
Highly Parallel, High-Precision Numerical

Integration

D.H. Bailey∗ J.M. Borwein†

April 1, 2008

Abstract

This paper describes schemes for rapidly computing numerical values of def-
inite integrals to very high accuracy (hundreds to thousands of digits) on highly
parallel computer systems. Such schemes are of interest not only in computa-
tional physics and computational chemistry, but also in experimental mathe-
matics, where high-precision numerical values of definite integrals can be used
to numerically discover new identities. This paper presents performance results
for 1-D and 2-D integral test suites on highly parallel computer systems. Re-
sults are also given for certain problems that derive from mathematical physics.
One of these results confirms a conjecture to 20,000 digit accuracy. The perfor-
mance rate for this calculation is 690 Gflop/s on 1024 CPUs of a state-of-the-art
parallel system. Other results, which range in precision from 120 to 500 dig-
its, and for 1-D, 2-D, 3-D and 4-D integrals, derive from Ising theory. The
largest of these calculations required 28 hours on 256 CPUs. We believe that
these are the first instances of evaluations of nontrivial 3-D and 4-D integrals
to multi-hundred-digit accuracy.

1. Introduction

Numerical integration (often termed “numerical quadrature”) has numerous
applications in applied mathematics, particularly in fields such as mathemati-
cal physics and computational chemistry. Recently such techniques have found
application in the emerging discipline of experimental mathematics, namely
the application of high-performance computing to research questions in math-
ematics. In particular, high-precision numerical values of certain definite inte-
grals, when combined with integer relation detection algorithms, can be used
to discover previously unknown analytic evaluations (i.e., closed-form formulas)

∗Lawrence Berkeley National Laboratory, Berkeley, CA 94720, dhbailey@lbl.gov. Sup-

ported in part by the Director, Office of Computational and Technology Research, Division of

Mathematical, Information, and Computational Sciences of the U.S. Department of Energy,

under contract number DE-AC02-05CH11231.
†Faculty of Computer Science, Dalhousie University, Halifax, NS, B3H 2W5, Canada,

jborwein@cs.dal.ca. Supported in part by NSERC and the Canada Research Chair Pro-

gramme.

1

for certain integrals, and to provide strong numerical confirmation that such
computer-discovered identities are valid.

An “integer relation detection” scheme is a numerical algorithm which, given
an n-long vector (xi) of high-precision floating-point values, can recover the
integer coefficients (ai) such that a1x1 + a2x2 + · · · + anxn = 0 (to within
available precision), or else determine that there are no such integers less than a
certain size. The precision required in these computations is typically 100–500
digits, although occasionally thousands of digits are required. In one instance,
50,000-digit arithmetic was needed to find the underlying relation [9]. The best-
known integer relation algorithm is the “PSLQ” algorithm [8].

Here are some examples of this approach. In 2002, the present authors and
Greg Fee of Canada were inspired by a recent problem in the American Math-

ematical Monthly [2]. We found, by using an early version of the integration
scheme described in this paper, together with a PSLQ program, that if Q(a) is
defined by

Q(a) =

∫ 1

0

arctan(
√

x2 + a2) dx√
x2 + a2(x2 + 1)

,

then

Q(0) = π log 2/8 + G/2

Q(1) = π/4 − π
√

2/2 + 3
√

2 arctan(
√

2)/2

Q(
√

2) = 5π2/96.

Here G =
∑

k≥0(−1)k/(2k + 1)2 = 0.91596559417 . . . is Catalan’s constant.
These specific experimental results then led to the following general result, which
now has been rigorously established, and several others:

∫ ∞

0

arctan(
√

x2 + a2) dx√
x2 + a2(x2 + 1)

=
π

2
√

a2 − 1

[

2 arctan(
√

a2 − 1) − arctan(
√

a4 − 1)
]

.

As a second example, the present authors empirically determined that

2√
3

∫ 1

0

log6(x) arctan[x
√

3/(x − 2)]

x + 1
dx =

1

81648
[−229635L3(8)

+29852550L3(7) log 3 − 1632960L3(6)π2 + 27760320L3(5)ζ(3)

−275184L3(4)π4 + 36288000L3(3)ζ(5) − 30008L3(2)π6

−57030120L3(1)ζ(7)] ,

where L3(s) =
∑

n≥1 [1/(3n− 2)s − 1/(3n− 1)s] and where ζ(s) =
∑

n≥1 1/ns

is the Riemann zeta function. Based on these experimental results, general
results of this type have been conjectured but few have yet been rigorously
established.

