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Abstract. In this paper we study infimal convolutions of extended-real-valued
functions in Hilbert spaces paying a special attention to the rather broad and

remarkable class of prox-regular functions. Such functions have been well rec-

ognized as highly important in many aspects of variational analysis and its ap-
plications in both finite-dimensional and infinite-dimensional settings. Based

on advanced variational techniques, we discover some new subdifferential prop-

erties of infimal convolutions and apply them to the study of Lipschitzian be-
havior of subdifferentials for prox-regular functions in Hilbert spaces. It is

shown, in particular, that the fulfillment of a natural Lipschitz-like property
for (set-valued) subdifferentials of prox-regular functions forces such functions,

under weak assumptions, actually to be locally smooth with single-valued sub-

differentials reduced to Lipschitz continuous gradient mappings.

1. Introduction

This paper is mainly devoted to the study of infimal convolutions of extended-
real-valued functions in Hilbert spaces, with our particular attention given to the
so-called prox-regular functions introduced in 1996 by Poliquin and Rockafellar [27]
in the context of finite-dimensional spaces. Since that time, this remarkable class of
functions has been demonstrated to be most useful in many aspects of variational
theory and its applications. On one hand, the construction of prox-regularity is able
to guarantee many desirable properties of such functions and, on the other hand, it
is broad enough to accommodate various important classes of functions including
lower semicontinuous convex functions, strongly amenable functions, or lower-C2

(i.e., continuous locally para-convex) functions [27]. More recently Bernard and
Thibault [6, 7, 8] generalized the concept of prox-regularity to infinite-dimensional
spaces and proved several fundamental results in infinite-dimensional settings. The
aim of our paper is to continue with further development of prox-regularity in
Hilbert spaces along those lines, namely to show new subdifferentiability properties
of prox-regular functions. Moreover, while extensions exist to uniformly convex
Banach space [9], the results below seem most useful and quite possibly valid only
in Hilbert spaces.
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The crucial tools of our analysis involve the aforementioned infimal convolutions
known also as regularizations or as Moreau/proximal envelopes. We study infimal
convolutions of lower semicontinuous functions defined on Hilbert spaces and obtain
new properties and characterizations using appropriate subdifferential construc-
tions. Then we establish more specific and stronger results for infimal convolutions
of prox-regular functions. It is worth mentioning that our techniques are signifi-
cantly different from those developed earlier (see, e.g., [6, 7, 8, 19, 17, 14, 27] and
the references therein). In particular, we completely avoid employing the so-called
f -attentive localization of subdifferentials for the functions under consideration.

Based on the infimal convolution techniques and results developed herein, we
prove in the general Hilbert space setting that the underlying subdifferential map-
ping for a prox-regular function turns out to locally single-valued and Lipschitz
continuous under rather mild and seemingly natural requirements. This fact has a
number of interesting consequences in variational theory and applications some of
which are discussed in the paper.

The rest of the paper is organized as follows. Section 2 contains basic definitions
and preliminaries widely used in the subsequent material. For the central result of
Theorem 2.3 (a striking characterization of C1,1 functions via para-convexity and
para-concavity) we give a new proof based in second-order differentiability.

Section 3 concerns subdifferential properties of infimal convolutions for lower
semicontinuous functions in Hilbert spaces. Some of the results presented here are
known in finite dimensions while others are new in both finite-dimensional and
infinite-dimensional settings.

Sections 4 and 5 contain the main results of the paper. In particular, Theorem 4.9
establishes the uniform prox-regularity of infimal convolutions of prox-regular func-
tions in Hilbert spaces with computing the corresponding moduli. Theorem 4.11
justifies a local C1,1 property for infimal convolutions of such functions. Finally,
Theorem 5.4 proves the aforementioned local single-valuedness and Lipschitz conti-
nuity of the subdifferential mappings for prox-regular functions on Hilbert spaces.

Our notation is basically conventional in the area of variational analysis; see, e.g.,
[11, 25, 30] and Section 2 for more details. Recall that, given a set-valued mapping
F : H ⇒ H from a Hilbert space to itself, the Painlevé-Kuratowski outer/upper
limit of F (x) as x→ x is defined by

Lim sup
x→x

F (x) :=
{
x∗ ∈ H

∣∣∃ sequences xn → x, x∗n ∈ F (xn), x∗n
w→ x∗

}
,

where the symbol w→ signifies the sequential convergence in the weak topology of H.

2. Some Preliminaries with Alternative Proofs

Let H be a real Hilbert space endowed with the inner product 〈·, ·〉 : H×H → R.
The induced norm is denoted by ‖ · ‖ and an open ball centered at x ∈ H by
Bδ(x) :=

{
y ∈ H

∣∣ ‖x− y‖ < δ
}
. Given a set A ⊂ H, denote the norm closure

of A by A and weakly closed convex hull by coA. By the domain of a function
f : H → (−∞,∞] we mean the set dom f := {x ∈ H| f(x) < ∞}, whereas the
domain of a multifunction/set-valued mapping F : H ⇒ H is the set domF :=
{x ∈ H| F (x) 6= ∅}. The Gâteaux derivative of a function f : H → R at a point
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x ∈ H is denoted by ∇f(x), and the derivative at x ∈ H in a direction u ∈ H by

f ′(x;u) := lim
t↓0

f(x+ tu)− f(x)
t

.

The symbol δΩ stands for the indicator function of a set Ω ⊂ H, that is, δΩ(x) := 0
for x ∈ Ω and ∞ otherwise. If f : H → (−∞,∞] is a function and (xn) ⊂ H a
sequence, we define f -attentive convergence of (xn) by

xn →f x if xn → x and f(xn)→ f(x).

We say that a function f : H → (−∞,∞] is lower semicontinuous around x ∈ H if
there exist α, β > 0 such that f is lower semicontinuous on{

y ∈ H
∣∣ ‖x− y‖ < α, f(y) < f(x) + β

}
.

Lower semicontinuity is often be abbreviated to lsc in what follows.

Definition 2.1. We say that a function f : H → (−∞,∞] is:
(i) locally para-convex around x ∈ H if the function f+ λ

2 ‖ ·‖
2 is convex

and continuous on Bδ(x), for some δ > 0, and λ ≥ 0;
(ii) locally C1,1 (known also as C1,+) around x ∈ H if the derivative ∇f

exists everywhere inside of Bδ(x), for some δ > 0, and the derivative
mapping y 7→ ∇f(y) is Lipschitz continuous on Bδ(x);

(iii) locally directionally C1,1 around x ∈ H if ∇f exists on Bδ(x), for
some δ > 0, and there is λ > 0 such that for all u, v ∈ Bδ(x) we have

|〈∇f(u)−∇f(v), u− v〉| ≤ λ‖u− v‖2.
A function f : H → R ∪ {−∞} is locally para-concave around x ∈ H if the
function −f is locally para-convex around x ∈ H.

The following remarkable result was proved in [20, Corollary 2].

Proposition 2.2. Let f : H → R be a Gâteaux differentiable function, and let
λ > 0. Then f is locally directionally C1,1 with Lipschitz constant λ if and only if
f is locally C1,1 with Lipschitz constant λ.

To the best of our knowledge, Hiriart-Urruty and Plazanet [20] have been the first
to observe, along with Proposition 2.2, that a real-valued function is locally C1,1

if it is simultaneously locally para-convex and para-concave. A related observation
was implicitly used in [22]. We now provide, employing some ideas from [15], an
alternative proof indicating the new lines of connection of this set of results to
second-order differentiability via the classical Alexandrov theorem; see [10] and the
references therein.

Theorem 2.3. A function f : H → R is locally C1,1 around x ∈ H if and only if
it is simultaneously locally para-convex and locally para-concave around x.

Proof. Suppose f is C1,1 in Bδ(x). Then ∇f is Lipschitz in Bδ(x) with a Lipschitz
constant λ > 0. This gives, for u, y ∈ Bδ(x) and α ∈ [0, 1], that

|〈∇f(αy + (1− α)u)−∇f(u), y − u〉|

=
1
α
|〈∇f (α(y − u) + u)−∇f(u), α(y − u)〉|

≤ αλ‖y − u‖2,
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and so we have the relationships

f(y)− f(u)− 〈∇f(u), y − u〉

=
∫ 1

0

〈∇f (αy + (1− α)u)−∇f(u), y − u〉dα

≥ −λ‖y − u‖2
∫ 1

0

α dα = −λ
2
‖y − u‖2

= −λ
2
(
‖y‖2 − ‖u‖2 + 2‖u‖2 − 2〈u, y〉

)
.

