
Normal Numbers and Pseudorandom
Generators∗

David H. Bailey† Jonathan M. Borwein‡

December 5, 2011

Abstract

For an integer b ≥ 2 a real number α is b-normal if, for all m > 0,
every m-long string of digits in the base-b expansion of α appears, in
the limit, with frequency b−m. Although almost all reals in [0, 1] are
b-normal for every b, it has been rather difficult to exhibit explicit
examples. No results whatsoever are known, one way or the other, for
the class of “natural” mathematical constants, such as π, e,

√
2 and

log 2. In this paper, we summarize some previous normality results for
a certain class of explicit reals, and then show that a specific member
of this class, while provably 2-normal, is provably not 6-normal. We
then show that a practical and reasonably effective pseudorandom
number generator can be defined based on the binary digits of this
constant, and conclude by sketching out some directions for further
research.

∗Submitted to Heinz Bauschke, ed., Proceedings of the Workshop on Computational
and Analytical Mathematics in Honour of Jonathan Borwein’s 60th Birthday, Springer,
2011.
†Lawrence Berkeley National Laboratory, Berkeley, CA 94720, DHBailey@lbl.gov.

Supported in part by the Director, Office of Computational and Technology Research,
Division of Mathematical, Information, and Computational Sciences of the U.S. Depart-
ment of Energy, under contract number DE-AC02-05CH11231.
‡Laureate Professor and Director Centre for Computer Assisted Research Mathematics

and its Applications (CARMA), University of Newcastle, Callaghan, NSW 2308, Australia.
Distinguished Professor, King Abdulaziz University, Jeddah 80200, Saudi Arabia. Email:
jonathan.borwein@newcastle.edu.au.

1

1 Introduction

For an integer b ≥ 2 we say that a real number α is b-normal (or normal base
b) if, for all m > 0, every m-long string of digits in the base-b expansion of α
appears, in the limit, with frequency b−m, or, in other words, with exactly the
frequency one would expect if the digits appeared completely “at random.”
It follows from basic probability theory that, for any integer b ≥ 2, almost
all reals in the interval (0, 1) are b-normal. What’s more, almost all reals in
the unit interval are simultaneously b-normal for all integers b ≥ 2.

Yet identifying even a single explicitly given real number that is b-normal
for some b has proven frustratingly difficult. The first constant proven 10-
normal was the Champernowne constant [7], namely 0.12345678910111213 . . .,
produced by concatenating the natural numbers in decimal format. This was
extended to base-b normality (for base-b versions of the Champernowne con-
stant). In 1946, Copeland and Erdös established that the corresponding
concatenation of primes 0.23571113171923 . . . and also the concatenation of
composites 0.46891012141516 . . ., among others, are also 10-normal [8]. In
general they proved:

Theorem 1 ([8]) If a1, a2, · · · is an increasing sequence of integers such
that for every θ < 1 the number of a’s up to N exceeds N θ provided N is
sufficiently large, then the infinite decimal

0.a1a2a3 · · ·

is normal with respect to the base β in which these integers are expressed.

This clearly applies to the primes of the form ak + c with a and c relatively
prime in any given base and to the integers which are the sum of two squares
(since every prime of the form 4k + 1 is included).

Some related results were established by Schmidt, including the following
[15]. Write p ∼ q if there are positive integers r and s such that pr = qs.
Then

Theorem 2 If p ∼ q, then any real number that is p-normal is also q-
normal. However, if p 6∼ q, then there are uncountably many p-normal reals
that are not q-normal.

In a recent survey, Queffelec [14] described the above result and also
presented the following, which he ascribed to Korobov:

2

Theorem 3 Numbers of the form
∑

k p
−2kq−p

2k

, where p and q are relatively
prime, are q-normal.

Nonetheless, we are still completely in the dark as to the b-normality of
“natural” constants of mathematics. Borel was the first to conjecture that
all irrational algebraic numbers are b-normal for every integer b ≥ 2. Yet
not a single instance of this conjecture has ever been proven. We do not even
know for certain whether or not the limiting frequency of zeroes in the binary
expansion of

√
2 is one-half, although numerous large statistical analyses have

failed to show any significant deviation from statistical normals. The same
can be said for π and other basic constants, such as e, log 2 and ζ(3). Clearly
any result (one way or the other) for one of these constants would be a
mathematical development of the first magnitude.

In the case of an algebraic number of degree d, it is now known that
the number of ones in the binary expansion through bit position n must
exceed Cn1/d for a positive number C (depending on the constant) and all
sufficiently large n [1]. In particular, there must be at least

√
n ones in the

first n bits of
√

2. But this is clearly a relatively weak result, because, barring
an enormous mathematical surprise, the correct limiting frequency of ones
in the binary expansion of

√
2 is, almost certainly, one-half.