2

As a third example, one of the present authors (Borwein) and British physi-
cist David Broadhurst conjectured that

24

7
√

7

∫ π/2

π/3

log

∣

∣

∣

∣

∣

tan t +
√

7

tan t −
√

7

∣

∣

∣

∣

∣

dt
?
= L−7(2) = (1)

∞
∑

n=0

[

1

(7n + 1)2
+

1

(7n + 2)2
− 1

(7n + 3)2
+

1

(7n + 4)2
− 1

(7n + 5)2
− 1

(7n + 6)2

]

.

In this paper we will describe how we strongly confirmed this identity, which
originates in quantum theory, by evaluating the left-hand integral to 20,000-digit
accuracy and showing it to be in full agreement with a Mathematica evaluation
of the right-hand side to the same precision.

As a final example, in some research performed jointly with Richard Cran-
dall, the present authors examined the following integrals, which arise in the
Ising theory of mathematical physics [5]:

Cn :=
4

n!

∫ ∞

0

· · ·
∫ ∞

0

1
(

∑n
j=1(uj + 1/uj)

)2

du1

u1
· · · dun

un
. (2)

We were able to show that these can be written as one-dimensional integrals:

Cn =
2n

n!

∫ ∞

0

pKn
0 (p) dp, (3)

where K0 is the modified Bessel function [1]

K0(p) :=

∫ ∞

0

e−p cosh tdt.

When we computed Cn for fairly large n, e.g.

C1024 = 0.63047350337438679612204019271087890435458707871273234 . . .

we found that these rather quickly approached a limit, numerically close to
2e−2γ (they agree to over 300 places). Indeed, we were then able to prove that

lim
n→∞

Cn = 2e−2γ.

The above examples are ordinary one-dimensional integrals, but 2-D, 3-D
and 4-D integrals are also of interest. Along this line, in the same study of Ising
integrals, the present authors and Richard Crandall determined that if

En := 2

∫ 1

0

· · ·
∫ 1

0

∏

i<j

(

ui − uj

ui + uj

)2
du1

u1
· · · dun

un
. (4)

3

then after the evaluation of an equivalent (but much more complicated) triple
integral to 250-digit accuracy, we found that

E5
?
= 42 − 1984 Li4(1/2) +

189π4

10
− 74ζ(3) − 1272ζ(3) log 2 + 40π2 log2 2

−62π2

3
+

40π2 log 2

3
+ 88 log4 2 + 464 log2 2 − 40 log 2,

where the notation
?
= is employed to emphasize that we do not yet have a formal

proof for this evaluation. See [7] for some additional examples.

2. The Tanh-Sinh Quadrature Algorithm

In a previous paper [11], one of the present authors and two co-authors
investigated several numerical integration schemes, suitable for high-precision
usage, and exhibited results for computer runs with 400- and 1000-digit preci-
sion. We concluded the “tanh-sinh” quadrature scheme holds the best promise
for very high-precision usage, particularly for functions with infinite derivatives
or blow-up singularities at endpoints, although Gaussian quadrature also has
merit in those cases where the integrand function is well-behaved in the full
closed interval.

The tanh-sinh scheme is based on the observation, rooted in the Euler-
Maclaurin summation formula, that for certain bell-shaped integrands, a simple
block-function approximation to the integral is remarkably accurate [3, pg. 180].
This principle is exploited in the tanh-sinh scheme by transforming an integral
of a given function f(x) on a finite interval such as [−1, 1] to an integral on
(−∞,∞), by using the change of variable x = g(t), where g(t) = tanh(π/2 ·
sinh t). The function g(t) has the property that g(x) → 1 as x → ∞ and
g(x) → −1 as x → −∞, and also that g′(x) and all higher derivatives rapidly
approach zero for large positive and negative arguments. Thus one can write,
for h > 0,

∫ 1

−1

f(x) dx =

∫ ∞

−∞

f(g(t))g′(t) dt = h
∞
∑

j=−∞

wjf(xj) + E(h),

where xj = g(hj) and wj = g′(hj) and E(h) is an error term. In many cases,
even where f(x) has an infinite derivative or an integrable singularity at one
or both endpoints, the resulting integrand f(g(t))g′(t) is a smooth bell-shaped
function for which the Euler-Maclaurin argument applies. In these cases, the
error E(h) decreases very rapidly with h.

