SEEING PATTERNS in PARTITIONS

The number of additive partitions of n, p(n),

is generated by

1 +
∑

n≥1

p(n)qn =
1

∏
n≥1(1− qn)

.(3)

Thus, p(5) = 7 since

5 = 4 + 1 = 3 + 2 = 3 + 1 + 1 = 2 + 2 + 1

= 2 + 1 + 1 + 1 = 1 + 1 + 1 + 1 + 1.

Developing (3) is an introduction to enumer-

ation via generating functions as discussed in

Polya’s change example.

Additive partitions are harder to handle than

multiplicative factorizations, but they may be

introduced in the elementary school curriculum

with questions like: How many ‘trains‘ of a

given length can be built with Cuisenaire rods?
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Ramanujan used MacMahon’s table of p(n) to
intuit remarkable deep congruences like

p(5n+4) ≡ 0 mod 5, p(7n+5) ≡ 0 mod 7

p(11n+6) ≡ 0 mod 11,

from relatively limited data like P (q) =

1 + q + 2 q2 + 3 q3 + 5 q4 + 7 q5 + 11 q6 + 15 q7

+ 22 q8 + 30 q9 + 42 q10 + 56 q11 + 77 q12

+ 101 q13 + 135 q14 + 176 q15 + 231 q16

+ 297 q17 + 385 q18 + 490 q19

+ 627 q20b + 792 q21 + 1002 q22

+ · · ·+ p(200)q200 + · · ·
(4)

• Cases 5n+4 and 7n+5 are flagged in (4).

• Of course, it is easier to (heuristically) con-
firm than find these fine examples of Math-
ematics: the science of patterns∗

∗Keith Devlin’s 1997 book.
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IS HARD or EASY BETTER?

A modern computationally driven question is
How hard is p(n) to compute?

• In 1900, it took the father of combina-
torics, Major Percy MacMahon (1854–1929),
months to compute p(200) using recur-
sions developed from (3).

• By 2000, Maple would produce p(200) in
seconds if one simply demands the 200’th
term of the Taylor series. A few years ear-
lier it required being careful to compute the
series for

∏
n≥1(1 − qn) first and then the

series for the reciprocal of that series!

• This baroque event is occasioned by Euler’s
pentagonal number theorem

∏

n≥1

(1− qn) =
∞∑

n=−∞
(−1)nq(3n+1)n/2.

71



• The reason is that, if one takes the series

for (3), the software has to deal with 200

terms on the bottom. But the series for∏
n≥1(1 − qn), has only to handle the 23

non-zero terms in series in the pentagonal

number theorem.

• If introspection fails, we can find the pen-

tagonal numbers occurring above in Sloane

and Plouffe’s on-line ‘Encyclopedia of In-

teger Sequences’: www.research.att.com/

personal/njas/sequences/eisonline.html.

• This ex post facto algorithmic analysis can

be used to facilitate independent student

discovery of the pentagonal number theo-

rem, and like results.
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• The difficulty of estimating the size of p(n)
analytically—so as to avoid enormous or
unattainable computational effort—led to
some marvellous mathematical advances∗.

• The corresponding ease of computation may
now act as a retardant to insight.

• New mathematics is discovered only when
prevailing tools run totally out of steam.

• This raises a caveat against mindless com-
puting:

Will a student or researcher discover
structure when it is easy to compute
without needing to think about it?
Today, she may thoughtlessly com-
pute p(500) which a generation ago
took much, much pain and insight.

∗By researchers including Hardy and Ramanujan, and
Rademacher
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BERLINSKI

The body of mathematics to which the
calculus gives rise embodies a certain
swashbuckling style of thinking, at once
bold and dramatic, given over to large
intellectual gestures and indifferent, in
large measure, to any very detailed de-
scription of the world.

It is a style that has shaped the physical
but not the biological sciences, and its
success in Newtonian mechanics, gen-
eral relativity and quantum mechanics
is among the miracles of mankind. But
the era in thought that the calculus
made possible is coming to an end. Every-
one feels this is so and everyone is right.

· · · and · · ·
74



The computer has in turn changed the

very nature of mathematical experience,

suggesting for the first time that math-

ematics, like physics, may yet become

an empirical discipline, a place where

things are discovered because they are

seen. (David Berlinski, 1997)∗

• As all sciences rely more on ‘dry experi-

ments’, via computer simulation, the bound-

ary between physics (e.g.,string theory) and

mathematics (e.g., by experiment) is again

delightfully blurred.

• An early exciting example is provided by

gravitational boosting:

∗In “Ground Zero”, a Review of The Pleasures of
Counting, by T. W. Koerner.
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MATH AWARENESS MONTH

• Interactive graphics will become an integral

part of mathematics: gravitational boost-

ing, gravity waves, Lagrange points . . .
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Gravitational Boosting

“The Voyager Neptune Planetary Guide” (JPL
Publication 89–24) has an excellent descrip-
tion of Michael Minovitch’ computational and
unexpected discovery of gravitational boost-
ing (also known as slingshot magic) at the Jet
Propulsion Laboratory in 1961.

The article starts by quoting Arthur C. Clarke

“Any sufficiently advanced technology is indis-
tinguishable from magic.”