In this paper, we briefly summarize some previously published normality
results for a certain class of real constants, prove an interesting non-normality
result, and then demonstrate how these normality results can be parlayed
into producing a practical pseudorandom number generator. This generator
can be implemented quite easily, is reasonably fast-running, and, in initial
tests, seems to produce results of satisfactory “randomness.” In addition, we
show how all of this suggests a future direction to the long sought proof of
normality for “natural” mathematical constants.

2 Normality of a class of generalized BBP-

type constants

In [3], Richard Crandall and one of the present authors (Bailey) analyzed the
class of constants

αb,c(r) =
∞∑
k=1

1

ckbck+rk
, (1)

3

where the integers b > 1 and c > 1 are co-prime, where r is any real in
[0, 1], and where rk is the kth binary digit of r. These constants qualify
as “generalized BBP-type constants,” because the n-th base-b digit can be
calculated directly, without needing to compute any of the first n− 1 digits,
by a simple and efficient algorithm similar to that first applied to π and log 2
in the paper by Bailey, P. Borwein and Plouffe [2].

Bailey and Crandall were able to establish:

Theorem 4 Every real constant of the class (1) is b-normal.

Subsequently, Bailey and Misieurwicz were able to establish this same
result (at least in a simple demonstrative case) via a much simpler argument,
utilizing a “hot spot” lemma proven by ergodic theory techniques [5] (see also
[6, pg. 155]).

Fix integers b and c satisfying the above criteria, and let r and s be
any reals in [0, 1]. If r 6= s, then αb,c(r) 6= αb,c(s), so that the class Ab,c =
{αb,c(r), 0 ≤ r ≤ 1} has uncountably many distinct elements (this was shown
by Bailey and Crandall). However, it is not known whether the class Ab,c
contains any constants of mathematical significance, such as π or e.

In this paper we will focus on the constant α2,3(0), which we will denote
as α for short:

α = α2,3(0) =
∞∑
k=1

1

3k23k
(2)

= 0.0418836808315029850712528986245716824260967584654857 . . .10

= 0.0AB8E38F684BDA12F684BF35BA781948B0FCD6E9E06522C3F35B . . .16 .

Although its 2-normality follows from the results in either of the two papers
mentioned above ([3] and [5]), this particular constant was first proved 2-
normal by Stoneham back in 1973 [16].

3 A non-normality result

It should be emphasized that just because a real constant is b-normal for
some integer b > 1, it does not follow that it is c-normal for any other integer
c, except in the case where br = cs for positive integers r and s (see Theorem
2). In other words, if a constant is 8-normal, it is clearly 16-normal (since
base-16 digits can be written as four binary digits and base-8 digits can be

4

written as three binary digits), but nothing can be said a priori about that
constant’s normality in any base that is not a power of two.

As mentioned above, there are very few normality results, and none is
known for well-known constants of mathematics. But the same can be said
about specific non-normality results, provided we exclude rationals (which re-
peat and thus are not normal) and examples, such as 1.0101000100000001 . . .
(i.e., ones appear in position 2m), that are constructed specifically not to be
normal but otherwise have relatively little mathematical interest (although
Liouville’s class of transcendental numbers is an exception). In particular,
none of the well-known “natural” constants of mathematics have ever been
proven not to be b-normal for some b. Indeed, such a result, say for π, log 2
or
√

2, would be even more interesting than a proof of normality for that
constant.

In that vein, here is an intriguing result regarding the α constant men-
tioned above:

Theorem 5 α is not 6-normal.

Discussion: Let the notation {·} denote fractional part. Note that the base-
6 digits immediately following position n in the base-6 expansion of α can
be obtained by computing {6nα}, which can be written as follows:

{6nα} =


blog3 nc∑
m=1

3n−m2n−3
m

+


∞∑

m=blog3 nc+1

3n−m2n−3
m

 . (3)

Now note that the first portion of this expression is zero, since all terms of
the summation are integers. That leaves the second expression.

Consider the case when n = 3M , where M ≥ 1 is an integer, and examine
just the first term of the second summation. We see that this expression is

33M−(M+1)23M−3M+1

= 33M−M−12−2·3
M

= (3/4)3
M

/3M+1. (4)

We can generously bound the sum of all terms of the second summation by
1.00001 times this amount, for all M ≥ 1, and by many times closer to unity
for all M ≥ 2, etc. Thus we have

{63mα} ≈
(
3
4

)3m
3m+1

, (5)

5

0.
0130140430003334251130502130000001243555045432233011500243525320551352
3435410104300000000000000005141130054040555455303144250433435101241345
2351125142125134505503545015053522052044340452151505102411552500425130
0511244540010441311500324203032130000000000000000000000000000000000000
0000014212034311121452013525445342113412240220525301054204423552411055
4150155204350414555400310145303033532002534340401301240104453254343502
1420204324150255551010040433000455441145010313314511510144514123443342
3412400551313335045423530553151153501533452435450250055521453054234342
1530350125024205404135451231323245353031534552304115020154242121145201
5422225343403404505301233255344404431033324453321414150142334545424124
32031253400501341502455144043000
00
0000000000313350542444431111055534141052014540213412313001424333133115
. . .

