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Abstract

In two earlier studies of lattice sums arising from the Poisson equation of mathematical
physics, it was established that the lattice sum 1/m-3 -, 44 cos(mmz) cos(nmy)/(m?+n?) =
log A, where A is an algebraic number, and explicit minimal polynomials associated with A
were computed for a few specific rational arguments x and y. Based on these results, one
of us (Kimberley) conjectured a number-theoretic formula for the degree of A in the case
x =y = 1/s for some integer s.

These earlier studies were hampered by the enormous cost and complexity of the requisite
computations. In this study, we address the Poisson polynomial problem with significantly
more capable computational tools. As a result of this improved capability, we have confirmed
that Kimberley’s formula holds for all integers s up to 52 (except for s = 41,43,47,49, 51,
which are still too costly to test), and also for s = 60 and s = 64. As far as we are aware,
these computations, which employed up to 64,000-digit precision, producing polynomials
with degrees up to 512 and integer coefficients up to 10?2%, constitute the largest successful
integer relation computations performed to date.

By examining the computed results, we found connections to a sequence of polynomials
defined in a 2010 paper by Savin and Quarfoot. These investigations subsequently led to a
proof, given in the Appendix, of Kimberley’s formula and the fact that when s is even, the
polynomial is palindromic (i.e., coefficient ay = a,,—x, where m is the degree).
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1 Introduction

Lattice sums [9] and the Poisson equation, which naturally arise in studies of gravitational
and electrostatic potentials, have been studied for many years in the mathematical physics
community, for example in [9, 17, 18] and also in a 2011 study of cyclotomic polylogarithms
and corresponding multiple harmonic sums [1]. Recently interest in this topic has been rekin-
dled in light of some intriguing applications to practical image processing [15, 5] (although
not needed for his deblurring algorithm, Crandall observed that each pixel had the form (1)
below). These developments have underscored the need to better understand the underlying
theory behind both lattice sums and the associated Poisson potential functions.

In two earlier studies [5, 6] and [9, §7.2], two of the present authors, together with
Richard Crandall (deceased 2012) and I. J. Zucker, analyzed the simple and accessible two-
dimensional case:

cos(mmz) cos(nmy)

d2(2,9) = % Z m? + n? ' (1)

m,n odd

By employing a computational approach [5, 6], these studies empirically discovered and then
proved the intriguing fact that when x and y are rational numbers,

¢2 (J}, y) = % IOg A7 (2)

where A is algebraic (i.e., A is the root of an m-th degree polynomial with integer coefficients,
for some integer m). In particular, given rationals x and y, the constant o« = exp (8w (z,y))
was computed to high precision (an ‘8’ was inserted here in light of formulas such as (48)
and (49) of [5], which made it significantly easier to recover the polynomial). Then for a
given m, the (m + 1)-long vector (1,,a?, -+, a™) was computed to high precision, and a
version of the PSLQ algorithm was used to discover the coefficients of the polynomial.

In Table 1 we present a few of the results from [5]. Among other things, note that for s
even, the resulting polynomial is always palindromic (i.e., coefficient ay = @,—, where m is
the degree). Does this pattern extend to higher cases?

s  ps, the minimal polynomial corresponding to z =y = 1/s:

5 1+ 52a — 2602 — 1203 + o

6 1 —28a + 602 — 28a® + a*

7 —1-196a + 130202 — 1475603 + 156730 4 42168a° — 111916’ + 822640
—35231a® + 198520 — 2954010 — 308! + 7al?

8 1 —88a + 9202 — 87202 + 19900* — 8720° 4+ 9208 — 8807 + o®

9 —1 — 5340 + 1092302 — 3428643 + 2304684a* — 7820712a° + 1372906808

—22321584a7 4+ 3977598608 — 444310440° + 19899882010 + 3546576a1!
—8458020c¢'2 + 400917603 — 273348 + 121392a/1°
—11385a'6 — 34207 + 318

10 1 —216c + 86002 — 74403 + 454a* — 74405 + 86008 — 21607 + o

Table 1: Sample of polynomials produced in earlier study [5].

In another observation from this data, one of us (Kimberley) observed that the degree
m(s) of the minimal polynomial associated with the case x = y = 1/s appears to be given



by the following formula. Set m(2) = 1/2. Otherwise for primes p congruent to 1 modulo
4, set m(p) = (p — 1)?/4, and for primes p congruent to 3 modulo 4, set m(p) = (p* — 1)/4.
Then for any other positive integer s whose prime factorization is s = p{*p5? - - - pr,

m(s) = 4" i mips). (3)
=1

This sequence now appears as http://oeis.org/A218147 in the Online Encyclopedia of
Integer Sequences. Does Kimberley’s formula hold for any or all higher s?

The earlier studies were hampered by the enormous cost and complexity of the requisite
computations, which in some cases required up to 12,000-digit precision, and in numerous
other cases, such as when © = y = 1/31, failed altogether. These computations were ex-
tremely demanding on hardware, multiprecision software and application code, since the
slightest error or inaccuracy (except for a few trailing bits) at any stage of the computation
almost certainly results in failure to recover the polynomial. Can these computations be
done better or faster?

In this study, we address the Poisson polynomial problem with significantly more capable
tools: (a) a new thread-safe, high-level arbitrary precision package, which is approximately
3X faster than the package used by the previous studies; (b) a new three-level multipair
PSLQ integer relation scheme, which is approximately 4X faster than the scheme used in the
previous studies; and (c) a parallel implementation on a 16-core system. These enhancements
resulted in a combined speedup of approximately 156X over the software used in the previous
studies (based on one typical case, running on common hardware). As a result of this
improved capability, we have confirmed that Kimberley’s formula holds for all integers s up
to 52 (except for s = 41,43,47,49,51, which are still too costly to test), and also for s = 60
and s = 64. As far as we are aware, these computations, which employed up to 64,000-digit
precision, producing polynomials with degrees up to 512 and integer coefficients up to 10227,
constitute the largest successful integer relation computations performed to date.

By examining the computed results, we found connections to a sequence of polynomials
defined in a 2010 paper by Savin and Quarfoot. These investigations subsequently led to a
proof, given in the Appendix, of Kimberley’s formula and the fact that when s is even, the
polynomial is palindromic (i.e., coefficient ay = ay,—r, where m is the degree).