The latter implies the gradient/subgradient inequality of convex analysis

f(y) +
λ

2
‖y‖2 −

(
f(u) +

λ

2
‖u‖2

)
≥ 〈∇f(u) + λu, y − u〉

thus verifies that the function f + λ
2 ‖ · ‖

2 is convex inside of Bδ(x). It is clear, by
a similar argument, that f − λ

2 ‖ · ‖
2 is concave in Bδ(x) when f is C1,1 inside the

ball Bδ(x). This justifies the “only if” part of the theorem.
For the converse, note that we may take λ > 0 sufficiently large so that both

f + λ
2 ‖ · ‖

2 is convex and f − λ
2 ‖ · ‖

2 is concave in some neighborhood Bδ(x). Then
at each point x ∈ Bδ(x) there exists a subgradient v(x) ∈ ∂

(
f + λ

2 ‖ · ‖
2
)

(x) and a
supergradient w(x) ∈ ∂

(
f − λ

2 ‖ · ‖
2
)

(x). Thus we have

〈v(x), u− x〉 − λ

2
(
‖u‖2 − ‖x‖2

)
≤ f(u)− f(x) ≤ 〈w(x), u− x〉+ λ

2
(
‖u‖2 − ‖x‖2

)
.

To proceed with proving f ∈ C1,1 around x, let us show first that the gradient
∇f(x) exists. Use u = x+ tz in the above inequalities to obtain

〈v(x)− λx, z〉 − λ

2
t‖z‖2 ≤ 1

t
(f(x+ tz)− f(x)) ≤ 〈w(x) + λx, z〉+

λ

2
t‖z‖2.

By letting t ↓ 0, we get the inequalities

〈v(x)− λx, z〉 ≤ f ′(x; z) ≤ 〈w(x) + λx, z〉 for all z.

The linearity of the functions in the upper and lower bounds in z implies that

v(x)− λx = w(x) + λx := ∇f(x).

It remains to prove the Lipschitz continuity of ∇f on Bδ(x). For any given x, x′ ∈
Bδ(x), consider the convex function of one variable

α 7→ f(αx+ (1− α)x′),

which is differentiable with derivative

f ′ (αx+ (1− α)x′) = 〈∇f (αx+ (1− α)x′) , x− x′〉.

From the classical Alexandrov theorem on the real line we know that for each λ > 0
the real-valued function

α 7→ f(αx+ (1− α)x′)± λ

2
‖αx+ (1− α)x′‖2

is twice differentiable almost everywhere, with respect to Lebesgue measure, on the
interval [0, 1]. At each point of second-order differentiability α ∈ S+ ⊂ [0, 1] of the
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function α 7→ f (αx+ (1− α)x′) + λ
2 ‖αx+ (1− α)x′‖2 we have

d2

dα2

(
f(αx+ (1− α)x′) +

λ

2
‖αx+ (1− α)x′‖2

)
≥ 0.

This gives us the estimate

d2

dα2
f(αx+ (1− α)x′) ≥ −λ‖x− x′‖2.

Similarly, for every point of second-order differentiability α ∈ S− ⊂ [0, 1] of the
function α 7→ f (αx+ (1− α)x′)− λ

2 ‖αx+ (1− α)x′‖2 we have

d2

dα2
f (αx+ (1− α)x′) ≤ λ‖x− x′‖2.

Then for α ∈ S+ ∩ S− the following inequality holds:∥∥∥∥ d2

dα2
f (αx+ (1− α)x′)

∥∥∥∥ ≤ λ‖x− x′‖2.
Since S+ ∩ S− is a set of full Lebesgue measure on [0, 1], we get

‖〈∇f(x)−∇f(x′), x− x′〉‖ ≤
∫ 1

0

∥∥∥∥ d2

dα2
f(αx+ (1− α)x′)

∥∥∥∥ dα

≤ λ‖x− x′‖2
∫ 1

0

dα = λ‖x− x′‖2

and thus complete the proof of the theorem. �

We will see in Theorem 4.11 that the result of Theorem 2.3 allows us to provide
a direct proof of the fact that every lsc prox-regular function defined on a Hilbert
space admits a C1,1 infimal convolution. Let us now recall the definition of the
latter construction, which plays a crucial role in this paper.

Infimal convolutions. Given λ > 0 and f : H → (−∞,∞], define the infimal
convolution of f at x ∈ H by

fλ(x) := inf
u∈H

(
f(u) +

1
2λ
‖x− u‖2

)
(1)

and the corresponding proximal mapping by

Pλ(x) := arg max
u∈H

(
f(u) +

1
2λ
‖x− u‖2

)
.(2)

The next simple proposition is useful in what follows.

Proposition 2.4. For any function f : H → (−∞,∞] the infimal convolution (1)
is para-concave around each point x ∈ dom f .

Proof. Applying the infimal convolution (1) to any (nonconvex) function f , we get
by definition the following equalities:

−
(
fλ(x)− 1

2λ
‖x‖2

)
= −

[
inf
u∈H

(
f(u) +

1
2λ
‖x− u‖2

)
− 1

2λ
‖x‖2

]
= sup
u∈H

[
1
λ
〈x, u〉 −

(
1

2λ
‖u‖2 + f(u)

)]
.
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The latter function is a supremum of affine functions, and so it is convex. Thus the
function fλ − 1

2λ ‖·‖
2 is concave, and consequently fλ is para-concave. �

It is worth mentioning here that when f is prox-regular (see Section 4), then
the function fλ + 1

2λ‖ · ‖
2 is convex for λ sufficiently small. We can also show that

fλ is a locally Lipschitzian function for λ sufficiently small, and furthermore the
Lipschitz constant can be taken of order O(λ−1).

3. Subdifferential Properties of Infimal Convolutions

In this section we establish some new properties of infimal convolutions such as
are needed for deriving the main results in Sections 4 and 5. Our close attention
is paid here to so-called prox-bounded functions f : H → (−∞,∞] (see [30]), which
can be equivalently described as follows: there is r ∈ R such that the function
f + r

2‖ · ‖
2 is bounded from below. The latter is the same as the assumption that

f can be quadratically minorized, by a quadratic function of the form α− r
2‖ · ‖

2.
Thus a sufficient condition for fλ > −∞ is that λ < (max{0, r})−1, and then
Pλ(x) 6= ∅ for the proximal mapping (2). The infimum of all such r is denoted
by r(f). It is possible that r(f) < 0, and so we define the nonnegative modulus
r(f) := max{r(f), 0}. The number λf := (r(f))−1 is called the proximal threshold
for f , with the convention that 1/0 := ∞. Therefore, for r(f) < 0 we get that
fλ > −∞ whenever λ > 0. It is well known that the family {fλ}λ>0 converges to f
monotonically (upward) pointwise, and hence it epi-converges to f [10, 30]. It also
converges uniformly on bounded sets when f is continuous and real-valued.

Let us next define the notions of generalized differentiability widely used in this
and subsequent sections; see [11, 12, 14, 25, 30, 31] for more details and references.

Definition 3.1. Consider f : H → (−∞,∞] and x ∈ dom f .

(i) We call p ∈ H a proximal subgradient of f at x if there is r ≥ 0 with

f(x′) ≥ f(x) + 〈p, x′ − x〉 − r

2
‖x′ − x‖2

for any x′ from some neighborhood of x. The proximal subdifferential
∂pf(x) of f at x is the collection of all proximal subgradients of f at x.

(ii) The (basic, limiting, Mordukhovich) subdifferential of f at x is

∂f(x) = Lim sup
x′→fx

∂pf(x′) :=
{

weak− lim vn
∣∣ vn ∈ ∂pf(xn), xn →f x

}
.

(iii) Let p ∈ H and Q be a symmetric bilinear form on H. A pair (p,Q) belongs
to the subjet of f at x if there exists δ > 0 such that for all x′ ∈ Bδ(x)
we have the inequality

f(x′) ≥ f(x) + 〈p, x′ − x〉+
1
2
Q (x′ − x, x′ − x) + o

(
‖x′ − x‖2

)
.

In this case we write (p,Q) ∈ ∂2,−f(x).

It follows from the definitions that p ∈ ∂pf(x) if and only if (p,Q) ∈ ∂2,−f(x)
for some symmetric bilinear form Q on H.

Definition 3.2. Let f : H → R be locally Lipschitzian around x ∈ H. The (Clarke)
generalized directional derivative of f at x in the direction u ∈ H, denoted
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by f◦(x;u), is defined as follows:

f◦(x;u) := lim sup
y→x
t↓0

f(y + tu)− f(y)
t

,

where y ∈ H and t > 0. The (Clarke) generalized gradient of f at x is

∂Cf(x) :=
{
z ∈ H

∣∣ 〈z, u〉 ≤ f◦(x;u) for all u ∈ H
}
.

Observe further that f◦(x;u) = σ (∂Cf(x), u) := sup {〈z, u〉| z ∈ ∂Cf(x)}. When
f is locally Lipschitzian around x ∈ H, we have ∂Cf(x) = co ∂f(x); see, e.g., [25,
Theorem 3.57]. Thus we have for locally Lipschitzian functions that the ∂f(x) =
∂pf(x) implies that ∂f(x) = ∂Cf(x) by the convexity of ∂pf(x) and the weak
closedness of ∂f(x).