Table 1: Base-6 expansion of α.

and this approximation is as accurate as one wishes (in ratio) for all suffi-
ciently large m.

Given the very small size of the expression (3/4)3
m
/3m+1 for even moderate-

sized m, it is clear the base-6 expansion will have very long stretches of zeroes
beginning at positions 3m + 1. For example, by explicitly computing α to
high precision, one can produce the counts of consecutive zeroes Zm that
immediately follow position 3m in the base-6 expansion of α—see Tables 1
and 2.

In total, there 14256 zeroes in these ten segments, which, including the
last segment, span the first 59049 + 9487 = 68536 base-6 digits of α. In this
tabulation we have of course ignored the many zeroes in the large “random”
segments of the expansion. Thus the fraction of the first 68536 digits that
are zero is at least 14256/68536 = 0.20800747 . . ., which is significantly more
than the expected value 1/6 = 0.166666

A more careful analysis shows that this limiting ratio

lim
m→∞

∑
m≥1 Zm

3m + Zm
=

3

2
· log6(4/3)

1 + log6(4/3)
(6)

=
1

2
log2(4/3) = 0.2075187496 . . . (7)

6

m 3m Zm
1 3 1
2 9 3
3 27 6
4 81 16
5 243 42
6 729 121
7 2187 356
8 6561 1058
9 19683 3166

10 59049 9487

Table 2: Counts Zm of consecutive zeroes immediately following position 3m

in base-6 expansion of α.

Complete details are given in the Appendix. Also included in the Appendix
is a proof of this generalization of Theorem 5:

Theorem 6 Given coprime integers b ≥ 2 and c ≥ 2, the constant αb,c =∑
k≥1 1/(ckbc

k
) is not bc-normal.

These results thus constitute simple and concrete counter-examples to
the question of whether normality in one base b implies normality in another
base c (except in simple cases covered by the first part of Theorem 2). In
particular, these results are explicit examples of part two of Theorem 2.

It is worth pointing out that Cassels proved that for almost real x in the
unit interval, x is 2-normal but not 3-normal, although he did not present
any explicit example of such x [4]. Above we have presented an explicit real
that is 2-normal but not 6-normal, which is almost but not quite such an
example. Some related discussion is given in [13, 15, 17].

4 Alpha as a pseudorandom generator

The normality result for α (Theorem 4) suggests that the binary digits of
α (certainly not its base-6 digits) could be used to fashion a practical pseu-
dorandom number generator. Indeed, this was suggested in [3] and [6, pg.

7

169–170]. We will show here how this can be done. The result is a genera-
tor that is both efficient on single-processor systems and also well-suited for
parallel processing: each processor can quickly and independently calculate
the starting seed for its section of the resulting global sequence, which global
sequence is the same as the sequence produced on a single-processor system
(subject to some reasonable conditions). However, it is acknowledged that
before such a generator is used in a “practical” application, it must be sub-
jected to significant checking and testing. It should also be noted that just
because a number is normal does not guarantee its suitability for pseudo-
random generation (e.g., the convergence of the limiting frequencies might
be very slow), although this particular scheme does appear to be reasonably
well-behaved.

4.1 Background

Define xn to be the binary expansion of α starting with position n+ 1. Note
that xn = {2nα}, where {·} means the fractional part of the argument. First
consider the case n = 3m for some integer m. In this case one can write

x3m = {23mα} =

{
m∑
k=1

23m−3k

3k

}
+

∞∑
k=m+1

23m−3k

3k
. (8)

Observe that the “tail” term (i.e., the second term) in this expression is
exceedingly small once m is even moderately large—for example, when m =
10, this term is only about 10−35551. This term will hereafter be abbreviated
as εm. By expanding the first term, one obtains

x3m =
(3m−123m−3 + 3m−223m−32 + · · ·+ 3 · 23m−3m−1

+ 1) mod 3m

3m

+εm (9)

The numerator is taken modulo 3m, since only the remainder when divided
by 3m is of interest when finding the fractional part. By Euler’s totient
theorem, the next-to-last term in the numerator, when reduced modulo 3m,
is three. Similarly, it can be seen that every other term in the numerator,
when reduced modulo 3m, is equivalent to itself without the power-of-two

