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ABSTRACT

Jonathan M. Borwein

Director
Newcastle Centre for

Computer Assisted Research Mathematics

Integer Relation Methods were named as one of the 'top ten'
algorithms of the 20th century by Computers in Science and in
Engineering (1999).

In my talk | will outline what Integer Relation Methods are and | will
illustrate their remarkable utility on a variety of mathematical
problems, some pure and some applied.

"The object of mathematical rigor is to sanction and legitimize the conquests of
intuition, and there was never any other object for it." — Jacques Hadamard
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INTEGER RELATION ALGORITHMS:
WHAT THEY ARE

Let (x,) be a vector of real numbers. An integer relation
algorithm finds integers (a,) such that

a1x1 +arxo + -+ anxn, = O

or provides an exclusion bound

— i.e., testing linear independence over Q

At present, the PSLQ algorithm of mathematician-
sculptor Helaman Ferguson is the best known integer
relation algorithm.

* High precision arithmetic software is required: at least
d x n digits, where d is the size (in digits) of the largest of
the integers a,.



INTEGER RELATION ALGORITHMS:
HOW THEY WORK

Let (x,) be a vector of real numbers. An integer relation
algorithm finds integers (a,) such that

or provides an exclusion bound.

PSL () operates by developing, iteratively, an integer matrix A that successively
reduces the maximum absolute value of the entries of the vector y = Ax, until
one of the entries of y is either zero or within roughly 1077 of zero, where p is
the numeric precision used.

Any integer relation detection scheme needs data to at least nd-digit precision:
via a simple pigeonhole analysis. Assume the x vector does not satisfy an integer
relation, with |x;| < 1. Suppose all a; satisfy |a;| < 10%. Then D 1<j<n G5 T;
will assume one of 2710"? values in [—n109,n10%], depending on a. The average
distance between these values is 2n27"104~"¢. Thus, an interval of size 10~P
around zero is likely to contain a spurious “relation” unless p is significantly
larger than nd — d.




INTEGER RELATION ALGORITHMS:
HOW THEY WORK

PSLQ is a combinatorial optimization algorithm designed
for (pure) mathematics
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The method is “self-diagnosing”---- the error drops
precipitously when an identity is found. And basis
coefficients are “small”.



TOP TEN ALGORITHMS

» Integer Relation Detection was recently ranked
among "“the 10 algorithms with the greatest influ-
ence on the development and practice of science
and engineering in the 20th century.” J. Dongarra,

F. Sullivan, Computing in Science & Engineering 2
(2000), 22-23.

Also: Monte Carlo, Simplex, Krylov Subspace, QR
Decomposition, Quicksort, ..., FFT, Fast Multipole
Method.

* integer relation detection (PSLQ, 1997) was the most
recent of the top ten
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HELAMAN FERGUSON

SCULPTOR and MATHEMATICIAN

PROFILE: HELAMAN FERGUSON

Carving His Own Unique Niche,
In Symbols and Stone

By refusing to choose between mathematics and art, a self-described “misfit” has
found the place where parallel careers meet

BALTIMORE, MARYLAND—Helaman
Ferguson’s sculpture studio is set back
from the road, hidden behind a construc-
tion site. Inside, pieces of art line shelves
and cover tabletops. Ferguson, clad in a
yellow plastic apron and a black T-shirt,
serenely makes his way through the
room. The 66-year-old is tall and white-
haired, his bare arms revealing a strength
requisite for his avocation.

The most striking work in the studio is a
more than 2-meter-tall, 5-ton chunk of gran-
ite. When it is finished, it will stand in the
entry to the science building at Macalester
College in St. Paul, Minnesota. Right now, it
is a mass of curving surfaces sloping in dif-
ferent directions, its surface still jagged
with the rough grains left by the diamond-
toothed chainsaw Ferguson uses to carve
through the stone.

“I'm in my negative-Gaussian-curvature
phase,” Ferguson says. “Say we're going to
shake hands, but we don’t quite touch. OK,
see the space between the two hands?” That
saddle-shaped void, he explains, is a perfect
example of negative Gaussian curvature.
Our bodies contain many others, he adds:
the line between the first finger’s knuckle
and the wrist, for instance, and where the
neck meets the shoulders.

The topological jargon is no surprise:
Ferguson spent 17 years as a mathematics
professor at Brigham Young University

(BYU) in Provo, Utah. What is unusual is
how successfully he has pursued a dual
career as mathematician and artist and the
ease with which he blurs the categories.
Math inspires and figures in almost all of
Ferguson’s artistic works. Through
them, he has helped some mathe-
maticians appreciate the
artist’s craft and aesthetic.
And he’s persuaded per-
haps even more artists
that math may not be
as frighteningly elu-
sive as they believe,
or even if it is out of
their reach, it’s as
beautiful as any
work of art they
might imagine. “The
way he has brought
together the worlds
of science and the
arts—this is an admirable
thing,” says Harvey
Bricker, Ferguson's former
college roommate.