2 Computational software

Scientific computing is moving rapidly into multicore and multi-node parallel computing,
because the performance of individual processors is no longer rapidly increasing [3]. Thus
future improvements in performance will require aggressive exploitation of parallelism. In
high-precision computing, it is difficult to achieve significant parallel speedup within a single
high-precision arithmetic operation, but parallelization at the application level (e.g., paral-
lelizing a DO loop containing multiprecision operations) is an attractive option.

On modern systems that feature multicore processors, parallel computing is more effi-
ciently performed using a shared memory, multithreaded environment such as OpenMP, even
if the Message Passing Interface (MPI) is employed between nodes [3, p. 11-33]. Further-
more, algorithms such as multipair PSLQ can only be parallelized efficiently at a rather low
loop level. Computations that use a thread-parallel environment such as OpenMP must be



entirely “thread-safe,” which means, among other things, that there are no read/write global
variables or arrays, because otherwise there may be difficulties during parallel execution.

Many high-precision software packages employ global read /write data, such as the current
working precision and data to support transcendental functions. The working precision is
particularly troublesome, since in many cases it is dynamically changed by both users and
the software package itself. Until recently, only one high-level arbitrary precision floating-
point package was certified thread-safe, namely the MPFR C++ package [19], which is built
upon the low-level MPFR package [16] (presuming MPFR is installed using the thread-safe
build option). The MPFR package is very well-designed, features correct rounding, includes
numerous transcendental and special functions, and achieves the the fastest overall timings
among currently available arbitrary precision floating-point packages [14].

2.1 A new arbitrary precision package

The previous two studies employed the ARPREC arbitrary precision software [2], which is
not thread-safe and thus cannot be used for multithreaded parallel runs. For this study
(and future use), we employed a new package developed by one of us for arbitrary preci-
sion floating-point computation. The package, known as MPFUN2015 [4] is available in
two versions, which are “plug-compatible” with each other: (a) a self-contained, all-Fortran
version; and (b) a version that calls the MPFR package for low-level operations, which is
approximately 3X faster. This package is targeted to Fortran applications (since many of
our high-precision codes are in Fortran), but a C++ version is also being developed.

A key design goal for this package is thread safety. This is achieved by studiously avoiding
any global read/write data, and by incorporating the current working precision into the data
structure of each multiprecision variable and array element (this is also a feature of MPFR).
When an operation or function is performed involving two or more operands, the working
precision of the result is assigned to be the maximum of the precision levels of the operands.
Special functions are provided to inquire the working precision assigned to a particular
variable or array element, or to change the assigned level when needed.

Both versions include a full-featured Fortran interface (via custom datatypes and operator
overloading), which supports multiprecision real and complex data, numerous transcendental
and special functions, as well as a wide variety of mixed mode operations (e.g., double
precision times multiprecision real, multiprecision complex to an integer power, etc.). Thus,
for example, one can write

d=a+ b(i) * cos(3.d0 + c(i,j))

where a, b, c and d are multiprecision real, and the appropriate underlying multiprecision
routines are automatically called by the compiler.

Both versions also detect, and provide means to overcome, accuracy problems rooted in
the usage of inexact double-precision constants and expressions, which is a problem that
has plagued high-precision computation for years. For example, if a user code includes a
statement such as a = b + d / 3.d0, where a and b are multiprecision real and d is
double precision, then by established language conventions in Fortran, C, C4++ and most
other languages, the division is only performed to double precision accuracy, and this low
accuracy propagates to the result a. Our package employs special software that detects such
instances at ezecution time.

The package also provides means to correct such usage. For example, to generate the
full-precision conversion of the decimal constant 1.234 and assign it to the multiprecision



real a, it suffices to enclose the constant in apostrophes, e.g., a = 71.2347.

In the present study, we employed the faster (MPFR-based) version of the package.
Full details on the algorithms, design, installation and usage of this software are given in a
technical report [4].

2.2 Three-level multipair PSLQ

Given an (m + 1)-long input vector X = (z;), an integer relation algorithm attempts to find
a nontrivial (m + 1)-long vector of integers A = (a;) such that

apxo + a1x1 + asrs + -+ - + Ay, = 0. (4)

If X =(1,a,02,---,a™) for some «, and if an integer relation is found for X, then these
integers are the coefficients of a polynomial of degree m satisfied by a.

The multipair PSLQ algorithm is a more efficient and moderately parallelizable variant of
PSLQ, the most widely used integer relation algorithm (although some use a variant of LLL)
[7, 12]. Tterations of the multipair PSLQ algorithm develop a sequence of invertible integer
matrices A,,, their inverses B,, and real matrices H,, (in lower quadrature form), so that the
reduced vector Y = B,, - X has steadily smaller entries, until one entry of Y is smaller than
the epsilon specified for detection. Integer relation detection (by any algorithm) requires
very high precision: at least (m + 1) - maxy log;q |ax| digits, or there is no chance of finding
the underlying relation. Multipair PSLQ is extremely efficient with precision, compared with
other integer relation algorithms, in the sense that it can typically detect a relation when
the numeric precision is only a few percent higher than this minimum level [7].

The earlier studies [5, 6] employed a two-level version of the multipair PSLQ algorithm.
For this study, we employed a three-level version, based on a scheme sketched (with scant
details) in [7]: (a) double precision; (b) medium precision, typically 100-2000 digits; and (c)
full precision, typically many thousands of digits. With this scheme, almost all iterations
of the multipair PSLQ algorithm are performed in double precision. When an entry of the
double precision Y vector is smaller than 10~ or when an entry in the double precision
A or B arrays exceeds 25 &~ 9.007 - 10'® (so that several iterations must be repeated with
higher precision), the medium precision arrays are updated using matrix multiplication via

Y:=B-Y,B:=B-B, A:=A-A, H:=A-H, (5)

where the hat notation indicates the double precision arrays. When an entry of the medium
precision Y vector is smaller than an epsilon corresponding to medium precision, then the
full precision arrays are updated using similar formulas. Substantial care must be taken to
manage this three-level hierarchy, and to correctly handle numerous atypical scenarios.