Sedna And Friends in 2004
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Until he showed Hohmann transfer ellipses were
not least energy paths to the outer planets:

“most planetary mission designers consid-
ered the gravity field of a target planet
to be somewhat of a nuisance, to be can-
celled out, usually by onboard Rocket thrust.”

• Without a boost from the orbits of Saturn,
Jupiter and Uranus, the Earth-to-Neptune
Voyager mission (achieved in 1989 in around
a decade) would have taken over 30 years!

• We would still be waiting; longer to see
Sedna confirmed (8 billion miles away—3
times further than Pluto).
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LIGO: Math and the Cosmos

Einstein’s theory of general relativity describes

how massive bodies curve space and time; it

realizes gravity as movement of masses along

shortest paths in curved space-time.

• A subtle mathematical inference is that rel-

atively accelerating bodies will produce rip-

ples on the curved space-time surface, prop-

agating at the speed of light: gravita-

tional waves.

These extraordinarily weak cosmic signals hold

the key to a new era of astronomy if only we

can build detectors and untangle the mathe-

matics to interpret them. The signal to noise

ratio is tiny!
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LIGO, the Laser Interferometer Gravitational-

Wave Observatory, is such a developing US

gravitational wave detector.

One of the first 3D simulations of

the gravitational waves arising

when two black holes collide

• Only recently has the computational power

existed to realise such simulations, on com-

puters such as at WestGrid.
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PART 4. CONCLUSIONS

The issue of paradigm choice can never
be unequivocally settled by logic and
experiment alone. · · · in these mat-
ters neither proof nor error is at issue.
The transfer of allegiance from para-
digm to paradigm is a conversion expe-
rience that cannot be forced. (Thomas
Kuhn)

• In Who Got Einstein’s Office? (Beurling)

And Max Planck, surveying his own ca-
reer in his Scientific Autobiography, sadly
remarked that “a new scientific truth
does not triumph by convincing its op-
ponents and making them see the light,
but rather because its opponents even-
tually die, and a new generation grows
up that is familiar with it.” (Einstein)
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HILBERT

Moreover a mathematical problem should

be difficult in order to entice us, yet not

completely inaccessible, lest it mock our

efforts. It should be to us a guidepost

on the mazy path to hidden truths, and

ultimately a reminder of our pleasure in

the successful solution.

· · ·

Besides it is an error to believe that

rigor in the proof is the enemy of sim-

plicity. (David Hilbert, 1900)

• In his ‘23’ “Mathematische Probleme” lec-

ture to the Paris International Congress,

1900∗

∗See Ben Yandell’s fine account in The Honors Class,
AK Peters, 2002.
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CHAITIN

I believe that elementary number the-

ory and the rest of mathematics should

be pursued more in the spirit of experi-

mental science, and that you should be

willing to adopt new principles. I be-

lieve that Euclid’s statement that an

axiom is a self-evident truth is a big

mistake∗. The Schrödinger equation

certainly isn’t a self-evident truth! And

the Riemann Hypothesis isn’t self-evident

either, but it’s very useful. A physicist

would say that there is ample experi-

mental evidence for the Riemann Hy-

pothesis and would go ahead and take

it as a working assumption.

∗There is no evidence that Euclid ever made such a
statement. However, the statement does have an un-
deniable emotional appeal.
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In this case, we have ample experimen-

tal evidence for the truth of our iden-

tity and we may want to take it as

something more than just a working as-

sumption. We may want to introduce

it formally into our mathematical sys-

tem. (Greg Chaitin, 1994)∗

A tangible Riemann surface for Lambert-W
∗A like article is in the 2004 Mathematical Intelligencer.
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CARATHÉODORY and CHRÉTIEN

I’ll be glad if I have succeeded in im-
pressing the idea that it is not only
pleasant to read at times the works
of the old mathematical authors, but
this may occasionally be of use for the
actual advancement of science. (Con-
stantin Carathéodory, 1936)

• Addressing the MAA (retro-digital data-
mining?)

A proof is a proof. What kind of a
proof? It’s a proof. A proof is a proof.
And when you have a good proof, it’s
because it’s proven. (Jean Chrétien)

The then Prime Minister, explaining in 2002
how Canada would determine if Iraq had WMDs,
sounds a lot like Bertrand Russell!
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GAUSS

I Boris Stoicheff’s often enthralling biogra-
phy of Herzberg∗ records Gauss writing:

It is not knowledge, but the act of learn-
ing, not possession but the act of get-
ting there which generates the greatest
satisfaction.

Fractal similarity

in

Gauss’ discovery

of

modular functions

∗Gerhard Herzberg (1903-99) fled Germany for Sask-
atchewan in 1935 and won the 1971 Chemistry Nobel
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FINAL COMMENTS

F The traditional deductive accounting of Math-

ematics is a largely ahistorical caricature∗

F Mathematics is primarily about secure knowl-

edge not proof, and the aesthetic is central

• Proofs are often out of reach — under-

standing, even certainty, is not

• Packages can make concepts accessible (Lin-

ear relations, Galois theory, Groebner bases)

• While progress is made “one funeral at a

time” (Niels Bohr), “you can’t go home

again” (Thomas Wolfe).

∗Quotations are at jborwein/quotations.html
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HOW NOT TO EXPERIMENT

Pooh Math
‘Guess and Check’

while

Aiming Too High
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