The next lemma is a slight modification of [13, Corollary 2.1].

Lemma 3.3. Let f : H → (−∞,∞] be a lsc function with dom f 6= ∅, let ∂•f stand
for either the basic subdifferential ∂f or the generalized gradient ∂Cf (in which case
we assume f to be locally Lipschitz), and let U be a convex subset of H. Then the
following characterizations hold:

(i) f is convex on U if and only if ∂•f is monotone in U , i.e.,

〈z∗1 − z∗2 , x1 − x2〉 ≥ 0

for all z∗i ∈ ∂•f(xi) and xi ∈ U ∩ dom ∂•f, for i = 1, 2.
(ii) f is para-convex on U if and only if ∂•f is hypomonotone, i.e., for each

x ∈ dom ∂•f ∩ U there are ε > 0 and r ≥ 0 such that Bε(x) ⊂ U and

〈z∗1 − z∗2 , x1 − x2〉 ≥ −r‖x1 − x2‖2

for all z∗i ∈ ∂•f(xi) and xi ∈ Bε(x) ∩ dom ∂•f, for i = 1, 2.

The next result provides an extension to the Hilbert space setting of the fact
observed in [14] in finite-dimensional spaces.

Lemma 3.4. Assuming that f : H → (−∞,∞] is lsc and prox-bounded, we have
that for all x ∈ dom f and λ > 0 sufficiently small the inclusion (p,Q) ∈ ∂2,−fλ(x)
implies the fulfilment of both inclusions (p,Q) ∈ ∂2,−f(x− λp) and

f(x− λp) = fλ(x)− λ

2
‖p‖2.

Proof. As in [2, Proposition 1.2a], given λ > 0 sufficiently small and x ∈ dom f,
there is ρ > 0 such that

fλ(x) = inf
y∈Bρ(x)

f(y) +
1

2λ
‖x− y‖2.

Choose a sequence εi ↓ 0 and pick yi ∈ Bρ(x) such that

(3) fλ(x) + εi ≥ f(yi) +
1

2λ
‖yi − x‖2.

The inclusion (p,Q) ∈ ∂2,−fλ(x) means there exists δ > 0 such that

fλ(x′) ≥ fλ(x) + 〈p, x′ − x〉+
1
2
Q(x′ − x, x′ − x) + o(‖x′ − x‖2)

≥ f(yi) +
1

2λ
‖x− yi‖2 − εi + 〈p, x′ − x〉+

1
2
Q(x′ − x, x′ − x) + o(‖x′ − x‖2).

(4)
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for x′ ∈ Bδ(x). Clearly, for all ξ ∈ H we have

(5) f(ξ) +
1

2λ
‖x′ − ξ‖2 ≥ fλ(x′).

Let us next demonstrate that yi → y := x− λp in the norm topology. Combine
(4) with (5), where we take ξ = yi and x′ = x+ α(x− yi)/λ− αp with α < 0 such
that ‖α(x− yi)/λ− αp‖ < δ, to get the estimate

1
2λ

∥∥∥∥x− yi + α
x− yi
λ
− αp

∥∥∥∥2

≥ 1
2λ
‖x− yi‖2 +

〈
p, α

x− yi
λ
− αp

〉
+ o(α2)− εi,

which upon simplification yields

εi ≥
∥∥∥∥x− yiλ

− p
∥∥∥∥2

+ o(α).

Now passing to the limit as α ↑ 0 shows that

λ2εi ≥ ‖(x− λp)− yi‖2,

and thus yi → y. Since f is lsc, we can pass to the limit in (4) as yi → y and get

(6) fλ(x′) ≥ f(y) +
1

2λ
‖x− y‖2 + 〈p, x′− x〉+ 1

2
Q(x′− x, x′− x) + o

(
‖x′ − x‖2

)
.

Substituting x′ = ξ − y + x with ‖ξ − y‖ < δ into (5) and (6) yields

f(ξ) ≥ f(y) + 〈p, ξ − y〉+
1
2
Q(ξ − y, ξ − y) + o(‖ξ − y‖2),

which in turn implies that
(p,Q) ∈ ∂2,−f(y).

Finally, from (3) we have fλ(x) = f(y) + 1
2λ‖x− y‖

2 and thus arrive at

fλ(x)− λ

2
‖p‖2 = f(y) +

1
2λ
‖x− y‖2 − λ

2
‖p‖2 = f(y) +

λ

2
‖p‖2 − λ

2
‖p‖2 = f(y),

which completes the proof of the lemma. �

Remark 3.5. A consequence of Lemma 3.4 is the observation that, whenever
p ∈ ∂pfλ(x) 6= ∅, the infimum in the infimal convolution is attained. Indeed, we
then have the equality

(7) fλ(x) = f(x− λp) +
1

2λ
‖x− (x− λp)‖2.

The next lemma allows us, in particular, to prove the reverse implication to (7).

Lemma 3.6. For any function f : H → (−∞,∞], any λ > 0 and x, p ∈ H we
have

(8) (f − 〈p, ·〉)λ (x) = fλ(x+ λp)− 〈p, x〉 − λ

2
‖p‖2.

Moreover, f(x) + λ
2 ‖p‖

2 = fλ(x+ λp) iff (f − 〈p, ·〉)λ (x) = f(x)− 〈p, x〉 iff

(9) f(w) ≥ f(x) + 〈p, w − x〉 − 1
2λ
‖x− w‖2 for all w ∈ H,

which in turn implies that p ∈ ∂pf(x).
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Proof. By direct calculation we get the relationships

(f − 〈p, ·〉)λ (x) = inf
w∈H

(
f(w)− 〈p, w〉+

1
2λ
‖w − x‖2

)
= inf
w∈H

(
f(w) +

1
2λ
(
‖λp‖2 − 2〈λp,w − x〉+ ‖w − x‖2

))
− 〈p, x〉 − λ

2
‖p‖2

= inf
w∈H

(
f(w) +

1
2λ
‖w − (x+ λp)‖2

)
− 〈p, x〉 − λ

2
‖p‖2

= fλ(x+ λp)− 〈p, x〉 − λ

2
‖p‖2,

which justify (8). Now suppose that f(x) + λ
2 ‖p‖

2 = fλ(x + λp) and deduce from
(8) the equalities

fλ(x+ λp) = (f − 〈p, ·〉)λ (x) + 〈p, x〉+
λ

2
‖p‖2 = f(x) +

λ

2
‖p‖2,

which give (f − 〈p, ·〉)λ (x) = f(x) − 〈p, x〉. By definition (1) of the infimal convo-
lution we have, for all w ∈ H, that

f(x)− 〈p, x〉 ≤ f(w)− 〈p, w〉+
1

2λ
‖x− w‖2,

and thus (9) holds. The latter is clearly equivalent to (f − 〈p, ·〉)λ (x) = f(x)−〈p, x〉.
By using finally (8), we arrive at

f(x)− 〈p, x〉 = fλ(x+ λp)− 〈p, x〉 − λ

2
‖p‖2,

which therefore justifies

fλ(x+ λp) = f(x) +
λ

2
‖p‖2

and completes the proof of the lemma. �

The next result concerning prox-bounded functions can be found in [17] in finite
dimensions; herein we extend it to the Hilbert space setting.

Lemma 3.7. Suppose that f : H → (−∞,∞] is lsc and prox-bounded. Let x ∈
dom f and 0 ∈ ∂pf(x). Then there exists a nonnegative number r such that

(10) f(x) ≥ f(x)− r

2
‖x− x‖2 for all x ∈ H.

Proof. Since 0 ∈ ∂pf(x) there exist r1 and δ > 0 ensuring that

f(x) ≥ f(x)− r1

2
‖x− x‖2 for all x ∈ Bδ(x).

From the prox-boundedness of f we find r > 0 and α ∈ R such that

f(x) ≥ α− r

2
‖x‖2

= α− r

2
‖x− x‖2 +

r

2
‖x‖2 + r〈x− x, x〉

≥ α− r

2
‖x− x‖2 +

r

2
‖x‖2 − r‖x‖ · ‖x− x‖
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for all x ∈ H. Now suppose that x /∈ Bδ(x) and hence ‖x− x‖ ≥ δ. Then

f(x) ≥ α− r

2
‖x‖2 ≥ α+

r

2
‖x‖2 − r

2

(
2
δ
‖x‖+ 1

)
‖x− x‖2.