In short, one can approximate the integral of f(t) on [−1, 1] by the sum
∑N

j=−N wjf(xj), where the abscissas are given by xj = g(hj) and the weights
are given by wj = g′(hj). In our implementation, the parameter h is set to
2−k, where k is the “level” of the quadrature calculation, and N is chosen large
enough that terms beyond N are smaller than the “epsilon” of the arithmetic
precision being used. Successively larger levels reduce h in half, double the
number of abscissa-weight pairs (and thus double the number of function eval-
uations required in a quadrature calculation), but also approximately double

4

the number of correct digits in the result, in many cases. The abscissa-weight
pairs of one level are the even-indexed pairs for the next level. Full details are
given in [11]. The basic tanh-sinh integration scheme was first introduced by
Takahasi and Mori [17].

3. Error Estimation

We should add that some highly accurate error estimation schemes have
recently been established for tanh-sinh quadrature, estimates that can be calcu-
lated in a very similar manner to the quadrature result itself [4]. For example,

E2(h, m) := h(−1)m−1

(

h

2π

)2m b/h
∑

j=a/h

D2m[g′(t)f(g(t))](jh) (5)

yields extremely accurate estimates of the error, even in the simplest case m = 1.
Further, these error estimates can be used to obtain rigorous certificates on the
values of quadrature results. For example, by using these methods we were able
to establish rigorously that the experimental identity

24

7
√

7

∫ π/2

π/3

log

∣

∣

∣

∣

∣

tan t +
√

7

tan t −
√

7

∣

∣

∣

∣

∣

dt
?
= L−7(2),

which was mentioned in the introduction, holds to within 3.82 × 10−49.
Several other examples of such certificates are given in [4]. These certificate

calculations are typically rather expensive, but the highly parallel implementa-
tion techniques described here can be used to obtain these results in reasonable
run time.

4. High-Precision Arithmetic

The Arbitrary Precision (ARPREC) computation library was used to per-
form the required high-precision arithmetic computations described in this paper
[10]. This software library is written in C++, but it includes both C++ and
Fortran-90 translation modules, so that existing C++ and Fortran-90 applica-
tion programs can utilize this library by making only very minor changes to
the source code. In most cases, it is only necessary to change type statements
and input/output statements of the variables that one wishes to be treated as
arbitrary precision, and all other operations are automatically performed by
the library. One fortunate feature of high-precision numerical quadrature, as
described in this paper, is that individual high-precision arithmetic operations
and transcendental function evaluations can be performed locally on a single
processor. Thus it is not necessary to invoke parallel processing within the
ARPREC library itself, at least for the problems considered below.

5. 1-D Parallel Implementation

The tanh-sinh quadrature scheme is very well suited for implementation on a
highly parallel computer system, using either a MPI or OpenMP programming
model, although there are several details that must be observed to avoid major
reductions in parallel performance.

5

Two approaches were considered for a parallel implementation: (1) com-
puting abscissa-weight pairs in parallel, distributing all resulting pairs to all
processors, and then parceling out function evaluations to processors in some
evenly distributed manner; and (2) calculating the abscissa-weight pair indexed
j only on processor ρ(j) (for some processor assignment function ρ(j)), and
performing only those function evaluations corresponding to pairs indexed j
on processor ρ(j). (Some additional details, such as the error estimation pro-
cedure, are not mentioned in this brief sketch of the parallelization strategy.)
Either way, function-weight products are summed locally, then these sums are
combined onto a single processor and added together using high-precision arith-
metic to produce a global sum. Option (1) requires substantial interprocessor
communication, and in the tests below is scalable only to about 256 processors.
Option (2) requires much less communication and only a modest amount of
memory on each node, but suffers from severe load imbalances (and reductions
in scalability) unless the processor assignment function ρ(j) is chosen carefully.