Twin callings

Ferguson himself finds it hard to say which
calling came first. As a teenager in upstate
New York, he learned stone carving as an
informal apprentice to his adopted father, a
stonemason. Artistically, however, he was

more drawn to painting. After finishing
high school in 1958, he wanted to study art
as well as math. He chose Hamilton Col-
lege, a liberal arts school in upstate New
York near where he had spent most of his
childhood, where he could do both.

After getting his math degree, he
enrolled in a doctoral program in math at the
University of Wisconsin, Madison. He paid
for some of his living expenses by selling
paintings. He also met and began dating an
undergraduate art student, Claire. The cou-
ple married in 1963 and had their first child
(of an eventual seven) in 1964. Ferguson
dropped out of school for a couple of years
to work as a computer programmer, then
resumed his math studies. He obtained his
master’s degree in mathematics at BYU and
a doctorate in group representations—a
broad area of math that involves algebra,
geometry, topology, and analysis—at the
University of Washington, Seattle. In 1971,
he accepted an appointment as assistant
professor at BYU.

As a mathematician, Ferguson is perhaps
best known for the algorithm he developed
with BYU colleague Rodney Forcade. The
algorithm, called PSLQ, finds mathemati-
cal relations among seemingly unrelated
real numbers. Among many other applica-
tions, PSLQ provided an efficient way of
computing isolated digits within pi and
blazed a path for modeling hard-to-calculate

particle interactions in quantum physics.
In 2000, the journal Computing
in Science and Engineering
named it one of the top

Function-al form. The
Fibonacci Fountain at
the Maryland Science
and Technology Center
was inspired by the
“golden ratio.”

10 algorithms of
the 20th century.
Meanwhile,
Ferguson’s artistic
career also developed
apace. When he married
Claire, a painter, the two
struck a deal: “I get the
floors, she gets the walls,” he
says. He began focusing more on
sculpture, The art department at BYU
allotted him some studio space, and he
turned out a regular stream of work. He’s
done commissions for the Maryland Sci-
ence and Technology Center, the University
of California, Berkeley, the University of
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St. Thomas in St. Paul, and many other insti-
tutions. He has also designed small sculp-
tures for awards presented by the Clay Math-
ematics Institute in Cambridge, Massachu-
setts, the Canadian Mathematical Society in
Ontario, and the Association for Computing
Machinery in New York City.

He has worked to keep a foot in each of
the “two cultures.” While at BYU, he taught
a course each year for honors students
called Qualitative Mathematics and Its
Aesthetics. Both art students and math stu-
dents enrolled: the artists looking for a
palatable way to take in a math require-
ment, and the math students lured by the
promise of higher level mathematics. Fer-
guson delivered on both ends. He taught
concepts mathematicians don't normally
encounter until graduate school, such as
braid theory. Artists could relate to braids
as physical objects, rope or hair that can be
woven into a specific form. But students
were also asked to write down an algebra to
go along with how the braid was formed—
a noncommutative algebra.

“Some of these folks were in there
because they were either afraid of or hated
math,” says Ferguson. At the end of the
semester, however, “quite a few art students
wanted a follow-on semester—
more math, more art.”

Bridging

Ferguson, who left BYU in 1988,
now devotes most of his time to
his art. For his large-scale or
complicated pieces, he uses
computer programs such as
Mathematica to form and refine
the shape he wants the finished
piece to take. “With sculpture,
you want a piece to be a unit so it
has direct impact as a form,” he
says. “Sculptures are compli-
cated enough already.” With
computer programs, he says,
before even putting hand to stone
“you can walk around [the piece]
and see a different view; you can
touch it and reshape it to make it
simpler and more direct.”

Once the design is in place,
Ferguson turns to the task of
carving the stone. He works
alone, without assistants. using
both chisels and assorted power
tools. Finally comes a lengthy
smoothing process, going from
20-grit sandpaper to as fine as
8500-grit. Ferguson has to work
“wet” much of the time, using

Tough medium. A diamond-teothed c
carve through granite rocks that are up to a billion years old.

water to wash down the fine parti-
cles of stone that could otherwise
become deposited in his lungs. For
some of the work, he dons gloves
made of woven stainless steel and
a positive-pressure facemask.
A large sculpture can take sev-
eral months to complete,
working flat-out.