8

part. In other words, the expression above reduces to

x3m =
(3m−1 + 3m−2 + · · ·+ 3 + 1) mod 3m

3m
+ εm (10)

=
3m − 1

2 · 3m
+ εm =

b3m/2c
3m

+ εm (11)

(The authors are indebted to Helaman Ferguson for a key idea in this proof.)
More generally, for n that is not a power of three, one can write

xn =
(2n−3

mb3m/2c) mod 3m

3m
+ ε, (12)

where m is chosen so that 3m is the largest power of three less than or equal
to n. In this case, one can be assured that ε < 10−30 provided n is not within
100 of any power of three.

4.2 Algorithm

With this explicit expression in mind, an algorithm can be given for gen-
erating pseudorandom deviates, in the form of a sequence of IEEE 64-bit
floating-point numbers in (0, 1). These deviates contain, in their mantissas,
successive 53-bit segments of the binary expansion of α, beginning at some
given starting position.

Initialization. First select a starting index a in the range 333 + 100 =
5559060566555623 ≤ a ≤ 253 = 9007199254740992. The value of a can
be thought of as the “seed” of the generator. Then calculate

z0 = 2a−3
33 · b333/2c mod 333 (13)

Generate iterates. Successive iterates of the generator can then be recursively
computed by iterating

zk = 253 · zk−1 mod 333 (14)

and then returning the values zk3
−33, which are 64-bit IEEE floating-point

results in the unit interval.

Arithmetic. Several of the operations used in this scheme must be done
with an accuracy of at least 106 mantissa bits. This can be done using

9

“double-double” arithmetic. A double-double datum is represented by a pair
of IEEE double-precision floating-point numbers: the first word is the clos-
est 64-bit IEEE value to the double-double value, and the second word is
the difference. Algorithms for performing basic double-double arithmetic
algorithms, using only rounded 64-bit IEEE floating-point operations, are
given in [9] or [6, pg. 218-220]. These have been implemented in C++
and Fortran-90 double-double computation software packages, which include
both basic-level arithmetic functions as well as common algebraic and tran-
scendental functions, available from first author’s website: http://crd.lbl.
gov/~dhbailey/mpdist.

On other other hand, one could also use 128-bit integer or 128-bit IEEE
floating-point arithmetic to do these operations, if these operations are avail-
able in hardware (software implementations tend to be relatively slow).

Implementation details. The operation 253 · zk−1 mod 333 can be performed
efficiently as follows: (1) multiply 253 by zk−1 (double times double yielding
a double-double or 128-bit result); (2) multiply the result of step 1 (just the
high-order portion will do) by 3−33 and take the greatest integer; (3) multiply
the result of step 2 by 333 (double times double yielding a double-double or
128-bit result); and (4) subtract the result of step 3 from the result of step 1
(using double-double or 128-bit arithmetic). It is possible that the result of
step 2 might be one unit too high, or one too low, so that the result of step 4
may need to be adjusted accordingly: if it is negative, add 333; if it exceeds
333, subtract 333.

Exponentiation. The exponentiation required in the initialization may be
done efficiently using the binary algorithm for exponentiation. This is merely
the formal name for the observation that exponentiation can be economically
performed by means of a factorization based on the binary expansion of the
exponent. For example, one can write 317 = ((((32)2)2)2) · 3, thus producing
the result in only five multiplications, instead of the usual 16. According to
Knuth, this technique dates back at least to 200 bce [10, pg. 461]. In this
application, the exponentiation result is required modulo a positive integer
k. This can be done very efficiently by reducing modulo k the intermediate
multiplication result at each step of the exponentiation algorithm. A formal
statement of this scheme is as follows:

To compute r = bn mod k, where r, b, n and k are positive integers: First set

10

t to be the largest power of two such that t ≤ n, and set r = 1. Then
A: if n ≥ t then r ← br mod k; n← n− t; endif
t← t/2
if t ≥ 1 then r ← r2 mod k; go to A; endif

Note that the above algorithm is performed entirely with positive integers
that do not exceed k2 in size.

A full implementation of the entire pseudorandom scheme, which runs
on any computer system with IEEE 64-bit arithmetic and a Fortran-90 com-
piler, can be obtained from the first author’s website: http://crd.lbl.gov/

~dhbailey/mpdist. The code is straightforward and can easily be converted
to other languages, such as C or Java.

4.3 Analysis

It can be seen from the above that the recursive sequence generating iterates,
which contain successive 53-long segments of binary digits from the expansion
of α, is nothing more than a special type of linear congruential pseudorandom
number generator, a class that has been studied extensively by computer
scientists and others [10, pg. 10–26]. In other words, the binary digits of
α are “locally” (within a range of indices spanned by successive powers of
three) given by a linear congruential generator, with a modulus that is a
large power of three.