Letting k := 2
δ ‖x‖, we find r2 ≥ 0 sufficiently large so that

α+
r

2
‖x‖2 − r(1 + k)

2
‖x− x‖2 ≥ f(x)− r2

2
‖x− x‖2

for all x /∈ Bδ(x). Hence

f(x) ≥ f(x)− r2

2
‖x− x‖2

for all x /∈ Bδ(x). Putting r := max{r1, r2} finishes the proof. �

Having established in Lemma 3.7 the existence of a value of r ≥ 0 for which (10)
holds, we take the smallest r satisfying (10) and denote this number by r(f, x).
It follows from the definitions of r(f, x) and of the nonnegative modulus of prox-
boundedness r(f) given at the beginning of this section that r(f, x) ≥ r(f).

The next result clarifies relationships between the prox-boundedness and proxi-
mal subdifferential of f on its domain.

Proposition 3.8. Suppose that f : H → (−∞,∞] is lsc and prox-bounded. Take
any x ∈ dom f, v ∈ ∂pf(x), and µ ∈ (0, 1/r), where r > 0 is such that

(11) f(x) ≥ f(x) + 〈v, x− x〉 − r

2
‖x− x‖2 for all x ∈ H.

Then we have the inclusion v ∈ ∂pfµ(x+ µv).

Proof. Since f is prox-bounded and v ∈ ∂pf(x), we know that there exists r > 0
satisfying (11). For all x ∈ H and µ ∈ (0, 1/r) it follows from (11) that

(f − 〈v, ·〉) (x) +
1

2µ
‖x− x‖2 ≥ (f − 〈v, ·〉) (x).

Hence we get the inequalities

f(x)− 〈v, x〉 ≥ (f − 〈v, ·〉)µ(x) ≥ f(x)− 〈v, x〉,
and thus (f − 〈v, ·〉)µ(x) = f(x)− 〈v, x〉. Employing (11) again gives us

f(x)− 〈v, x〉+
1

2µ
‖x− y‖2 ≥ (f − 〈v, ·〉)µ(x) +

1
2µ
‖x− y‖2 − r

2
‖x− x‖2

for any x and y ∈ H, which in turn yields by taking the infimum over x ∈ H that

(f − 〈v, ·〉)µ(y) ≥ (f − 〈v, ·〉)µ(x) + inf
x∈H

(
1

2µ
‖x− y‖2 − r

2
‖x− x‖2

)
= (f − 〈v, ·〉)µ(x)− r

2(1− rµ)
‖x− y‖2.

The latter ensures that 0 ∈ ∂p(f − 〈v, ·〉)µ(x). Applying further (8), we get

0 ∈ ∂p (f − 〈v, ·〉)µ (x) = ∂pfµ(x+ µv)− v,

which is equivalent to v ∈ ∂pfµ(x+ µp) and so completes the proof. �

Remark 3.9. If we define r(f, x, v) as the smallest r > 0 for which (11) holds, then
clearly r(f, x, 0) = r(f, x). It can be shown furthermore that r(f, x, v) is positive
for any x ∈ dom f such that v ∈ ∂pf(x) 6= ∅.
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To conclude this section, we establish an important representation of the basic
subdifferential for a prox-bounded function via proximal subgradients of the infimal
convolution (1) that is useful in deriving the main results below.

Theorem 3.10. Assume that f : H → (−∞,∞] is lsc and prox-bounded at x ∈
dom f . Then we have the representation

∂f(x) = Lim sup
m→∞

{
∂pfλm(xm)

∣∣ xm → x, fλm(xm)→ f(x), λm ↓ 0
}
.(12)

Proof. To justify the inclusion “⊂” in (12), take v ∈ ∂f(x) and, by definition of the
basic subdifferential, find sequences xm →f x and vm

w→ v as m → ∞ such that
vm ∈ ∂pf(xm) for all m ∈ IN . Having r(f, xm, vm) > 0 by Remark 3.9, we select a
sequence λm ∈ (0, 1/r(f, xm, vm)) with λm ↓ 0 as m → ∞. Then Proposition 3.8
ensures that vm ∈ ∂pfλm(xm + λmvm) and

f(xm) +
λm
2
‖vm‖2 = fλm(xm + λmvm) for all m ∈ IN.(13)

Taking into account the above selection of the sequence λm ↓ 0 and xm →f x as
well as the boundedness of the set {vm| m ∈ IN} in H due to the sequential weak
convergence of vm

w→ v, we get from (13) that

fλm(xm + λmvm)→ f(x) as m→∞.
Denoting zm := xm + λmvm allows us to represent v as the weak limit of the
proximal subgradients vm ∈ ∂pfλm(zm) with zm → x, λm ↓ 0, and fλm(zm)→ f(x)
as m→∞, which justifies the inclusion “⊂” in (12).

To prove the opposite inclusion “⊃” in (12), fix any

v ∈ Lim sup
{
∂pfλm(xm)

∣∣ xm → x, fλm(xm)→ f(x), λm ↓ 0
}

and find, by definition of the Painlevé-Kuratowski outer limit in Section 1, sequences
of (λm, xm, vm) ∈ R × H × H such that vm ∈ ∂pfλm(xm) with the convergences
λm ↓ 0, xm → x, fλm(xm) → f(x), and vm

w→ v as m → ∞. It follows now from
Lemma 3.4 that, for all m ∈ IN , we have

vm ∈ ∂pf(xm − λmvm) and f(xm − λmvm) = fλ(xm)− λm
2
‖vm‖2.

Denoting zm := xm − λmvm and using the arguments similar to those in the proof
of the inclusion “⊂” above, we conclude that

zm → x and f(zm)→ f(x) as m→∞

with vm ∈ ∂pf(zm) and vm
w→ v. Thus v ∈ Lim supz→fx ∂pf(z) = ∂f(x), which

justifies the inclusion “⊃” in (12) and completes the proof of the theorem. �

Remark 3.11. The need for using weak closure in the construction of the basic
subdifferential from Definition 3.1(ii), and hence in Theorem 3.10, is highlighted
by the example f(x) := −dC(x) with the negative distance function in the classical
Hilbert space `2, where C is the norm-compact Hilbert cube

C :=
{
x ∈ `2

∣∣ ‖xn‖ ≤ 1/2n, n = 1, 2, . . .
}
.

Since f is concave and (globally) Lipschitz, every proximal subgradient at x 6∈ C
is in fact a Fréchet derivative and necessarily has norm one; see, e.g., [11, The-
orem 5.3.4]. Moreover, C is norm-compact and so has empty interior. Hence
∂pf(x) = ∅ for all x ∈ C. It follows that while ∂f(0) = {0}, since C is symmetric
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and densely spanning, the set of norm-cluster points of nearby proximal normals is
empty. Note finally that we may represent the above function f explicitly as

f(x) = −
√∑
n≥1

(max{0, (|xn| − 1/2n)}2).

4. Infimal convolutions of prox-regular functions

This section is devoted to the further analysis of infimal convolutions applied
to prox-regular functions and their modifications in Hilbert space. Recall first the
basic definitions taken from [27, 30].

Definition 4.1. Let f : H → (−∞,∞], and let x ∈ dom f . We say that f is
prox-regular at x for v ∈ ∂f(x) if there exist ε > 0 and r ≥ 0 such that

f(x′) ≥ f(x) + 〈v, x′ − x〉 − r

2
‖x′ − x‖2 for all x′ ∈ Bε(x)(14)

whenever x ∈ Bε(x), |f(x) − f(x)| < ε, and v ∈ ∂f(x) with ‖v − v‖ < ε. If this
holds for every v ∈ ∂f(x), we say that f is prox-regular at x.

Definition 4.2. A function f : H → (−∞,∞] is subdifferentially contin-
uous at x ∈ dom f for v ∈ ∂f(x) if for every ε > 0 there exists δ > 0 such that
|f(x)− f(x)| ≤ ε whenever |x−x| ≤ δ and |v− v| ≤ δ with some v ∈ ∂f(x). If this
occurs for all v ∈ ∂f(x), we say that f is subdifferentially continuous at x.

The following proposition provides a useful estimate of the prox-boundedness
modulus r(f, x, v) defined in Remark 3.9 in the case of prox-regular functions and
also under the additional subdifferential continuity requirement.

Proposition 4.3. Let f : H → (−∞,∞] be prox-regular at x ∈ H for v ∈ ∂f(x)
with some constants ε > 0 and r > 0, and let also f be prox-bounded. Then there
is η > 0 such that r(f, x, v) ≤ η for all ‖x − x‖ < ε/2 with |f(x) − f(x)| < ε and
all ‖v− v‖ < ε with v ∈ ∂f(x). If in addition f is subdifferentially continuous at x
for v, then we may drop the condition |f(x)− f(x)| < ε above, perhaps after some
reducing the value of ε > 0.

Proof. By the assumed prox-regularity of f at x for v, find the corresponding
positive constants ε and r. Let x ∈ Bε(x) be such that |f(x) − f(x′)| < ε, and
let v ∈ ∂f(x) be such that ‖v − v‖ < ε. Take x′ ∈ Bε(x) and, by the underlying
prox-regularity inequality, get

f(x′) ≥ f(x) + 〈v, x′ − x〉 − r

2
‖x′ − x‖2.(15)

Using further the prox-boundedness of f , find α ∈ R and γ > 0 for which

f(z) ≥ α− γ

2
‖z‖2 whenever z ∈ H.