3 Computational algorithm

Here is the specific procedure we employed to discover the Poisson polynomials:

1. Given rationals ¢ = p/s and y = ¢/s, select a conjectured minimal polynomial degree
m(s) and other parameters for the run. For planning computer runs, we employed these
empirically derived estimates: D is the detection level; P; is the medium precision level
in digits; P, is the full precision level in digits; N is the number of multipair PSLQ



iterations; T is the total run time in core-seconds; and M is the memory requirement
in Mbytes:

m(s) =4""1 Hp?(eifl) m(p;) i.e., the Kimberley formula (3),
i=1

log,o D = —0.462m?(s), P, =5m(s), Py=5m(s)+0.462m?(s),
logo N = 105.278/m?(s) — 33.1073/m(s) + 4.01963 + 0.00696322 m(s),
logyo T = 374.411/m?(s) — 79.2388 /m(s) + 1.93981 + 0.0176301 m(s),
M =1.6-10"7-m?2(s)(5m(s) + 0.462m?(s)). (6)

2. Calculate ¢o(z,y) to Pe-digit precision using the following Jacobian formula from [5]:

92(27 Q)94(Z» q) ’
01(Z,q)93(Z,q) ’

where ¢ = e7" and z = §(y+ix). Compute the four theta functions using the following
rapidly convergent definitional formulas from [8, p. 52]:

1
Pa(x,y) = Y log

(7)

01(z,q) =2y (1) g@R D sin((2k — 1)2),
k=1

02(2z,q) =2 Zq(%_l)Z/‘1 cos((2k — 1)z),
k=1

03(z,q) =1+2 Z q’€2 cos(2kz),
k=1

04(2,q) =1+2 Z(fl)qu2 cos(2kz). (8)
k=1

When done, calculate a = exp(8m¢a(x,y)) and generate the (m + 1)-long vector
X = (1,a,0?,--- ,a™), to Pp-digit precision. Note that formulas (7) and (8) involve
sines and cosines of complex arguments, since z is complex. However, our multipreci-
sion software includes full support for the multiprecision complex datatype, so these
formulas were implemented simply as stated in (7) and (8).

3. Apply the three-level multipair PSLQ algorithm to X. For larger problems, em-
ploy a parallel version of the three-level multipair PSLQ code, using the OpenMP
DO PARALLEL construct to perform certain time-intensive loops in parallel.

4. If a numerically significant relation (i.e., a relation that holds to at least 100 digits
beyond the level needed to discover it) is not found, try again with a larger degree m or
higher precision P,. If a relation is found, employ the polynomial factorization facilities
in Mathematica or Maple to ensure that the resulting polynomial is irreducible.

The high-level program that includes the computation of ¢o(x,y) and the three-level
multipair PSLQ scheme, as specified in steps 1 through 4 above, is approximately 2,300 lines
of Fortran; it calls our multiprecision package (approximately 12,000 lines of Fortran); it
calls the MPFR package (approximately 93,000 lines of C); and it calls the GMP package
(approximately 83,000 lines of C); for a total of approximately 190,000 lines of code.



4 Results and analysis

Table 2 shows results for our attempts to find the minimal polynomial associated with x =
y = 1/s, for various positive integers s. Table 3 shows results for the cases x = 1/s, y = ¢/s,
where ¢ > 1 is the smallest integer that is relatively prime to s (our experimentation indicated
that all ¢ relatively prime to s have similar behavior). In Table 3, where the resulting degree
m differs from the corresponding entry in Table 2, the degree is shown in italics.

It is clear from these tables that computational costs (more than 99% of which is due to
multipair PSLQ) increase very rapidly with the polynomial degree m. Timings range from
a fraction of a second for x = y = 1/10, to 7.74 million core-seconds for x = y = 1/37. For
those cases that were also computed in [5], these timings represent significant speedups. For
example, in the case x = y = 1/32, the authors of [5] reported 163,663 seconds, whereas here
we report 5,126 seconds, which is 31.9X faster; for the case x = y = 1/23, the authors of [5]
reported 212,635 seconds, whereas here we report 5,063 seconds, which is 42X faster (single
core timings). However, these speedups are due in part to different software.

In Table 5, we present more carefully controlled comparative timings for the particular
case = y = 1/35, using (a) a 2-level multipair PSLQ scheme with the ARPREC multi-
precision software, as used in [5], using code available at [2]; (b) the same 2-level code, but
with our new multiprecision software; and (¢) our 3-level multipair PSLQ code, with our new
multiprecision package and with 1, 2, 4, 8, and 16 cores. Each run was performed on a 2.4
GHz Apple MacPro system with 16 cores (it is advertised as an 8-core system, but since it
can handle 16 simultaneous threads, we consider it to be a 16-core system). The runs were
executed in a typically busy environment with similar jobs running on other cores, using
a common version (5.1.0) of the GNU gfortran and gcc compilers. We observe a speedup
of approximately 3X for switching from ARPREC to our new arbitrary precision software,
an additional speedup of approximately 4.2X for switching to our 3-level multipair PSLQ
algorithm, and an additional speedup of approximately 12.1X for running in parallel on 16
cores, thus yielding an overall speedup of approximately 156X.

While a parallel speedup of 12X and an overall speedup of 156X are certainly most
welcome (and we are trying to further accelerate these codes), it does not appear possible at
the present time to efficiently employ hundreds or thousands of processors on these problems.
It is fairly easy to achieve large parallel speedups in the multiprecision portions of the code
(e.g., the multiprecision matrix multiply routine), but it is not easy to achieve large speedups
within the double precision portion (e.g., the double precision multipair PSLQ iteration
routine, which is called many thousands of times). Thus the double precision portions limit
overall parallel scalability, as a consequence of Amdahl’s law [3, p. 348]. It would be easy
to exhibit large parallel speedups by starting, say, with the one-level multipair PSLQ code,
which performs all iterations using full precision, but this would violate the principle that
parallel implementations and speedup figures should be based on the most efficient single-
threaded algorithm available; otherwise speedup results can be highly misleading [3, p. 1-9].

4.1 Minimal polynomials

As mentioned earlier, these computations, which employed up to 64,000-digit precision, pro-
ducing polynomials with degrees up to 512 and integer coefficients up to 1022?, constitute the
largest successful integer relation computations performed to date (as far as we are aware).

Maple 18 quickly confirmed irreducibility for each of the polynomials produced by our



program, and found that each of the polynomials splits in some small quadratic extension
field (which is strong evidence that the polynomials are error-free). Mathematica 10.2 also
confirmed irreducibility in each case, although it took an unusually large amount of time to
handle the cases © =y = 1/48 and z = y = 1/64. (Wolfram Research staff informed us that
this problem is resolved in their development code, and so it may be faster in the future.)