This observation makes it an easy matter to determine the period P of the
resulting generator [10, pg. 17]: as specified above, P = 2 · 332 ≈ 3.706 · 1015.
Note, however, that the binary digits of the resulting sequence will match
that of α only if [a, a+53n], where a is the starting index and n is the number
of floating-point results generated, does not include a power of three or come
within 100 of a power of three. If one can utilize 128-bit integer arithmetic,
one could use a larger modulus, say 340, which would yield a period that is
2187 times larger.

This scheme has one significant advantage over conventional linear con-
gruential generators that use a power-of-two modulus: it cleanly avoids
anomalies that sometimes arise in large scientific codes, when arrays with
dimensions that are large powers of two are filled with pseudorandom data
and then accessed both by row and by column (or plane), or which otherwise
are accessed by large power-of-two data strides (as in a power-of-two FFT).
This is because the pseudorandom data sequence accessed in this manner has

11

a reduced period, and thus may be not as “random” as desired. The usage of
a modulus that is a large power of three is immune to these problems. The
authors are not aware of any major scientific calculation that involves data
access strides that are large powers of three.

4.4 Performance

As mentioned above, a Fortran-90 implementation of the scheme described
above is available on the first author’s website. For comparison purposes,
the conventional linear congruential generator

zn = 521 · zn−1 mod 253, (15)

was implemented using the same software and programming style. These two
codes were then tested on an 2.8 GHz Apple MacPro workstation, using the
gfortran compiler (and running only on one of the eight cores). The program
implementing the normal-number-based scheme required 3.553 seconds to
generate an array of 100 million double-precision deviates. The conventional
linear congruential system required essentially the same time.

By the way, the above program also is self-checking, in that it computes
100 million iterates using (14), then checks that the same value is produced
by jumping ahead 100 million steps, by using formula (13). The present
authors have used this program to check computational and data integrity
on various computer systems. In at least one instance, the program disclosed
intermittent memory errors.

4.5 Parallel Implementation

The scheme described above is very well suited for parallel processing, a trait
not shared by a number of other commonly used pseudorandom schemes.
Consider, for example, an implementation of the above pseudorandom scheme
on a distributed memory system. Suppose that k is the processor number
and p is the total number of processors used. Assume that a total of n
pseudorandom deviates are to be generated, and assume that n is evenly
divisible by p. Then each processor generates n/p results, with processor p
using as a starting value a+nk/p. Note that each processor can quickly and
independently generate its own value of z0 by using formula (13).

In this way, the collective sequence generated by all processors coincides
precisely with the sequence that is generated on a single processor system.

12

This feature is crucially important in parallel processing, permitting one
can verify that a parallel program produces the same answers (to within
reasonable numerical round-off error) as the single-processor version. It is
also important, for the same reason, to permit one to compare results, say,
between a run on 64 CPUs of a given system with one on 128 CPUs.

This scheme has been used to generate data for the fast Fourier transform
(FFT) benchmark that is part of the benchmark suite for the High Produc-
tivity Computing Systems (HPCS) program, funded by the U.S. Defense
Advanced Research Projects Agency (DARPA) and the U.S. Department of
Energy.

4.6 Variations

Some initial tests, conducted by Nelson Beebe of the University of Utah,
found that if by chance one iterate is rather small, it will include as its
trailing bits a few of the leading bits of the next result (this is a natural
consequence of the construction). While the authors are not aware of any
application for which this feature would have significant impact, it can be
virtually eliminated by advancing the sequence by more than 53 bits—say
by 64 bits—from iterate to iterate.

This can be done by simply altering formula (14) above to read:

zk = 264 · zk−1 mod 333. (16)

This can be implemented as is, if one is using 128-bit integer or 128-bit IEEE
floating-point arithmetic, but does not work correctly if one is using double-
double arithmetic, because the product 264 · zk−1 could exceed 2106, which is
the maximum size of an integer that can be represented exactly as a double-
double operand. When using double-double arithmetic, one can compute
each iterate using the following:

zk = 211 · (253 · zk−1 mod 333) mod 333. (17)

Tests by the present authors, advancing 64 bits per result, showed no signif-
icant correlation to the leading bits of the next iterate. And, of course, the
additional “skip” here could be more than 11; it could be any value up to 53.

Finally, there is no reason that other constants from this class could not
also be used in a similar way. For example, a very similar generator could be

13

constructed based on α2,5. One could also construct pseudorandom genera-
tors based on constants that are 3-normal or 5-normal, although one would
lose the property that successive digits are precisely retained in consecutive
computer words (which are based on binary arithmetic). The specific choice
of multiplier and modulus can be made based on application requirements
and the type of high-precision arithmetic that is available (e.g., double-double
or 128-bit integer).