Let us now justify the existence of a positive number r1 such that for all x ∈ Bε(x)
with |f(x)− f(x′)| < ε and for all v ∈ ∂f(x) with ‖v − v‖ < ε we have

(16) f(x′) ≥ α− γ

2
‖x′‖2 ≥ f(x)− 〈v, x′ − x〉 − r1

2
‖x′ − x‖2

whenever x′ /∈ Bε(x). Indeed, choose r1 > 0 so that the inequality
r1 − γ

2
ε ≥ 1

ε

(
f(x)− α+

γ

2
‖x‖2

)
+ ‖γx+ v‖
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holds for any x ∈ Bε(x) with |f(x)−f(x′)| < ε and any v ∈ ∂f(x) with ‖v−v‖ < ε.
Then taking x′ /∈ Bε(x), we get the estimate

r1 − γ
2
‖x′ − x‖ ≥ 1

‖x′ − x‖

(
f(x)− α+

γ

2
‖x‖2

)
+
〈
v + γx,

x′ − x
‖x′ − x‖

〉
,

which after simplification yields (16). Combining (15) and (16), we can see that
the number η := max{r, r1} is the one ensuring the conclusion of the proposition in
the case of prox-regular and prox-bounded functions. Finally, the freedom to drop
the condition |f(x) − f(x)| < ε in the proposition for subdifferentially continuous
functions follows directly from the definition of subdifferential continuity. �

A concept introduced in [7] is also relevant here.

Definition 4.4. A function f : H → (−∞,∞] is uniformly prox-regular on
a set E ⊂ H if there are ε > 0 and r > 0 such that for any x ∈ E and v ∈ ∂f(x)
we have

f(x′) ≥ f(x) + 〈v, x′ − x〉 − r

2
‖x′ − x‖2 for all x′ ∈ Bε(x)

whenever v ∈ ∂f(x) with ‖v − v‖ < ε and ‖x− x‖ < ε with |f(x)− f(x)| < ε. We
say that f is locally uniformly prox-regular around x0 if E can be taken as
a neighborhood of x0, i.e., E = Bδ(x0) for some δ > 0.

The next result clarifying the definition of local uniform prox-regularity is taken
from [7, Proposition 3.3].

Proposition 4.5. A function f : H → (−∞,∞] is uniformly prox-regular around
x0 ∈ H if and only if there are some ε > 0 and r > 0 such that for any x, x′ ∈ Bε(x0)
and v ∈ ∂f(x) we have the estimate

f(x′) ≥ f(x) + 〈v, x′ − x〉 − r

2
‖x− x′‖2.

We intend to show that the infimal convolution of a prox-regular function is
actually locally uniformly prox-regular. Observe that the proof given below does
not rely on the usual path to deal with infimal convolutions of prox-regular functions
via certain f -attentive subdifferential localizations developed, e.g., in [27] and [8].
As a consequence of our major result given in Theorem 4.9, we establish the C1,1

property for infimal convolutions of prox-regular functions, which will be used in
Section 5 to derive the desired property of subdifferentials of prox-regular functions
announced in Section 1.

To proceed in this direction, let us first present some relatively elementary
observations regarding infimal convolutions of arbitrary lsc functions in Hilbert
spaces needed in the sequel. We impose the following assumptions on the function
f : H → (−∞,∞] under consideration:

(17)
{
f is lsc around 0, f(0) = 0, and there exists
ϑ > 0 such that f(x) > −ϑ2 ‖x‖

2 for all x 6= 0.

This easily implies that fλ(0) = 0 and Pλ(0) = {0} for (1) and (2), respectively,
when 0 < λ < 1/ϑ. Observe that the assumptions made can always be enforced via
an appropriate translation of the graph of f.

We begin with some estimates that depend only on assumptions (17) and do not
yet call for f to be prox-regular. The following result was established in [27, Lemma
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4.1] in finite dimensions. The proof given therein holds with no actual change in
the Hilbert space settings, and thus it is omitted here.

Lemma 4.6. Assuming (17), take any λ ∈ (0, 1/ϑ), ρ ≥ 0, and x, x′ ∈ H. If

f(x′) +
1

2λ
‖x′ − x‖2 ≤ fλ(x) + ρ,

then we have the estimates

‖x′‖ ≤ 2α‖x‖+
√

2λαρ,

f(x′) ≤ 1
2λ
‖x‖2 + ρ,

f(x′) ≥ −ϑ
2

(2α‖x‖+
√

2λαρ)2,

where the number α is defined by α := (1− λϑ)−1.

The next result concerns Lipschitzian behavior of infimal convolutions; parts (i)
and (iii) can be found in [27, Proposition 4.2] for finite-dimensional spaces.

Proposition 4.7. Assuming (17) and taking any λ ∈ (0, 1/ϑ) and L > 0, there is
δ > 0 such that the following conditions hold:

(i) ‖x′‖ < L, |f(x′)| < L, and ‖x−x′‖ < λL for all x ∈ Bδ(0) and x′ ∈ Pλ(x).

(ii) For any x ∈ Bδ(0) we have the representation

fλ(x) = inf
x′∈BL(0)

(
f(x′) +

1
2λ
‖x− x′‖2

)
.

(iii) fλ is Lipschitz continuous on Bδ(0) with modulus L.

Proof. Pick λ ∈ (0, 1/ϑ) and let α := (1− λϑ)−1. Choose β, δ > 0 such that

2αδ +
√

2λαβ < L,
1

2λ
δ2 < L, (1 + 2α)δ +

√
2λαβ < λL,

ϑ

2
(2αδ)2 < L.

Now take x ∈ Bδ(0) and start with proving (i). Given x′ ∈ Pλ(x), invoke Lemma 4.6
with ρ = 0 to obtain the estimates

‖x′‖ ≤ 2αδ < L, f(x′) ≤ δ2/(2λ) < L, −f(x′) ≤ 2ϑα2δ2 < L,

‖x− x′‖ ≤ ‖x‖+ ‖x′‖ ≤ δ + 2αδ < λL,

which surely justify all the properties in (i).
To prove (ii), suppose that some x′ ∈ H satisfies the inequality

f(x′) +
1

2λ
‖x′ − x‖2 ≤ fλ(x) + β.

Then by Lemma 4.6 we have

‖x′‖ ≤ 2αδ +
√

2λαβ < L,

which clearly justifies the representation in (ii). To prove finally (iii), observe that
in (ii) we take the infimum of the functions

Φx′ : x 7→ f(x′) +
1

2λ
‖x− x′‖2(18)
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over x′ ∈ BL(0). These functions are differentiable with their gradients computed
by ∇Φx′(x) = 〈x− x′, ·〉/λ. Hence we have

‖∇Φx′(x)‖ =
‖x− x′‖

λ
<
λL

λ
= L.

Consequently, functions (18) are Lipschitz continuous on Bδ(0) with modulus L,
and thus the infimal convolution fλ must have the same property. This justifies
(iii) and completes the proof of the proposition. �

The following result is taken from [27, Proposition 4.3], where it is formulated in
finite dimensions while the proof given applies to the Hilbert space setting, and so
it is omitted here. Recall from Remark 3.5 that Pλ(x) 6= ∅ whenever ∂pfλ(x) 6= ∅.

Proposition 4.8. Assuming (17) and taking any λ ∈ (0, 1/ϑ), there exists δ > 0
such that for all x ∈ Bδ(0) we have the relationships:

(i) ∂fλ(x) ⊂
{
λ−1(x− x′) : x′ ∈ Pλ(x)

}
;

(ii) x′ ∈ Pλ(x) implies λ−1(x− x′) ∈ ∂f(x′), i.e., x′ ∈ (I + λ∂f)−1(x).

Now we are in a position to establish the uniform prox-regularity of fλ. It will be
shown first that a prox-regular function satisfying (17) has a uniform prox-regular
infimal convolution, and then the assumptions of (17) will be removed.

Theorem 4.9. Let f : H → (−∞,∞] be prox-regular at x = 0 for p = 0 with
constant r := ϑ > 0 in (14), and let the assumptions in (17) be satisfied. Then,
for any λ ∈ (0, 1/ϑ), the infimal convolution fλ is locally uniformly prox-regular at
x = 0 with respect to ϑ

1−λϑ . In particular, the latter implies that fλ is para-convex
and C1,1 in some neighborhood of x = 0.