Granite is Ferguson's
favorite medium. “Math-
ematics is kind of time-
less,” he says, “so incor-
porating mathematical
themes and ideas into geo-
logically old stone—that’s
something that has great aesthetic
appeal to me.” He also likes the idea that his
sculptures will be around for millions or
even billions of years.

The finished sculptures vary widely in
appearance. Some are delicate, with
looped projections or intricate imprints,
and are small enough to hold in one’s hand.
Others are massive, meant to be touched,
even climbed on (as many children have
discovered). As a rule, they also contain
much more detail than meets the eye. “My
work generally involves a circle of ideas,”

nsaw helps Ferguson

Twisted. Braids and
knots turn up in many
of Ferguson’s works,
including these small
metal sculptures

says Ferguson.
People he interacts
with, new information
he obtains, mathematics
he has had on his mind—
all of these become “part of
the design consideration.”

As an example, he cites
an architectural-scale
sculpture recently installed

outside his alma mater Hamilton
College’s new science building. The work,
made of 10-centimeter-thick granite, cen-
ters on a pair of massive disks representing
the planets Mars and Venus. “Venus” is
exactly 161 centimeters in diameter—the
height of the average female Hamilton stu-
dent. taken from the records of one of the
college’s psychology professors. “Mars” is
174 centimeters in diameter—the average
male student’s height. The disks are inlaid
with tiles in a pattern defined by the
Poincaré and Beltrami-Klein models of
plane hyperbolic geometry.

Ferguson’s admirers say his artwork goes
far beyond academic exercises. David
Broadhurst, a physicist at the Open Univer-
sity in Milton Keynes, UK., learned about
Ferguson’s sculpture after using the PSLQ
algorithm in his research in quantum

mechanics. He compares Ferguson’s artistic
renderings of math to Fournier playing the
Bach cello suites, “giving expression to
abstract forms, whose beauty is preexistent
to the interpretation, yet recreated in a
widely accessible medium.”

For his part, Ferguson says his lifelong
project to embody mathematics in mass and
form is very much in the spirit of the times
and he credits technology with making it all
possible. “We're living in the golden age of
art, we really are. But it’s also the golden age
of science.” he says. “Today, young people
have seen more art and science in, say, their
first 25 years of life than anyone in the years
before that.” With the collaborations between
computer scientists and artists, and tools for
art being used as tools for scientific explo-
ration and invention, Ferguson suggests we
may be in the midst of a second Renaissance.
“It’s a great time to be alive,” says Ferguson,
“because there are more places for misfits
like myselfto survive”

—KATHERINE UNGER
Katherine Unger is a writer in Washington, D.C.
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Peter Borwein
in front of
Helaman Ferguson’s
work

CMS Meeting
December 2003
SFU Harbour Centre

Ferguson uses high
tech tools and micro
engineering at NIST
to build monumental
math sculptures




MADELUNG’s CONSTANT
David Borwein CMS Career Award

This polished solid silicon bronze sculpture is inspired by the work of David
Borwein, his sons and colleagues, on the conditional series above for salt,
Madelung's constant. This series can be summed to uncountably many
constants; one is Madelung's constant for electro-chemical stability of
sodium chloride.

This constant is a period of an elliptic curve, a real surface in four dimensions.
There are uncountably many ways to imagine that surface in three
dimensions; one has negative gaussian curvature and is the tangible form of
this sculpture. (As described by the artist.)


../My Documents/JB616/My Documents/My Pictures/Family Canada Oz/Family/Parents/borweinSculptureLrg.jpg




INTEGER RELATION ALGORITHMS:
WHAT THEY DO: ELEMENTARY EXAMPLES

-ALGEBRAIC NUMBERSI

Compute «a to sufficiently high precision (O(n2))
and apply LLL to the vector

2 —1
(1’06,&’.”’&?1 )

e Solution integers a; are coefficients of a polyno-
mial likely satisfied by «a. /

An application was to determine explicitly
the 4t and 5t bifurcation points of the
logistics curve have degrees 256.




FINALIZING FORMULAE

» If we suspect an identity PSLQ is powerful.

e (Machin's Formula) We try PSLQ on

1 1
arctan(1l),arctan(—=),arctan(——
[ (1) (5) (239)]
and recover [1, -4, 1]. That is,
vie 1 1
— = 4 arctan(—=) — arctan(——).
4 (5) (239)

[Used on all serious computations of = from
1706 (100 digits) to 1973 (1 million).]