However, as we noted above, it is important to recognize that any pro-
posed pseudorandom number generator, including this one, must be sub-
jected to lengthy and rigorous testing [10, 11, 12]. Along this line, as noted
above, generators of the general linear congruential family have problems,
and it is not yet certain whether some variation or combination of genera-
tors in this class can be fashioned into a robust, reliable scheme that is both
efficient and practical. But we do believe that these schemes are worthy of
further study.

5 Conclusion and directions for further work

In this paper, we have shown how the constant α =
∑

n≥1 1/(3n23n), which
is provably 2-normal, is not 6-normal, as well as some generalizations. These
results thus constitute simple and concrete counter-examples to the ques-
tion of whether normality in one base b implies normality in another base
c (except in simple cases covered by the first part of Theorem 2). In par-
ticular, these results are explicit examples of the second part of Theorem 2.
We have also shown how a practical pseudorandom number generator can
be constructed based on the binary digits of α, where each generated word
consists of successive sections of its binary expansion.

Perhaps the most significant implication of the algorithm we have pre-
sented is not for its practical utility, but instead for the insight it provides
to the fundamental question of normality. In particular, the pseudorandom
number construction implies that the digit expansions of one particular class
of provably normal numbers consist of successive segments of exponentially
growing length, and within each segment the digits are given by a specific
type of linear congruential generator, with a period that also grows exponen-
tially. From this perspective, the 2-normality of α is entirely plausible.

Now consider what this implies, say, for the normality of a constant such

14

as log 2. First recall the classical formula

log 2 =
∞∑
n=1

1

n2n
. (18)

Thus, following the well-known BBP approach (see [2] or [6, Chap. 4]), we
can write

{2d log 2} =

{
d∑

n=1

2d−n mod n

n

}
+

{
∞∑

n=d+1

2d−n

n

}
. (19)

This leads immediately to the BBP algorithm for computing the binary dig-
its of log 2 beginning after position d, since each term of the first summation
can be computed very rapidly by means of the binary algorithm for expo-
nentiation, and the second summation quickly converges.

But we can also view (19) for its insight on normality. Note that the
binary expansion of log 2 following position d can be seen as a sum of nor-
malized linear congruential pseudorandom number generators, with periods
(at least in some terms) that grow steadily with n (since the period of a
linear congruential generator depends on the factorization of the modulus).
But with increasing n, at least some terms will have prime moduli, resulting
in relatively long periods. In fact, some will be primitive primes modulo two,
which give the maximal period (n− 1)/2. Note that the sum of normalized
linear congruential generators can be rewritten as a single linear congruential
generator. Thus it is plausible that the period of the sum of generators in the
first portion of (19) increases without bound, resulting in a highly “random”
expansion (although all of this needs to be worked out in detail).

We have attempted to develop these notions further, but so far we have
not made a great deal of progress. But, at the least, this approach may be
effective for constants such as

β =
∞∑

n∈W

1

n2n
, (20)

where W is the set of primitive primes modulo two, which as mentioned above
give rise to a maximal periods when used as a linear congruential modulus.
Only time will tell.

15

6 Appendix

Proof of Theorem 5: α2,3 is not 6-normal.

Let Qm be the base-6 expansion of α2,3 immediately following position
3m (i.e., after the “decimal” point has been shifted to the right 3m digits).
We can write

Qm = 63mα2,3 mod 1

=

(
m∑
k=1

33m−k23m−3k
)

mod 1 +
∞∑

k=m+1

33m−k23m−3k . (21)

The first portion of this expression is zero, since all terms in the summation
are integers. The small second portion is very accurately approximated by
the first term of the series, namely (3/4)3

m
/3m+1. In fact, for all m ≥ 1,

(3/4)3
m

3m+1
< Qm <

(3/4)3
m

3m+1
(1 + 2 · 10−6). (22)

Let Zm = blog6 1/Qmc be the number of zeroes in the base-6 expansion
of α that immediately follow position 3m. Then for all m ≥ 1, (22) can be
rewritten

3m log6

(
4

3

)
+ (m+ 1) log6 3− 2

< Zm < 3m log6

(
4

3

)
+ (m+ 1) log6 3. (23)

Now let Fm be the fraction of zeroes in the base-6 expansion of α up to
position 3m +Zm (i.e., up to the end of the block of zeroes that immediately
follows position 3m). Clearly