Table 4 shows one representative minimal polynomial, namely the 192-degree minimal
polynomial found by our program for the case x = y = 1/35, in a very tiny font. It is en-
tirely typical of Poisson minimal polynomials, in that the initial coefficient is -1, subsequent
coefficients ascend to a maximum size (in this case roughly 10%%), and then descend back to
-1. This semi-elliptical pattern, with 1 or -1 at the ends, is very strong numerical evidence
that the polynomial produced by the computer program is the true mathematical minimal
polynomial associated with this case, and, by implication, that all hardware, software and
application code performed flawlessly, since otherwise it is exceedingly unlikely that the re-
sulting coefficients would have this distinctive pattern. (In cases where the multipair PSLQ
program fails to find a numerically significant relation, the resulting coefficients typically are
all roughly the same size.) This neatly illustrates the role of visual output for large data.

With regards to the key objective mentioned above, namely to test Kimberley’s formula
for significantly higher arguments, we note that this formula was affirmed in every case
x =y = 1/s, for s up to 52 (except for s = 41,43,47,49,51, which are still too costly to
test), and also for s = 60 and s = 64.

5 Initial observations regarding Poisson polynomials

One observation from our computational results is that in each case where z =y = 1/s for s
even, the corresponding Poisson polynomial ps(«) is palindromic, namely ap = a,,—, where
ay, is the coefficient of o*. Here, for instance, is pig:
pis(a) = 1 — 1376a — 125600 — 35504960> + 812417200t — 169589984a°

+ 13349649440° — 24307725984a" + 2389349261080° — 10430271247040°

+ 2328675366384 — 3219896325280 4 4238551472456/

— 10247414430048a® + 285521058059040'* — 55832851687968a,'°

+ 700202683090620/'6

— 55832851687968a'7 4 28552105805904a '8 — 10247414430048°

+ 423855147245602° — 3219896325280t + 23286753663840/%2

— 1043027124704 + 2389349261080 — 243077259840%° + 13349649440/

— 169589984027 4 812417200 — 355049602° — 12560030 — 137603 + o2, (9)

where we have grouped the terms so that the palindromic pattern is evident.

Following one of our first presentations of these results, Nitya Mani, a student at Stanford
University, reminded us that if a is a root of a palindromic polynomial such as this, then
a+ 1/« is a root of a transformed polynomial of half the degree. For example, if « is a root
of the degree-32 polynomial pig given in (9), then f = a + 1/« is a root of the degree-16



polynomial

17211171340288 — 341058503311360 + 287634682019843% — 80300853166083°

— 5013017608192 + 3437397704704° 4 4548169646083° — 83116629196837

+ 2299749678083° — 226726400003° + 359096832310 — 1235573765

+ 8141766482 — 35298563 — 1257684 — 13765 + 6. (10)

Since the computational cost scales very rapidly as the degree of the polynomial is increased
(see formula (6)), this palindromic property, which appears to hold for all even s, can be
used to significantly accelerate the computation of ps when s is large. In particular, the
computational algorithm as given in Section 3 only needs to be changed in Step 2, where one
computes 8 = a + 1/a and X = (1,,5%,---,3™), and in Step 3, where after recovering a
polynomial in 8, one must then expand the polynomial to obtain the equivalent polynomial
in @. We implemented this scheme to obtain Poisson polynomials for the cases s = 60 and
s = 64, and again found that the degree as predicted by Kimberley’s formula matched the
degrees (256 and 512, respectively) of the polynomials produced by the program. See Table
2 for details.

After some additional examination of our computer output, we observed
Conjecture 1. For the case v =y =1/s:

o The algebraic number oy is the largest real root of the associated polynomial ps(«);

e That polynomial has ¢(s) real roots, where ¢ is the Euler totient function.

e oy appears to be monotone in s.

6 Further observations regarding Poisson polynomials
Following examination of the polynomials p1; and p;3, namely

p11(a) = 14 1210a — 33033a? 4 29234920° + 50936050* — 385382514a°
+ 397472628305 — 14323974808a” + 57392757037a° — 291359180310
+ 9484971990670 — 16425520944360 + 10840420696490'2
+ 1890240552750a'3 — 6610669151537t + 9712525647792a1°
— 86081813122690/16 4 53842072447020!7 — 32234897421870/'®
+ 2175830922716 — 1197743580033 + 3872215798660
— 5089701774302 — 78644453360*% + 53912439350 — 8157896340%°
+ 28366041a%° — 5092956027 + 2076910 + 279402° — 11a*° (11)



pi3(a) = —1 — 2388a + 61098 — 192253000 — 606593049a* + 15439226560

— 785647656005 + 2217538960320 — 16217530722440°

+ 45427798867360° — 27314186746640'° — 36717669656304a.!!

+ 200879613202428a'2 — 547249607666784™> + 9341796044828320

— 1235038888776160a™® + 1788854212778642c'% — 3018407750933816a.”

+4349780716415868a/'% — 4419228090228152a* + 28997665014729140°

— 031940880451552a.21 — 413258559018224*% + 8577956726296640%

— 659989056851972a%* + 304241349909008a.2° — 87636987790824,2°

+ 145933622199200%7 — 10732049803400*% — 451381672000%°

+ 23660433008a3° — 2028597792031 + 2954032703 — 3238420032 + 7338603

+ 4920 — o, (12)
and after doing some Google searches on these coefficients, we found that the coefficient
387221579866 in p;1 appears in a 2010 preprint by Savin and Quarfoot of the University of
Utah [20], and the coefficient 221753896032 in p;3 appears in a manuscript, also dated 2010,
by Bostan, Boukraa, Hassani, Maillard, Weil, Zenine and Abarenkova [10], subsequently
published as [11]. This is a dramatic illustration of how advanced computation can facilitate
data mining of the literature.