Proof. Take λ ∈ (0, 1/ϑ). Suppose that δ > 0 has all the properties from both
Propositions 4.7 and 4.8 with some L > 0. Take x ∈ Bδ(0), and an arbitrary
subgradient p ∈ ∂fλ(x). Let further x′ ∈ Pλ(x) be such that p = λ−1(x − x′); see
Proposition 4.8. Note that p ∈ ∂f(x′), and thus by Proposition 4.7 we have the
estimates ‖x′ − x‖ = ‖x′‖ < L, |f(x′)− f(x)| = |f(x′)| < L and ‖p‖ = ‖p − p‖ =
λ−1‖x− x′‖ < L.

Invoking next the definition of prox-regularity of f at x = 0 for p = 0, we get

f(z)− f(x′) ≥ 〈p, z − x′〉 − ϑ

2
‖z − x′‖2 for all z ∈ BL(0),

which implies, for any y ∈ H, that

f(z) +
1

2λ
‖z − y‖2 −

(
f(x′) +

1
2λ
‖x− x′‖2

)
≥ 1

2λ
(
‖z − y‖2 − ‖x− x′‖2

)
+ 〈p, z − x′〉 − ϑ

2
‖z − x′‖2.(19)

Since x′ ∈ Pλ(x), we have f(x′) + 1
2λ‖x − x

′‖2 = fλ(x). Furthermore, Proposi-
tion 4.7(ii) ensures the representation

fλ(y) = inf
z∈BL(0)

(
f(z) +

1
2λ
‖z − y‖2

)
for all y ∈ Bδ(0). Since the function z 7→ f(z)+ 1

2λ‖z−y‖
2 is minorized by a positive

definite quadratic in z, by employing (19) we can find a minorant of fλ(y)− fλ(x)
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computing the minimal point of this quadratic. Differentiating the right hand side
of (19) with respect to z and using p = λ−1(x− x′), we arrive at the equation

0 =
1
λ

(z − y) +
1
λ

(x− x′)− ϑ(z − x′),

which has the exact solution

z = x′ − 1
1− λϑ

(x− y).

Then the elementary transformations give us the following:

fλ(y)− fλ(x) ≥ 1
2λ

(∥∥∥∥x′ − y − 1
1− λϑ

(x− y)
∥∥∥∥2

− ‖x− x′‖2
)

+
〈
p,− 1

1− λϑ
(x− y)

〉
− ϑ

2

∥∥∥∥ 1
1− λϑ

(x− y)
∥∥∥∥2

=
1

2λ

(∥∥∥∥(x′ − x) +
(

1− 1
1− λϑ

)
(x− y)

∥∥∥∥2

− ‖x− x′‖2
)

+
1

1− λϑ
〈p, y − x〉 − ϑ

2

(
1

1− λϑ

)2

‖x− y‖2

=
1

2λ

(
− 2λϑ

1− λϑ
〈x′ − x, x− y〉+

(
λϑ

1− λϑ

)2

‖x− y‖2
)

+
1

1− λϑ
〈p, y − x〉 − ϑ

2(1− λϑ)2
‖x− y‖2

=
(

1
1− λϑ

− λϑ

1− λϑ

)
〈p, y − x〉

−

(
ϑ

2(1− λϑ)2
− 1

2λ

(
λϑ

1− λϑ

)2
)
‖x− y‖2

= 〈p, y − x〉 − ϑ

2(1− λϑ)
‖x− y‖2 for all x, y ∈ Bδ(0).

Since the subgradient p ∈ ∂fλ(x) was chosen arbitrary, we get precisely the local
uniform prox-regularity of fλ at x = 0 with respect to ϑ

1−λϑ . Then the para-
convexity of fλ follows from [7, Proposition 3.6e]. Taking finally into account that
the infimal convolution is always para-concave, we deduce from Theorem 2.3 that
fλ is actually C1,1 around x = 0 and thus complete the proof of the theorem. �

The next result, which is a consequence of Theorem 4.9, shows that the addi-
tional (to prox-regularity) assumptions of Theorem 4.9 can be removed. It is easy
to observe this by various translations regarding p = 0, x = 0, and f(x) = 0. To
remove all the assumptions in (17), we employ a rather standard trick that re-
veals how benign the prox-boundedness assumption is while considering only local
properties of lower semicontinuous prox-regular functions.

Corollary 4.10. Let f : H → (−∞,∞] be lsc and prox-regular at x ∈ dom f for
p ∈ ∂f(x) with respect to ϑ > 0. Then, for any λ ∈ (0, 1/ϑ), the function

x 7→ fλ(x+ λp)
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is locally uniformly prox-regular at x for p with respect to ϑ
1−λϑ . In particular, the

infimal convolution fλ is para-convex inside some neighborhood of x+ λp.

Proof. Observe that the lower semicontinuity of f around x ensures the existence
of a neighborhood Bδ(x) on which f is bounded from below. To remove the as-
sumptions of x = 0 and f(x) = 0, consider the following translations. Apply first
Theorem 4.9 to the function

f̃(x) := f(x+ x) + δBδ(x)(x+ x)− f(x).

Assuming first that p = 0, we have by the prox-regularity of f at x for p = 0 that

f(x) ≥ f(x)− r

2
‖x− x‖2 implying f̃(x) ≥ −r

2
‖x‖2

for all x ∈ Bδ(x). The local properties of f around x are not affected by either the
localization to Bδ(x) or by the translation. Apply then Theorem 4.9 to f̃ arriving
in this way at the desired result for f at x with the only assumption that p = 0.

To remove the latter assumption, we perform a translation f̂ := f −〈p, ·〉 so that
0 ∈ ∂ (f − 〈p, ·〉) (x). Deduce then that (f − 〈p, ·〉)λ is prox-regular at x for p = 0,
which implies by Lemma 3.6 that the same holds for the function

(f − 〈p, ·〉)λ (x) = fλ(x+ λp)− 〈p, x〉 − λ

2
‖p‖2.

Applying finally to the above function f̂ the elementary subdifferential sum rule
from [25, Proposition 1.107(ii)], we conclude that the function x 7→ fλ(x + λp) is
prox-regular at x for p, which completes the proof of the corollary. �

Combining the developments presented above, we arrive at the following im-
portant conclusion; cf. [6, 8, 19, 27] for related results in finite-dimensional and
infinite-dimensional settings. Note that all the previous considerations in the lit-
erature are based on Minty’s theory of maximal monotone operators, while we
develop a significantly different geometric approach to the C1,1 property of infimal
convolutions.

Theorem 4.11. Let f : H → (−∞,∞] be lsc and prox-regular at x for p with
constant r := ϑ in (14). Then, for any λ ∈ (0, 1/ϑ), the infimal convolution fλ is
a C1,1 function throughout some neighborhood of x+ λp.

Proof. As mentioned above, the infimal convolution is always a para-concave func-
tion. Its para-concavity in Hilbert spaces is established in Theorem 4.9 and Corol-
lary 4.10. Applying finally the characterization of Theorem 2.3, we conclude that
fλ is C1,1 around x+ λp and thus complete the proof of the theorem. �

Note that the neighborhood in Theorem 4.11 does depend on λ. We show in the
next section (Lemma 5.3) that under some stronger assumptions it is possible to
select such a neighborhood uniformly with respect to all λ sufficiently small.

5. Lipschitzian Properties of Subdifferentials

The final section of this paper is devoted to applications of the results obtained
above to the study of Lipschitzian properties of subdifferential mappings for prox-
regular and subdifferentially continuous functions in Hilbert spaces, which was actu-
ally the main original motivation for this research. We intend to show that natural
extensions of local Lipschitz continuity to set-valued mappings implies, for the case
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of subdifferential mappings generated by prox-regular and subdifferentially contin-
uous functions, that the subdifferential mapping is in fact locally single-valued and
hence the function in question is locally C1,1.

Properties of this type have been well recognized for subdifferentials of convex
functions due to their monotonicity. This essentially goes back to Kenderov [21] who
was the first to observe that the monotonicity and semi/inner continuity of a set-
valued mapping implied its local single-valuedness in general infinite-dimensional
frameworks. More recently, Levy and Poliquin [23] have extended Kenderov’s result,
in the case of finite-dimensional spaces, to some generalized notions of monotonicity.
Furthermore, they applied it to appropriate Lipschitzian properties of set-valued
mapping and applied to subdifferential mappings generated by prox-regular and
subdifferentially continuous functions in finite dimensions.

The main result of this section, Theorem 5.4, is an extension of [23, Theorem 3.1]
to the case of Hilbert spaces. Note that, in contrast to the heavily finite-dimensional
technique of [23] involving generalized monotonicity, our approach based on infimal
convolutions is completely different from that in [23] and allows us to proceed in
the general Hilbert space setting.

It is worth also mentioning that the possibility to reduce a set-valued Lips-
chitzian behavior to a locally single-value one plays a key role in many aspects
of optimization and variational analysis; in particular, in stability and sensitivity
issues related to Robinson’s strong regularity [29] of solutions maps to parametric
generalized equations and variational inequalities. In this paper we are not go-
ing further these directions referring the reader to [4, 11, 23, 25, 29, 30] and the
bibliographies therein. See, however, some related discussions in Remark 5.5.