Fm >

∑m
k=1 Zk

3m + Zm
, (24)

since the numerator only counts zeroes in the long stretches. The summation
in the numerator satisfies, for all sufficiently large m,

m∑
k=1

Zk >
3

2

(
3m − 1

3

)
log6

(
4

3

)
+
m(m+ 3)

2
log6 3− 2m

>
3

2
· 3m log6

(
4

3

)
− 1

2
log6

(
4

3

)
− 2m. (25)

16

Now given any ε > 0, we can write, for all sufficiently large m,

Fm >
3
2
· 3m log6

(
4
3

)
− 1

2
log6

(
4
3

)
− 2m

3m + 3m log6

(
4
3

)
+ (m+ 1) log6 3

=
3
2

log6

(
4
3

)
− 1

3m

(
1
2

log6

(
4
3

)
+ 2m

)
1 + log6

(
4
3

)
+ (m+1) log6 3

3m

≥
3
2

log6

(
4
3

)
− ε

1 + log6

(
4
3

)
+ ε

≥ 1

2
log2

(
4

3

)
− 2ε. (26)

But β = 1
2

log2(4/3) (which has numerical value 0.2075187496 . . .) is clearly
greater than 1/6, since (4/3)3 = 64/27 > 2. This means that infinitely
often (namely, whenever n = 3m + Zm) the fraction of zeroes in the base-6
expansion of α up to position n exceeds 1

2
(1/6 + β) > 1/6. Thus α is not

6-normal. QED.

Proof of Theorem 6: Given co-prime integers b ≥ 2 and c ≥ 2, the constant
αb,c =

∑
k≥1 1/(ckbc

k
) is not bc-normal.

Let Qm(b, c) be the base-bc expansion of αb,c immediately following posi-
tion cm. Then

Qm(b, c) = (bc)c
m

αb,c mod 1

=

(
m∑
k=1

cc
m−kbc

m−ck
)

mod 1 +
∞∑

k=m+1

cc
m−kbc

m−ck . (27)

As above, the first portion of this expression is zero, since all terms in the
summation are integers, and the second portion is very accurately approxi-
mated by the first term of the series, namely [c

b(c−1)]
cm/cm+1. In fact, for any

choice of b and c as above, and for all m ≥ 1,

1

cm+1

[
c

b(c− 1)

]cm
< Qm(b, c) <

1

cm+1

[
c

b(c− 1)

]cm
· (1 + 1/10).(28)

Let Zm(b, c) = blogbc 1/Qm(b, c)c be the number of zeroes that immedi-
ately follow position cm. Then for all m ≥ 1, (28) can be rewritten as

cm logbc

[
b(c− 1)

c

]
+ (m+ 1) logbc c− 2

< Zm(b, c) < cm logbc

[
b(c− 1)

c

]
+ (m+ 1) logbc c. (29)

17

Now let Fm(b, c) be the fraction of zeroes up to position cm + Zm(b, c).
Clearly

Fm(b, c) >

∑m
k=1 Zk(b, c)

cm + Zm(b, c)
, (30)

since the numerator only counts zeroes in the long stretches. The summation
in the numerator of Fm(b, c) satisfies

m∑
k=1

Zk(b, c) >
c

c− 1

(
cm − 1

c

)
logbc

[
b(c− 1)

c

]
+
m(m+ 3)

2
logbc c− 2m

>
cm+1

c− 1
logbc

[
b(c− 1)

c

]
− 1

c− 1
logbc

[
b(c− 1)

c

]
− 2m. (31)

Thus given any ε > 0, we can write, for all sufficiently large m,

Fm(b, c) >

cm+1

c−1 logbc

[
b(c−1)
c

]
− 1

c−1 logbc

[
b(c−1)
c

]
− 2m

cm + cm logbc

(
b(c−1)
c

)
+ (m+ 1) logbc c

(32)

=

c
c−1 logbc

[
b(c−1)
c

]
− 1

cm

(
1
c−1 logbc

[
b(c−1)
c

]
+ 2m

)
1 + logbc

[
b(c−1)
c

]
+ (m+1) logbc c

cm

≥
c
c−1 logbc

[
b(c−1)
c

]
− ε

1 + logbc

[
b(c−1)
c

]
+ ε

≥ c

c− 1
·

logbc

[
b(c−1)
c

]
1 + logbc

[
b(c−1)
c

] − 2ε.

= T (b, c)− 2ε, (33)

where

T (b, c) =
c

c− 1
·

logbc

[
b(c−1)
c

]
1 + logbc

[
b(c−1)
c

] . (34)

To establish the desired result that T (b, c) > 1/(bc), first note that

T (b, c) >
1

2
logbc

[
b(c− 1)

c

]
≥ 1

2
logbc

(
b

2

)
. (35)

18

Raise bc to the power of the right-hand side, and also to the power 1/(bc).
Then it suffices to demonstrate that

b

2
>

[
(bc)1/(bc)

]2
. (36)

The right-hand side is bounded above by (e1/e)2 = 2.0870652286 Thus
this inequality is clearly satisfied whenever b ≥ 5.