Savin and Quarfoot [20], define a sequence v, of polynomials in x and y, based on the
curve 32 = 3 + x, as follows:

Py =1

o =2y

Y3 = 32" + 627 — 1

Yy = 2y(22° + 102 — 102% - 2), (13)

and, recursively,
Vont1 = Yny2 VS —Pp_1 - ¢2+1 forn > 2
an = 1/(29) ' ¢n(wn+2 : %21_1 - ¢n—2 : ¢i+1) for n > 3. (14)

We construct a related sequence J; of integer coefficient polynomials in a by setting
r =+/—a, and so y? = x(z? + 1) = v/—a(l — a); we also remove the leading 2y from )g,:

Jony1(a) == Yany1(z,y)
Jan(a) :=1/(2y) - Yan(z,y) (15)

Substituting (15) into (13), the initial values of Js(a) are

Ji=1

Jo=1

J3 =3a®> —6a—1

Jy = 2a® — 10a* — 10a + 2. (16)

10



Substituting (15) into (14), we obtain these three recursive formulae

Jon = In(Inga- Ty — T2 I

Jaks1 = 16a(a — 1)* - Jopqo - Jop — Jop—1 - Jopins

Jagts = Jokss - Jopq — 16a(a —1)% - Jop - J5 o (17)

After computation in Magma of J; for some further values of s, we were motivated to

prove
Lemma 2. The leading term of Js is js where
(k—1)(k+1)

Jok = ka , and

j2k:+1 = (2](5 + 1)ak(k+1).
(The leading coefficient and degree are given by OEIS sequences A026741 and A198442
respectively. )
Proof. Each of j1,...,js has the required form. Using (17) we compute by induction:
Jak = Jok - (Jokt2 - Jak—1 — Jok—2 - Jaks1)
= k" (o D@k TR (2 = )220 < (k= 1)at T (2 4 1)20207 )
= ka® 1. ((4k3 — 3k +1)a% — (4k3 — 3k — 1)a3k2>
= ka1 . 243
= 2kat** 1,
Jaks1r = 16a° - fogio - 3 — jor—1 - Joria
= 16a% - (k + 1)a* T2 . k3a3F* =D _ (2% — 1)aF"—F . (2k + 1)3a3* )
= (16k* + 16k3)a* 2% — (16k* + 16k° — 4k — 1)a**"+2
= (4k + 1)a”*CHHD),
Jakt2 = Jont1 - (Jok+s - Jon — Jok—1 - Jonio)
— (2 + 1)ak2+k ) ((Qk 4 3)ak2+3k+2 k22K 2 _ (2k — 1)ak2fk (ko 1)2a2(k2+2k)>
— (2K + 1)a"+k . ((2k3 4 3k2)a3 3 (9k 4 3k2 — 1)a3k2+3k)
= (2k + 1)o@V L,
Jak4s = Jok+s - Jopsr — 166° - jor - japis
= (2k+ 3)ak2+3k+2 - (2k + 1)3a3(k2+k) 1643 - kak"‘q (k+ 1)3a3(k2+2k)
= (16Kk* + 48K3 + 48K2 + 20k + 3)a** T6h+2 _ (16k* + 48K + 48K? + 16k)a*h” +6k+2
— (4k + 3)a(2k+1)(2k+2).

Note that the first equality in each of the four cases is valid (the leading term of the difference
is the difference of the leading terms) because in each case the polynomials being subtracted
have matching degrees. O
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Corollary 3. For each prime ¢ = 3 mod 4 the polynomial J, has degree m(q) = (¢> —1)/2.
In fact, our computations support the following:

Conjecture 4. For each prime ¢ = 3 mod 4, the polynomial J, is precisely pq as computed
by PSLQ.

More generally, for all s given in Table 2 we have confirmed more detailed structure, as
we shall summarize in the next few conjectures.

Conjecture 5. For each integer s > 1, ps is the unique degree m(s) prime factor of Js.

What are some other factors of J;? Notice in (17) that J, is a factor of J3,,. This appears
to extend to other multiples of n:

Conjecture 6. The {J,} values form a divisibility sequence: m | n implies J,, | J,.

Conjecture 6 has been confirmed for all n < 256 which was the largest case that the free
online Magma calculator could handle.

Lemma 7. For each positive integer s, 4m(s) < s2.

Proof. We first consider prime cases.

= (q—1)* < ¢, for prime ¢ = 1 mod 4;
¢®> —1 < ¢, for prime ¢ = 3 mod 4;
= 4¢*m(qn) < ¢*(qn)? = (¢°n)?, for any prime q.

Hence for any integers j, k we have
4m(jk) = 4m(j) - 4m(k) < j°k* = (jk)*.
This completes the proof. O

Lending support to Conjecture 5 we have

Lemma 8. For s > 2, m(s) < deg J;.
Proof. We compute as follows. First, for even s

m(2k) < k?, so
m(2k) < k* — 1 = deg Joy,.

Likewise for odd s we write

4m(2k +1) < (2k + 1) = 4deg Jop 41 + 1, s0
m(2k + 1) < deg Jog+1,

and we are done. O

Generalizing Conjecture 4 we empirically observe

12



Conjecture 9. For each prime ¢ = 3 mod 4:

o Jog = Jy - J; -2 = gDy - D2g, where p*(x) = x%p(1/x) denotes the reciprocal
polynomial of a polynomial p of degree d;

o Jyi = Jgi-1pg for any positive integer i;

o Jyr = Jq - Jr - pgr for any distinct prime r = 3 mod 4.

We next define another sequence of polynomials Hg(a) identical to the substitution

H(s,+/a) where H(n,x) is a sequence of polynomials defined in A154305 by Clark Kim-
berling. Specifically,

Hy:=a+1

Hy:=a?>—6a+1

H,:=2H! , - H? | (18)

The sequence H,, lets us give precise results about po:.
Lemma 10. For each positive integer i,
deg(Jyi) = deg Joi—1 + deg Ho; 1 +m(2%).
Proof. We have
. . _ 1 .
4271 _ 1 — 4272 _ 1 4 4172 4 54171

because 4 =1+ 1+ 2. O

For i € {2,...,5} we have determined the following
Conjecture 11. For all integers ¢ > 2,
JQ«; =2 JQi—l . Hgl;l * Paoi.

This was also confirmed in our largest computation, for s = 64.
In Conjecture 1, at the end of the previous section, we observed that oy is the largest
real root of p,. This also appears to be the case for J;:

Conjecture 12. For each integer s > 2, both Js and ps have their largest real root at a.
It also seems that

Conjecture 13. The number of real roots of J,, is given by entry A195013(n — 2), in the
Online Encyclopedia of Integer Sequences, where

A195013(2n — 1) = 2n, and
A195013(2n) = 3n.
Finally, from Conjectures 1, 5, and 13, we would have

Conjecture 14. For any odd prime ¢, both p, and J, have the same set of p(q) = ¢ —1

real roots. This means for ¢ = 1 mod 4, the non-trivial quotient ;—Z has no real roots.
For example,
Js = (5a® —2a +1) - ps
= (5a®> —2a +1) - (a* — 12a® — 26a* + 52a + 1). (19)
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7 Proofs of Kimberley’s formula and the palindromic
property

As noted above, our computations confirmed Kimberley’s formulas in every instance tested,
and we concluded that a primary objective for future studies in this area was to understand
and prove why these formulas hold. Our computations also confirmed that whenever s is
even, the polynomial for the case x = y = 1/s is palindromic.