Given a set-valued mapping F : H ⇒ H, recall that it is Lipschitz-like (or has
the Aubin property) around (x, z) ∈ GraphF with modulus L ≥ 0 if there exist
constants δ > 0 and ε > 0 such that

(20) F (x′) ∩Bδ(z) ⊂ F (x′′) + L‖x′ − x′′‖B1(0)

for all x′, x′′ ∈ Bε(x). This property was introduced in [3] under the name of
the “pseudo-Lipschitz property” of F at (x, z). The latter terminology in fact is
not really appropriate to describe the essence of (20), since a common meaning is
“false” while (20) turns out to be the most natural extension of the classical local
Lipschitz continuity to set-valued mappings. It reduces to the classical Lipschitz
property for single-valued mappings being also a graphical localization of the local
Lipschitz continuity of F around x in the Hausdorff sense that corresponds to (20)
with δ =∞; see [25, 30] for more discussions.

It has been well recognized that the Lipschitz-like property of F around (x, z) is
equivalent to the metric regularity of the inverse mapping F−1 around (x, z) and
also to the openness at a linear rate of F−1 around this point; see [11, 25, 30]
for more details and references. It is worth mentioning that there are complete
characterizations of all the above mentioned properties in both finite and infinite
dimension settings (including computation of the exact bounds of the corresponding
moduli) via the coderivative of F , which is counterpart of the basic subdifferential
for set-valued mappings; see [24, 26, 30] and the references therein.

The next simple lemma provides convenient descriptions of the Lipschitz-like
property of set-valued mappings.
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Lemma 5.1. For F : H ⇒ H, x ∈ int(domF ), and z ∈ F (x) the following
assertions are equivalent:

(i) F is Lipschitz-like around (x, z) with modulus L ≥ 0.
(ii) Given κ > 0, there exist δ > 0 and ε > 0 such that for all x′, x′′ ∈ Bε(x)

we have the inclusion

F (x′) ∩Bδ(z) ⊂ F (x′′) ∩Bκ(z) + L‖x′ − x′′‖B1(0).(21)

(iii) There exist κ > 0, δ > 0 and ε > 0 such that for all x′, x′′ ∈ Bε(x)
inclusion (21) holds.

Proof. Let us justify the implication (i) =⇒ (ii). Note that if the Lipschitz-like
property in (i) holds for some positive constants δ and ε > 0, then it must also
hold for any smaller values of these constants. Choose κ > 0 and decrease δ and
ε if necessary so that δ + 2Lε ≤ κ. By the assumed Lipschitz-like property of F
around (x, z), for any given z′ ∈ F (x′) ∩Bδ(z) we find z′′ ∈ F (x′′) such that

‖z′ − z′′‖ ≤ L‖x′ − x′′‖ ≤ 2Lε.

Since ‖z′ − z‖ < δ, we have ‖z′′ − z‖ < κ, which proves (ii). The remaining
implications (ii) =⇒ (iii) =⇒ (i) are obvious. �

The next result shows that the Lipschitz-like property around (0, 0) implies a
strong form of lower semicontinuity used in what follows.

Lemma 5.2. Let F : H ⇒ H, x ∈ int(domF ), and z ∈ F (x). If F is Lipschitz-like
around (x, z) with modulus L ≥ 0, then it is strongly lower semicontinuous at (x, z)
in the sense that for all κ > 0 there exists κ′ > 0 with

(22) Bκ′(x) ⊂
{
v
∣∣ F (v) ∩Bκ(z) 6= ∅

}
.

Proof. Applying Lemma 5.1(ii), for any κ > 0 we find δ > 0 and κ′ > 0 such that

z ∈ F (x) ∩Bδ(z) ⊂ F (x′′) ∩Bκ(z) + L‖x− x′′‖B1(0)

whenever x′′ ∈ Bκ′(x). This implies, in particular, that

F (x′′) ∩Bκ(z) 6= ∅ for all x′′ ∈ Bκ′(x),

which ready yields the strong lower semicontinuity (22). �

Let us now justify that the simultaneous fulfillment of the prox-regularity and
subdifferential continuity properties of f and the Lipschitz-like property of ∂f im-
plies the existence of a λ-independent neighborhood of the reference point over
which Theorem 4.11 holds. The subdifferential continuity helps us to avoid using
the f -attentive localization of the function in question. Note that in the case of
prox-regularity and subdifferential continuity we have

(23) Graph ∂pf ∩ [Bε(x)×Bδ(v)] = Graph ∂f ∩ [Bε(x)×Bδ(v)]

within some ε, δ-neighborhood of (x, v). In the sequel we use an H2-transformation
Tλ : H2 → H2 defined by

Tλ(x, z) := (x+ λz, z) for all λ > 0 and x, z ∈ H.
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Lemma 5.3. Suppose that f : H → (−∞,∞] is lsc, prox-bounded, and prox-regular
at x ∈ int(dom ∂f) for 0 ∈ ∂f(x) with constant ϑ > 0 in (14) and subdifferentially
continuous at x for 0 ∈ ∂f(x). Assume furthermore that ∂f has the Lipschitz-like
property around (x, 0) with modulus L ≥ 0. Then there are λ0 and ε0 > 0 such that
for any λ ∈ (0, λ0) the function fλ is C1,1 on Bε0(x) with the Lipschitz constant
L

1−λL for its gradient.

Proof. To simplify notation, suppose with no loss of generality that x = 0 and
repeatedly decrease values of some constants used below instead of introducing
new ones. Since f is subdifferentially continuous at 0 for 0 and prox-regular at 0
for 0 ∈ ∂f(0) with constant ϑ > 0, there exist ε, δ > 0 such that f is prox-regular
at any x ∈ Bε(0) for some z ∈ Bδ(0) with ϑ, and by (23) we have

Graph ∂f ∩ [Bε(0)×Bδ(0)] = Graph ∂pf ∩ [Bε(0)×Bδ(0)] .

Apply now Theorem 4.11 at each x ∈ Bε(0) to conclude that for any λ ∈ (0, ϑ)
there is a neighborhood Bελ(x+ λz) of x+ λz on which fλ is C1,1. Take κ ∈ (0, δ)
and find κ′ ∈ (0, ε) according to Lemma 5.2 such that

Bκ′(0) ⊂
{
x′
∣∣ ∂f(x′) ∩Bκ(0) 6= ∅

}
.

Thus for each x ∈ Bκ′(0) there is z ∈ Bκ(0) with (x, z) ∈ Graph ∂f .
It follows from Proposition 3.8 that for all λ ∈ (0, 1/ϑ) we have

Tλ (Graph ∂f ∩ [Bκ′(0)×Bκ(0)]) ⊂ Graph ∂fλ ∩ Tλ (Bκ′(0)×Bκ(0)) .

Using further Lemma 3.4 together with (23) and the fact that the proximal subd-
ifferential corresponds to the first component of the subjet leads us to the equality

Tλ (Graph ∂f ∩ [Bκ′(0)×Bκ(0)]) = Graph ∂fλ ∩ Tλ (Bκ′(0)×Bκ(0)) .

In particular, from Theorem 4.11 and the above considerations we get that the set
Graph ∂fλ ∩ Tλ (Bκ′(0)×Bκ(0)) corresponds to the restriction of the graph of a
locally Lipschitz function x 7→ ∇fλ(x) to a neighborhood Tλ (Bκ′(0)×Bκ(0)) of
the origin. Observe next that taking ε ∈ (0, κ′) and λ > 0 with ε + λδ ≤ κ′ we
arrive at the relationship

‖x− λz‖ ≤ ε+ λδ < κ′ for all λ ∈ (0, λ), x ∈ Bε(0), and z ∈ Bκ(0),

which can be equivalently written as

Bε(0)×Bκ(0) ⊂ Tλ (Bκ′(0)×Bκ(0)) whenever λ ∈ (0, λ).

As mentioned above, for each x ∈ Bκ′(0) there exists z ∈ Bκ(0) such that
(x, z) ∈ Graph ∂f . Hence for all x ∈ Bε(0) that there is z ∈ Bκ(0) with

T−1
λ (x, z) ∈ Graph ∂f ∩ [Bκ′(0)×Bκ(0)] .

The latter allows us to find, for each x ∈ Bε(0), such z ∈ Bκ(0) that

(x, z) ∈ Tλ (Graph ∂f ∩ [Bκ′(0)×Bκ(0)]) = Graph ∂fλ ∩ Tλ (Bκ′(0)×Bκ(0)) .