If we also presume that c ≥ 5, then by examining the middle of (35) it
suffices to demonstrate that

1

2
logbc

4b

5
>

1

bc
(37)

or

4b

5
>

(
e1/e
)2
. (38)

But this is clearly satisfied whenever b ≥ 3. For the case b = 2 and c ≥ 5,
we can write

T (b, c) =
c

c− 1
·

log2c

[
2(c−1)
c

]
1 + log2c

[
2(c−1)
c

] ≥ log2c

[
2(c−1)
c

]
1 + log10 2

, (39)

so by similar reasoning it suffices to demonstrate that

2(c− 1)

c
>

(
e1/e
)1+log10 2 = 1.61384928833 (40)

But this is clearly satisfied whenever c ≥ 6.
The five remaining cases, namely (2, 3), (2, 5), (3, 2), (3, 4), (4, 3), are eas-

ily verified by explicitly computing numerical values of T (b, c) using (34). As
it turns out, the simple case that we worked out in detail above, namely b = 2
and c = 3, is the worst case, in the sense that for all other (b, c), the fraction
T (b, c) exceeds the natural frequency 1/(bc) by greater margins. QED.

19

References

[1] David H. Bailey, Jonathan M. Borwein, Richard E. Crandall and Carl
Pomerance, “On the binary expansions of algebraic numbers,” Journal
of Number Theory Bordeaux, vol. 16 (2004), pg. 487–518.

[2] David H. Bailey, Peter B. Borwein and Simon Plouffe, “On the rapid
computation of various polylogarithmic constants,” Mathematics of
Computation, vol. 66, no. 218 (Apr 1997), pg. 903–913.

[3] David H. Bailey and Richard E. Crandall, “Random generators and
normal numbers,” Experimental Mathematics, vol. 11 (2002), no. 4, pg.
527–546.

[4] J. W. S. Cassels, “On a problem of Steinhaus about normal numbers,”
Colloquium Mathematicum, voo. 7 (1959), pg. 95–101.

[5] David H. Bailey and Michal Misiurewicz, “A strong hot spot theorem,”
Proceedings of the American Mathematical Society, vol. 134 (2006), no.
9, pg. 2495–2501.

[6] Jonathan M. Borwein and David H. Bailey, Mathematics by Experiment:
Plausible Reasoning in the 21st Century, AK Peters, Natick, MA, and
ed., 2008.

[7] D. G. Champernowne, “The construction of decimals normal in the scale
of ten,” Journal of the London Mathematical Society, vol. 8 (1933), pg.
254–260.

[8] A. H. Copeland and P. Erdös, “Note on normal numbers,” Bulletin of
the American Mathematical Society, vol. 52 (1946), pg. 857–860.

[9] Yozo Hida, Xiaoye S. Li and David H. Bailey, “Algorithms for quad-
double precision floating point arithmetic,” 15th IEEE Symposium on
Computer Arithmetic, IEEE Computer Society, 2001, pg. 155–162.

[10] Donald E. Knuth, The Art of Computer Programming, vol. 2, Addison-
Wesley, Boston, 1998.

[11] P. L’Ecuyer, “Random number generation,” in Handbook of Computa-
tional Statistics, J. E. Gentle, W. Haerdle and Y. Mori, ed., Springer-
Verlag, Berlin, 2004, Chap. II.2.

20

[12] P. L’Ecuyer and R. Simard, “TestU01: A C Library for empirical test-
ing of random number generators,” ACM Transactions on Mathematical
Software, vol. 33 (Aug. 2007).

[13] A. D. Pollington, “The Hausdorff dimension of a set of normal numbers,”
Pacific Journal of Mathematics, vol. 95 (1981), pg. 193–204.

[14] Martine Queffelec, “Old and new results on normality,” Lecture Notes –
Monograph Series, vol. 48, Dynamics and Stochastics, 2006, Institute of
Mathematical Statistics, pg. 225–236.

[15] W. Schmidt, “On normal numbers,” Pacific Journal of Mathematics,
vol. 10 (1960), pg. 661–672.

[16] R. Stoneham, “On absolute (j, ε)-normality in the rational fractions with
applications to normal numbers,” Acta Arithmetica, vol. 22 (1973), 277–
286.

[17] H. Weyl, “Uber die Gleichverteilung von Zahlen mod. Eins,” Mathema-
tische Annalen, vol. 77 (1916), pg. 313–352.

21