After the first three authors first wrote up the results presented above, Watson Ladd,
who attended a presentation of the results at the University of California, Berkeley, brought
to our attention the fact that some of our conjectures should follow from known results in
the theory of elliptic curves, Gaussian integers and ideals. After some effort, Ladd produced
proofs of Kimberley’s formulas and the palindromic property for s even, which proofs we
present below in an Appendix.

8 Conclusions and future research

While these results substantially aid in understanding this problem, additional research
remains to be done to fully understand the many other combinations, in other words x = p/s
and y = ¢/s, for different values of p, ¢ and s. For example, it appears, from this and earlier
studies, that Kimberley’s formula also holds whenever x = y = ¢/s, where ¢ is relatively
prime to s. It also appears that for a fixed s, all the cases 0 < p < ¢ < s/2, where p and s,
q and s, and p and ¢ are relatively prime, share the same minimal polynomial. But, absent
a proof, these conjectures need to be tested rigorously over a large set of p, ¢ and s, which
will require even more extreme amounts of computation.

In light of these challenges, research is needed in how to efficiently perform PSLQ-type
integer relation computations on a highly parallel platform. As mentioned above, while a 12X
parallel speedup is certainly welcome, a scheme to efficiently employ hundreds or thousands
of cores is needed. A fundamentally new integer relation algorithm may well be required.

Acknowledgements. The authors wish to acknowledge computer equipment provided for
our use by Apple, Inc. and by the Lawrence Berkeley National Laboratory.
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s | m | log,,(D) Py Py N M| C T (sec.) | C'-T (sec.)
10 8 -27.62 | 100 200 38 001] 1]971-1073] 9.71-1073
11| 30 -406.33 | 150 600 1865 064 | 1| 1.67-10° 1.67 - 109
12 | 16 -112.78 | 100 200 304 006 | 1|816-10"2 | 8.16-1072
13| 36 -586.76 | 180 800 2681 1.26 | 1| 4.02-10° 4.02-10°
14| 24 -253.16 | 120 400 998 028 | 1]5.16-107' | 5.16-107!
15 | 32 -459.83 | 160 700 2041 081 ] 1| 218-109 2.18 - 109
16 | 32 -462.31 | 160 700 1993 081 1| 2.21-109 2.21-10°
17 | 64| -1861.15 | 320 | 2200 9411 11.33 | 1| 7.56-10" 7.56 - 10!
18| 36 -579.56 | 180 800 2550 1.26 | 1| 3.82-10° 3.82- 10
19| 90 | -3732.91 | 450 | 4200 | 20320 4246 | 1| 4.94-10% 4.94 .10
20 | 32 -463.84 | 160 700 1967 081 ] 1| 219-109 2.19-10°
21 | 96 | -4231.61 | 480 | 4800 | 23269 54.60 | 1| 7.11-102 7.11-102
22 | 60| -1634.93 | 300 | 2000 8042 884 | 1| 5.46-10 5.46 - 10
23 | 132 | -8088.30 | 660 | 8800 | 50768 | 189.79 | 1| 5.06-10° 5.06 - 103
24 | 64| -1883.78 | 320 | 2200 9297 1133 | 1| 7.73-10" 7.73 .10
25 | 100 | -4624.71 | 400 | 5200 | 25744 64.03 | 1| 9.19-102 9.19 - 102
26 | 72| -2374.91 | 360 | 2800 | 11997 17.86 | 1| 1.66-10? 1.66 - 102
27 | 162 | -12136.17 | 810 | 13000 | 88525 | 424.52 | 1| 1.97-10% 1.97 - 10*
28 | 96 | -4253.81 | 480 | 4800 | 23082 54.60 | 1 7.11 - 102 7.11-10?
29 | 196 | -17732.44 | 1000 | 19000 | 160824 | 899.74 | 8 | 2.03-10% 1.62-10°
30 | 64| -1868.01 | 350 | 2300 9064 11.33 | 1| 1.02-10? 1.02 - 102
31 | 240 | -26653.98 | 1200 | 28000 | 325169 | 2003.33 | & | 8.47-10* 6.78 - 10°
32 | 128 | -7577.07 | 650 | 8200 | 45893 | 168.20 | 1| 5.13-10° 5.13-103
33 | 240 | -26621.93 | 1200 | 28000 | 326616 | 2003.33 | 8 | 8.51-10% 6.81-10°
34 | 128 | -7574.93 | 650 | 8200 | 45914 | 168.20 | 1| 5.16-10° 5.16 - 103
35 | 192 | -17044.00 | 1000 | 18000 | 149577 | 829.41 | 8 | 2.48-10% 1.98 - 10°
36 | 144 | -9570.86 | 750 | 10300 | 62282 | 267.10 | 1| 9.54-10° 9.54-103
37 | 324 | -48431.32 | 1650 | 51000 | 931254 | 6579.66 | 16 | 4.84-10° 7.74 - 108
38 | 180 | -14951.64 | 900 | 16000 | 120984 | 642.98 | 1| 3.88-10% 3.88 - 10*
39 | 288 | -38330.14 | 1450 | 40000 | 667153 | 4124.24 | 16 | 2.68-10° 4.29-106
40 | 128 | -7580.00 | 650 | 8200 | 45655 | 168.20 | 1| 5.02-10° 5.02 - 103
42 | 192 | -16993.99 | 1000 | 18000 | 150364 | 829.41 | 8 | 1.57-10% 1.26 - 10°
44 | 240 | -26604.14 | 1200 | 28000 | 323762 | 2003.33 | & | 7.43-10% 5.94-10°
45 | 288 | -38315.08 | 1450 | 40000 | 660001 | 4124.24 | 16 | 2.09-10° 3.35-106
46 | 264 | -32036.34 | 1350 | 34000 | 476902 | 2921.57 | 16 | 1.06 - 10° 1.70 - 109
48 | 256 | -30248.55 | 1350 | 32000 | 415316 | 2586.39 | 16 | 8.98-10% 1.44 - 108
50 | 200 | -18421.18 | 1000 | 20000 | 168947 | 974.44 | 8| 2.12-10% 1.69 - 10°
52 | 288 | -38414.49 | 1550 | 41000 | 655291 | 4124.24 | 16 | 2.12-10° 3.40 - 108

*60 | 256 | -14477.99 | 800 | 16000 | 90371 | 336.41 | 1| 5.28-103 5.28 - 103
*64 | 512 | -57816.90 | 1600 | 64000 | 802361 | 5172.79 | 16 | 3.78-10° 2.42-106

Table 2: Computer runs to discover minimal polynomials for the cases z =y = 1/s.