If we try with arctan(1/238) we obtain hugelintegers
e (Dase’s ‘mental’ Formula) We try PSLQ on
[arctan(1), arctan(%), arctan(é), arctan(é)]
and recover [-1, 1, 1, 1]. That is,
T 1 1 1
7= arctan(a) | arctan(g) | arctan(g).

[Used by Dase for 200 digits in 1844.] In hid head




INTEGER RELATIONS in MAPLE

> with(IntegerRelations) ;Digits:=25;
[LLL, LinearDependency, PSLQ]

L Digits =25 2)
> PSLQ([Pi,arctan(l/2),arctan(1l/5),arctan(1/8)1):
L [1, -4, -4, -4] 3)
> PSLQ([Pi,arctan(1l/2),arctan(1l/5),arctan(1/9)1]1);
[10129, 2473744, -4734091, -2207521] @

_>Pi, [arctan (1/2) ,arctan(1l/5) ,arctan(1/8)1);

[1, 4,4, 4], "Error is", -2. 10> "checking t0", 35, places

n=4arctan(%) +4arctan(%)+4arctan(%) 6))
_> a:=evalf (sgqrt (3)+sqrt(5)) ;identify(a);
a :=3.968118785068666989936620
V3 +V5 ©6)

| > ?identify

 Maple also implements the Wilf-Zeilberger algorithm
 Mathematica can only recognize algebraic numbers



INTEGER RELATION ALGORITHMS:
WHAT THEY DO: ADVANCED EXAMPLES

* THE BBP FORMULA FOR PI
* PHYSICAL INTEGRALS

—ISING AND QUANTUM FIELD THEORY
* APERY SUMS

—AND GENERATING FUNCTIONS
 RAMANUJAN SERIES FOR 1/7V




The BBP FORMULA for Pi

In 1996 Bailey, P. Borwein and Plouffe, using PSLQ for
months, discovered this formula for r:

> 1 4 2 1 1

ro= 3 k( _ _ _
16k \8k+1 8k+4 8k+5 8k+6

Indeed, this formula permits one to directly calculate
binary or hexadecimal (base-16) digits of ® beginning at
an arbitrary starting position n, without needing to
calculate any of the first n-1 digits.

A finalist for the Edge of Computation Prize, it has been
used in compilers, in a record web computation, and in
a trillion-digit computation of Pi.



PHYSICAL INTEGRALS (2006-2008)

The following integrals arise independently in mathematical
physics in Quantum Field Theory and in Ising Theory:

Cn = H/o /0 (

We first showed that this can be transformed to a 1-D integral:
2 oo

Cn = — tKy(t) dt
n! Jo

where K, is a modified Bessel function. We then (with care) computed 400-

digit numerical values (over-kill but who knew), from which we found with

PSLQ these (now proven) arithmetic results:

1 1
Cz3 = L_3(2) = Z {(3n+1)2(3n‘|‘2)2}

n>0
-
6

De 27

1 duq
L
¥ (uj + 1/u;))” "1

Ca

lim C4,
n—0Q




IDENTIFYING THE LIMIT WITH THE ISC (2.0)

We discovered the limit result as follows: We first calculated:
Cilo24 = 0.630473503374386796122040192710878904354587...

We then used the Inverse Symbolic Calculator, the online numerical constant
recognition facility available at:
http://ddrive.cs.dal.ca/~isc/portal Boove © stz wano ot IR
Output: Mixed constants, 2 with elementary transforms. Inverse Symbolic Calculator
.6304735033743867 = sr(2)"2/exp(gamma)’2

Hewir wioul d you like to [nversely Calculate Today?

In other words,

De—27

C1o04 =

The Dev Team: Hathan Singer, Andrew Shouldice, Lingyun Ye,
Tomas Daske, Peter Dobcsamyi, Dante Manna, 0-Yeat Chan, Jon Borwein

References. Bailey, Borwein and Crandall, “Integrals of the Ising Class," J. Phys. A.,
39 (2006)

Bailey, Borwein, Broadhurst and Glasser, “Elliptic integral representation of Bessel
moments," J. Phys. A, 41 (2008) [loP Select]


http://ddrive.cs.dal.ca/~isc/portal
http://ddrive.cs.dal.ca/~isc/portal

APERY-LIKE SUMMATIONS

The following formulas for {(s) have been known for many decades

for Re(s) > 1 | The RH in Maple

G ((s) := fo:l ns
5 1
2= k2 (Qkk)
36 1
(4 = =
17 = k4 (%f)
These results have led many to speculate that
> (_1 k+1
'QS L= C(5)/ Z ( 5 )Qk
k=1 k (lg)

might be some nice rational or algebraic value.