In particular, this implies that fλ is C1,1 on Bε(0).
To complete the proof of the lemma, it remains to justify the choice of the

Lipschitz constant for the gradient ∇fλ in the lemma formulation, by adjusting the
corresponding intervals for λ and ε in the discussions above. We proceed by using
the assumed Lipschitz-like property of ∂f around (0, 0) with modulus L > 0 and
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employing Lemma 5.1(ii) with our κ chosen above. In this way we find numbers
δ′′ > 0 and ε′′ > 0 such that

(24) ∂f(x′) ∩Bδ′′(0) ⊂ ∂f(x′′) ∩Bκ(0) + L‖x′ − x′′‖B1(0)

for all x′, x′′ ∈ Bε′′(0). Assume with no loss of generality that δ′′ < κ.
Then Proposition 4.3 provides us with some r > 0 such that r(f, x, v) ≤ r for all

elements x ∈ Bε(0) and v ∈ ∂f(x) ∩ Bδ(0), after decreasing ε and δ if necessary.
Picking x ∈ Bε(0) and v ∈ Bδ(0) and taking into account that the function f
is assumed to be prox-bounded, we employ Proposition 3.8 to conclude that the
inclusion v ∈ ∂f(x) implies that v ∈ ∂fλ(x+ λv) for all λ ∈ (0, 1/r) . Furthermore,
Lemma 3.6 allows us to deduce that the inclusion v ∈ ∂fλ(x+λv) for such λ yields
in turn that v ∈ ∂f(x). In the remainder of the proof we assume λ < 1/r.

We now show that there exist ε0 ∈ (0, ε) and λ0 ∈ (0, λ) such that for all
λ ∈ (0, λ0) the Lipschitz constant of ∇fλ on Bε0(0) can be chosen as L

1−λL . Arguing
by contradiction, assume that for any arbitrarily small ε′ > 0 and λ′ > 0 there are
x′, x′′ ∈ Bε′(0) satisfying

(25) ‖∇fλ′(x′)−∇fλ′(x′′)‖ > L

1− λ′L
‖x′ − x′′‖

with ∇fλ′(x′) ∈ Bδ′′(0) and ∇fλ′(x′′) ∈ Bκ(0). Reduce ε′ and λ′ so that ε′+λ′κ <
ε′′. Setting now

x1 := x′ − λ′∇fλ′(x′) ∈ Bε′′(0) and x2 := x′′ − λ′∇fλ′(x′′) ∈ Bε′′(0)

and employing Lemma 3.6, we get the relationships

z1 := ∇fλ′(x′) ∈ ∂f(x1) ∩Bδ′′(0) and z2 := ∇fλ′(x′′) ∈ ∂f(x2) ∩Bκ(0).

Furthermore, estimate (25) allows us to conclude that

‖z1 − z2‖ >
L

1− λ′L
‖(x′ − λ′z1)− (x′′ − λ′z2) + λ′(z1 − z2)‖

≥ L

1− λ′L
(‖x1 − x2‖ − λ′‖z1 − z2‖) ,

which in turn implies the inequality(
1 +

λ′L

1− λ′L

)
‖z1 − z2‖ >

L

1− λ′L
‖x1 − x2‖

and equivalently the estimate

(26) ‖z1 − z2‖ > L‖x1 − x2‖.

Since the subdifferential mapping ∂f is Lipschitz-like around (0, 0) with modulus
L and thus satisfies (24), and by the inclusions x1 ∈ Bε′′(0), z1 ∈ ∂f(x1)∩Bδ′′(0),
and z2 ∈ ∂f(x2)∩Bκ(0) established above, we get from (26) that x2 /∈ Bε′′(0). The
latter provides a contradiction, which completes the proof of the lemma. �

Now we are able to prove our principal result showing that the Lipschitz-like
property of the subdifferential mapping ∂f for a prox-regular and subdifferentially
continuous function f : H → (−∞,∞] implies the continuous differentiability of
this function with a locally Lipschitzian derivative.
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Theorem 5.4. Let f : H → (−∞,∞] be lsc, prox-regular, and subdifferentially
continuous at x ∈ int(dom ∂f) for some v ∈ ∂f(x). Assume in addition that
the subdifferential mapping ∂f is Lipschitz-like with modulus L ≥ 0 around (x, v).
Then there exists ε > 0 such that ∂f(x) = {∇f(x)} for all x ∈ Bε(x) with the
Lipschitzian derivative x 7→ ∇f(x) on Bε(x).

Proof. Once again translate x to 0 and v to 0 for convenience.Let ε > 0 be suffi-
ciently small so that f is bounded from below within the neighborhood Bε(0). Now
redefine f to be f + δBε(0), observing that the assertions of the theorem for the
function f + δBε(0) imply those for the original function f inside a neighborhood
of the origin. Clearly f + δBε(0) is prox-bounded and inherits all the other local
properties of f . To simplify notation, we refer to this restriction as to f in what
follows and prove the theorem for the latter function.

Take λ0 > 0 and further reduce ε, δ > 0 so that for all λ ∈ (0, λ0) we have that
fλ is C1,1 on Bε(0) with the Lipschitz constant L/(1 − λL) of the gradient ∇fλ.
This is possible by Lemma 5.3. Then

‖∇fλ(x)−∇fλ(y)‖ ≤ L

1− λL
‖x− y‖

for all x, y ∈ Bε(0). Thus we have

− L

1− λL
‖x− y‖2 ≤ −‖∇fλ(x)−∇fλ(y)‖ · ‖x− y‖

≤ 〈∇fλ(x)−∇fλ(y), x− y〉 ≤ ‖∇fλ(x)−∇fλ(y)‖ · ‖x− y‖

≤ L

1− λL
‖x− y‖2 for all x, y ∈ Bε(0).

Now use Theorem 3.10 to reconstruct the basic subdifferential of f at x via weak
limits of the gradients ∇fλm(xm) of the infimal convolution at the points xm → x
with fλm(xm) → f(x) and λm ↓ 0. Taking into account that the bilinear form
above is continuous with respect to weak×norm sequential convergence, we get in
this way the two inequalities

(27) −L‖x− y‖2 ≤ 〈u− v, x− y〉 ≤ L‖x− y‖2

for all u ∈ ∂f(x), v ∈ ∂f(y), and x, y ∈ Bε(0). The left-hand side inequality in
(27) implies that the mapping

x 7→ ∂f(x) + Lx = ∂

(
f +

L

2
‖ · ‖2

)
(x)

is monotone on Bε(0). By Lemma 3.3 we deduce that the function f + L
2 ‖ · ‖

2 is
convex on Bε(0). Since it is lsc on the interior of its domain, it is well known to be
Lipschitz continuous on Bε(0); see, e.g., [11, Theorem 4.1.3]. Hence the right-hand
side inequality in (27) implies that the mapping

x 7→ − co ∂
(
f − L

2
‖ · ‖2

)
(x) = −∂C

(
f − L

2
‖ · ‖2

)
(x) = ∂C

(
−f +

L

2
‖ · ‖2

)
(x)

is monotone and, by Lemma 3.3, the function −f + L
2 ‖ · ‖

2 is convex (or f − L
2 ‖ · ‖

2

is concave) inside Bε(0). By Theorem 2.3 we have that f ∈ C1,1, and thus the
gradient ∇f(x) exists for all x ∈ Bε(0). Moreover, the Lipschitz-like property of
∂f with modulus L yields that the mapping x 7→ ∇f(x) is Lipschitzian on Bε(0)
with the same modulus L. This completes the proof of the theorem. �
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Remark 5.5. It is worth underlining the importance of the single-valued subdiffer-
ential reduction of the type given in Theorem 5.4 for the study of metric regularity
of solution maps to parametric generalized equations in Robinson’s form

S(x) := {y ∈ Y : 0 ∈ g(x, y) +Q(y)}(28)

with mappings g : X × Y ⇒ Z and Q : Y ⇒ Z between Banach spaces. As
has been well recognized starting with Robinson’s seminal contributions (see, in
particular, [28, 29]) that model (28) is a convenient form for describing solution
maps to parametric variational inequalities, complementarity problems, first-order
optimality conditions in parametric optimization, etc.; see, e.g., books [25, 30]
with the references and discussions therein. It has been established recently in
[1, 4, 18, 26], under various assumptions and with certain modifications, that metric
regularity of the solution map S to (28) is equivalent to the Lipschitz-like property
of the set-valued field Q in (28). The most interesting cases for applications relate
to systems (28) with field mappings Q given in some subdifferential/normal cone
forms and their compositions of the types

Q(y) = ∂(ϕ ◦ h)(y) and Q(y) = (∂ϕ ◦ h)(y),(29)

where h : Y →W and ϕ : W → (−∞,∞]. For such mappings, the aforementioned
single-valued subdifferential reduction mandates, under natural assumptions, that
the “superpotential” functions ϕ in (29) exhibit certain smoothness properties that
fail to hold for major classes of variational systems. This leads us to conclusions
on the failure of metric regularity for solution maps to such parametric variational
systems; see [26] and also [1, 4, 18] for related results in this direction.
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