Here m is

the degree; D is the detection level; P; is the medium precision, in digits; P; is the full precision,
in digits; IV is the number of multipair PSLQ iterations; M is the memory, in Mbytes; C' is the
number of processor cores; T is the wall-clock run time, in seconds; and the last column is the
total core-seconds. In the rows labeled *, the palindromic principle of Section 5 was applied.
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s|q| m| log,(D) Py Py N M| C T (sec.) | C'-T (sec.)
10 | 3 4 -4.94 | 100 200 10 001 ] 1]9.88-10"3 | 9.88-1073
111121 30 -302.77 | 150 600 1428 064 | 1 2.25-109 2.25-10°
12 |5 8 -24.88 | 100 200 69 006 | 1|1.53-1072| 1.53-102
1312 36 -443.77 | 180 800 2060 1.26 | 1| 5.56-10° 5.56 - 109
14 3| 24 -187.79 | 120 400 849 028 | 1|7.27-107t| 7.27-107!
1512 32 -342.14 | 160 700 1513 081 1| 2.87-10° 2.87- 100
16 | 3| 32 -345.22 | 160 700 1636 081 ] 1 2.91-109 2.91-10°
17 12| 64| -1410.53 | 320 | 2200 7146 11.33 | 1| 1.08-102 1.08 - 10?
18 |5 36 -579.56 | 180 800 2550 1.26 | 1| 4.88-10° 4.88 - 109
19 | 2| 90| -2743.27 | 450 | 4200 | 14825 4246 | 1| 6.20-102 6.20 - 102
20 | 3| 32 -359.23 | 160 700 1637 081 | 1| 3.06-10° 3.06 - 10°
21 | 2| 96| -3098.89 | 480 | 4800 | 16837 54.60 | 1| 8.95-102 8.95 - 102
22 13| 60| -1184.89 | 300 | 2000 5991 884 | 1| 6.99-10! 6.99 - 10!
23 | 2] 132 | -5935.65 | 660 | 8800 | 36880 | 189.79 | 1| 4.63-103 4.63-103
24 | 5| 32 -336.46 | 320 | 2200 1613 11.33 | 1| 2.83-10° 2.83-10°
25 | 21100 | -3425.99 | 400 | 5200 | 18934 64.03 | 1| 1.16-10% 1.16 - 103
26 | 3| 72| -1714.50 | 360 | 2800 8763 17.86 | 1| 1.93-102 1.93 - 102
27 | 21 162 | -8994.33 | 810 | 13000 | 64954 | 424.52 | 1 1.34-10* 1.34-104
28 | 3| 96| -3133.10 | 480 | 4800 | 17150 54.60 | 1| 9.39.102 9.39 - 102
29 | 2 | 196 | -30287.93 | 1000 | 19000 | 118623 | 899.74 | 8 | 1.25-10* 1.00 - 10°
30 | 7] 64| -1291.21 | 350 | 2300 6867 11.33 | 1| 1.01-102 1.01 - 102
31 | 2| 240 | -19498.68 | 1200 | 28000 | 238779 | 2003.33 | 8 | 5.65-10% 4.52 - 10°
3213|128 | -5578.06 | 650 | 8200 | 33829 | 16820 | 1| 4.16-103 4.16-103
33 | 2| 240 | -19341.77 | 1200 | 28000 | 234732 | 2003.33 | 8 | 5.69-10% 4.55 - 10°
34 | 3] 128 | -5411.70 | 650 | 8200 | 32842 | 16820 | 1| 2.53.-103 2.53-103
35 | 2| 192 | -12551.58 | 1000 | 18000 | 110693 | 829.41 | 8 | 1.17-10* 9.36 - 10*
36 | 5| 144 | -6831.83 | 750 | 10300 | 45559 | 267.10 | 1| 6.93-10° 6.93-103
37 | 2| 324 | -35412.09 | 1650 | 51000 | 691277 | 6579.66 | 16 | 3.42-10° 5.47 - 106
38 | 3| 180 | -11011.83 | 900 | 16000 | 89722 | 64298 | 1| 7.42.103 7.42-10°
39 | 2 | 288 | -27943.70 | 1450 | 40000 | 458238 | 4124.24 | 16 | 1.84-10° 2.94-106
40 | 3| 128 | -5674.61 | 650 | 8200 | 34273 | 168.20 | 1| 4.13-103 4.13-103
42 | 5| 192 | -12183.50 | 1000 | 18000 | 106770 | 829.41 | & | 1.16-10% 9.27 - 104
44 | 3 | 240 | -19581.93 | 1200 | 28000 | 232713 | 2003.33 | 8 | 6.18.10% 4.95-10°
45 | 2 | 288 | -27857.00 | 1450 | 40000 | 482959 | 4124.24 | 16 1.47-10° 2.35 - 108
46 | 3 | 264 | -23318.37 | 1350 | 34000 | 346987 | 2921.57 | 16 | 7.28-10% 1.17 - 108
48 | 5 | 256 | -21480.15 | 1350 | 32000 | 292974 | 2586.39 | 16 | 5.93-10* 9.50 - 10°
50 | 3| 200 | -13409.44 | 1000 | 20000 | 122468 | 974.44 | 8 | 1.63-10* 1.30 - 10°

Table 3: Computer runs to discover minimal polynomials for the cases x = 1/s, y = q/s, where

g > 1 is the smallest integer relatively prime to s. See caption to Table 2 for notation.
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Table 4: 192-degree minimal polynomial found by multipair
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Multiprecision software PSLQ code | Cores | Run time | Speedup