Sadly (?), PSLQ calculations have established that if Qg satisfies a polynomial with

degree at most 25, then at least one coefficient has 380 digits. But positive results
exist.



APERY OGF’S (s) = §i8 oy 7o

1. via PSLQ to
5,000 digits
(120 terms)

w2
@@= ==

Z(z) 3 Z (%) L

> (k% - =

_ ok _ 1
. = Y @R+t = Y
2005 Bailey, Bradley & L—0 h_1 N =
JMB discovered and proved 1 — 7z cot(mx
- in 3Ms - three equivalent = 5 (r) { ﬁ redduced as
binomial identities 2T Op€
k—1 4 n?—m?
2n 1l=n+1 27 1 1

{ 3n2 k:%;rl (Qkk) (kg _ ng) — (2nn) - (3nn)

3n,n+1,—n 1
cla =] =
2n+1,n+1/2 4

2n
( n ) 3. was easily computer proven (Wilf-
(Sn) Zeilberger) (now 2 human proofs)




NEW RAMANUJAN-LIKE IDENTITIES

Guillera (around 2003) found Ramanujan-like identities, including:

1
32

i (—1)™r(n)°(13 + 180n 4+ 820n°) (
n=0

8 — . 1\ 5 2 l 2n
= = n:O( 1)(n)3(1 4 8n + 20n )(2)
32 2 & 7 2 3y (1)2"
3 = n;gfr‘(n) (14 14n+ 76n° + 168n )(8) :
where
) = D _ 1232 Gn=D/2 _ T+ 1/2)
n! n! ValT(n+1)

Guillera proved the first two using the Wilf-Zeilberger algorithm. He
ascribed the third to Gourevich, who found it using integer relation
methods. It is true but has no hint of a proof...

As far as we can tell there are no higher-order analogues!



Experiencing Experimental Mathematics
I { E F E I { E N C E S Experimental Mathematics in Action | Experiments in Mathematics (CD)

David H. Bailey, Jonathan M. Borwein, Neil J. Calkin, Roland Jonathan M. Borwein, David H. Bailey, Roland Girgensohn
Girgensohn, D. Russell Luke, Victor H. Moll I

“David H. Bailey et al. have done In the short time since the first edition of Mathematics
SECOND EDITION a fantastic job to provide very | by Experiment: Plausible Reasoning in the 21st Century
comprehensive and fruitful ex- | and Experimentation in Mathematics: Computational

amples and demonstrations on Paths to Discovery, there has been
Experimenta] how experimental mathematics a noticeable upsurge in interest in MR GEINAE]
Mathematics acts in a very broad area of both | using computers to do real math- JEIESELENLS
in Action pure and applied mathematical ematics. The authors have updated
research, in both academic and | and enhanced the book files and
industry. Anyone who is interest- are now making them available in
ed in experimental mathematics | PDF format on a CD-ROM. This CD
a should, without any doubt, read provides several “smart” features,
m a I’ h B m a I‘ l c 8 this book!” | including hyperlinks for all num-
= —Gazette of the | bered equations, all Internet URLs,
Australian Mathematical Societ bibliographic references, and an
b 9 E H P erimen I— g augmented search facility assists one with locating a
7/ 978-1-56881-271-7; Hardcover; $49.00 | particular mathematical formula or expression.
Prausiece Reasonine in the 2151 Century | 978-1-56881-283-0; CD; $49.00
Experimentation in Mathematics Mathematics by Experiment Second Edition
Computational Paths to Discovery Plausible Reasoning in the 21st Century
Jonathan M. Borwein, David H. Bailey, Roland Girgensohn Jonathan M. Borwein, David H. Bailey
Experimentation “These are such fun books to read! Actually, calling them books
ﬂ]ﬁ1 amatics does not do them justice. They have the liveliness and feel of great
tonst R IER R 1o s Web sites, with their bite-size fascinating factoids and their many ST e
human- and math-interest stories and other gems. But do not be by Experiment
fooled by the lighthearted, immensely entertaining style. You are
Jonathan Borwein going to learn more math (experimental or otherwise) than you -

ever did from any two single volumes. Not only that, you will learn
by osmosis how to become an experimental mathematician.”
—American Scientist Online

David Bailey

978-1-56881-136-9; Hardcover; $59.00 978-1-56881-442-1; Hardcover; $69.00

D.H. Bailey and JMB, “PSLQ: an Algorithm to Discover Integer Relations,”
Computeralgebra Rundbrief, October 2009.

JMB and P. Lisonék, “Applications of integer relation algorithms,”
Discrete Mathematics, 217 (2000), 65-82.

 www.experimentalmath.info is our website
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