ARPREC 2-level 1.599 - 108 1.00
New MPFR-based software 2-level 5.249 - 10° 3.05
New MPFR-based software 3-level 1.240 - 10° 12.90

7.585 - 10* 21.08
4.121 - 10* 38.80
2.476 - 10* 64.58
16 | 1.021 - 10* 156.61

O B N |

Table 5: Wall-clock run times (in seconds) and speedup factors for the case z = y = 1/35,
measured in a typically busy environment with similar jobs running on other cores.
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A Proofs of Kimberley’s formula and the palindromic
property

In this section we prove Kimberley’s formula and the reciprocal nature of pos(x). We begin
by considering

1 02
= —log| =
$2(x,y) = o log 01(2,9)05(z, q)

and

o = (Sméa(ew)

which after basic algebra gives

02(2,q)04(z, q) |*

91 (Zv q)ed(zv q)

The definitions of the theta functions earlier in this paper agree with those in Whittaker
and Watson in the chapter “Theta Functions” [22] and therefore the identities presented
there can be used with 7 = i. We now introduce the function

_ 0:(2%63(2)
6,(2263(2)

The function f(z) is doubly periodic with periods /2 + i/2 and 7/2 — i/2, and has
a double pole at 0 and a double zero at mi/2. The double periodicity follows from the
quasiperiodicity of the theta functions. The poles and zeros follow from examining the poles
and zeros of the theta functions, as recorded in Whittaker and Watson.

Every holomorphic doubly-periodic function is a constant, by the corollary to Liouville’s
theorem found in [22, Chap. 2]. Consider g(z) = f(n/2(1 + i)z)/p(z), where p(z) is the
Weierstrass g function on the lattice spanned by 1 and i. Then g(z) is doubly periodic with
periods 1 and 7, and has no poles or zeros. It is therefore a constant.

Now a = f(n/2(1/s+i/s))f(n/2(1/s —1i/s)), which is a®p(1/s)p(—i/s). But p(—i/s) =
—p(1/5),30 a = —a2p(1/s)?, for a constant a independent of s. From any of our examples
we conclude o = —p(1/5)%.

The Weierstrass g function parametrizes the z-coordinates of points on an elliptic curve.
For the lattice spanned by 1 and i that elliptic curve is 4 = 2 +z. For any z, w in the lattice,
(p(2), () and (p(w), ’'(w)) are points on the elliptic curve, and (p(z + w), p'(z + w)) =
(p(2), ' (2)) + (p(w), () where the second sum is the group law on the elliptic curve.

The curve y? = 2 + z has complex multiplication defined over Q(7). The map i sending
(x,y) to (—z,dy) is a group homomorphism, and when iterated twice is negation. Thefore
the endomorphism ring is the ring of integers in Q(¢), and we can define multiplication on
the curve not just for integers, but for Gaussian integers.

The Gaussian integers are a unique factorization domain, in fact a principal ideal domain.
The nonzero prime ideals are maximal, and are either (p) for p a prime 3 mod 4 in the
integers, or (a + ib) where a? + b? = ¢, a prime 1 mod 4 in the integers, or (1 + 7).

In Silverman’s discussion of the theory of complex multiplication in [21, Chap. 2, Thm. 5.6],
he constructs the ray class field for a divisor d in Q(¢) by adjoining the squares of the a-
coordinates of points which are d torsion points on y? = 2% + x to Q(i). The ray class
field has degree equal to the order of the ray class group. We know that « falls in the field

o =

f(2)
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generated by the s torsion points and not any of the smaller ray class fields. In fact, the
action of the Galois group of the ray class field is given by multiplication by the ray class
group. This action is transitive, and so the minimal polynomial of « over Q(¢) has degree
equal to the order of the ray class group.

The ray class group is defined as the set of all ideals relatively prime to s modulo the set
of principal ideals generated by g such that § — 1 is divisible by s. This is isomorphic to the
set of units in Z(7)/sZ(i) modulo the units of Z(7). The size of this group is exactly m(s) by
use of inclusion-exclusion: for a number d in Z(7) there are N(d) elements of Z(), and we
wish to count the ones which are not divisible by any divisor of d, exactly analgous to the
computation of ¢(n) for a regular integer.

More specifically 4m(s) is the number of units in Z(7)/sZ(7). Extend the M§’bius function
p to Z(i) with the same definition: 0 for non-squarefree arguments, and (—1)* for numbers
with & prime factors. Define p(s) = 4m(s) to be the number of units in Z(7)/sZ(3).

Then p(s) = > 4 qn(d/k)N(k). This is a multiplicative function, and so 4m(s) =
[L,eija p(p?). The primes in Z(i) are either a + bi and a — bi with a? +b? a prime 1 mod 4
or ordinary primes which are 3 mod 4, or (1 + ).

If s is divisible by a + bi with b nonzero it is also divisible by a — bi by the same amount
as it is real. So we can rewrite the product decomposition as a product over ordinary primes,
and then have to evaluate p(p®) for an ordinary prime. If the prime is 3 mod 4 this is just
p?¢i — p*(©=1)_ If the prime is 1 mod 4 this is (p® — p%~1)2. If the prime is 2 this is 2.
Some algebra now shows that this is equvalent to formula 3.

When we consider K/Q we obtain an extension where the subgroup of the Galois group
fixing Q(¢) is normal, as it has index 2 in the Galois group, by [13, Thm. 5.5.6]. Because it
is normal it is fixed under conjugation.

Now, a is real, and so writing ¢s(z) = [[, (¢ — Ta) where 7 ranges over the elements of
the Galois group of K/Q fixing Q(i) we see that

oqs(x) = H(w —oTQ) = H(x —TO0Q) = H(Jc —Ta) = ¢s(x)

T T T

by the normality of the set of 7. Therefore ¢(z) has real coefficients.

Our gs(x) does not have integral coefficients, but merely rational. However, p,(z) is
¢s(—x) times some constant, and so Kimberley’s formula is true. Note that if P = (z,y) on
the elliptic curve y? = 23 + x is a 2s torsion point, so is P + (0,0) which has x-coordinate
1/z by applying the addition formulas. Furthermore P and P + (0,0) have the same order.
Therefore go5(x) is a reciprocal polynomial as conjectured, and so is pos(x).

We finish by observing that the same building blocks were used in the orginal more
primitive proof [5] of algebraicness of a.
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