One straightforward processor assignment scheme is a simple cyclic scheme,
namely ρ(j) = j mod m, where m is the total number of processors. One diffi-
culty with this scheme derives from the fact that different integration problems
require different numbers of abscissa-weight pairs to achieve a given accuracy
target. Even among the problems described in the next section, some achieve
full 2000-digit accuracy with only nine levels of abscissa-weight pairs (h = 2−9),
while others require 13 levels of abscissa-weight pairs (h = 2−13), which means
16 times as many pairs and 16 times as many function evaluations. But if one
has pre-computed 13 levels of abscissa-weight pairs, then when only nine levels
are used, the abscissa-weight array is accessed with a stride (interval) of 16.
Such power-of-two strides result in catastrophic load imbalances when a cyclic
assignment function is employed—some processors have a large fraction of the
pairs and corresponding function evaluations, while other processors literally
have none.

Table 1 gives the results of tests of five different assignment schemes. In
these tests, 70,000 indices (the approximate number of abscissa-weight pairs
actually generated in the quadrature computations described in the Section 7)
were assigned to processors according to the five schemes. The smallest and
largest number of indices assigned to any processor by a given scheme, for
various processor numbers and strides, are shown in the table. The more nearly
equal these max and min figures are, the better the assignment scheme. The
five schemes are:

1. CYC, a cyclic scheme: ρ(j) = mod(j, m)

2. BC1, a block-cyclic scheme: ρ(j) = mod(⌊j/16⌋, m)

3. BC2, a block-cyclic scheme: ρ(j) = mod(⌊j/17⌋, m)

4. MCBC, a mixed cyclic, block-cyclic scheme: ρ(j) = mod(j + ⌊j/16⌋, m)

5. RAND, a pseudo-random scheme: ρ(j) = ⌊zjm⌋, where zj is a uniform
generator on (0, 1).

6

CYC BC1 BC2 MCBC RAND

Proc. Stride Min Max Min Max Min Max Min Max Min Max

16 1 4375 4375 4368 4384 4369 4386 4374 4376 4267 4505

16 2 0 4375 2184 2192 2056 2322 2187 2188 2133 2247

16 4 0 4375 1092 1096 1028 1290 1093 1094 1037 1135

16 8 0 4375 546 548 514 774 546 547 500 596

16 16 0 4375 273 274 257 516 273 274 246 305

64 1 1093 1094 1088 1104 1088 1105 1093 1095 1022 1169

64 2 0 1094 544 552 512 585 545 548 505 600

64 4 0 1094 272 276 256 325 272 276 242 315

64 8 0 1094 136 138 128 195 136 138 112 176

64 16 0 1094 68 69 64 130 68 69 48 87

256 1 273 274 272 288 272 289 272 274 234 320

256 2 0 274 136 144 128 153 136 137 106 168

256 4 0 274 68 72 64 85 68 69 45 93

256 8 0 274 34 36 32 51 34 35 17 51

256 16 0 274 17 18 16 34 17 18 6 29

1024 1 68 69 64 80 68 85 67 69 42 97

1024 2 0 69 32 40 32 45 32 36 16 54

1024 4 0 69 16 20 16 25 16 20 6 30

1024 8 0 69 8 10 8 15 8 10 0 19

1024 16 0 69 4 5 4 10 4 5 0 12

Table 1: Min/max processor counts for five assignment functions (70,000 in-
dices)

It can be seen from the results in Table 1 that of the five schemes mentioned,
the one named “mixed cyclic, block-cyclic” (MCBC) is the best. It provides a
virtually perfect load balance across a large range of processors (up to 1024) and
strides (up to stride 16). This is the scheme that was used in the computations
described below.

6. 1-D Test Problems

The following 14 integrals are taken from the suite used in the earlier paper
[11]. They are typical of the integrals that have been encountered in experi-
mental math research, except that in each of these cases an analytic result is
known, as shown below, facilitating the checking of results:

• 1–4: Continuous functions on finite intervals.

• 5–6: Continuous functions on finite intervals, but with an infinite deriva-
tive at an endpoint.

• 7–10: Functions on finite intervals with an integrable singularity at an
endpoint.

• 11–13: Functions on an infinite interval.

• 14: An oscillatory function on an infinite interval.

7

1 :

∫ 1

0

t log(1 + t) dt = 1/4

2 :

∫ 1

0

t2 arctan t dt = (π − 2 + 2 log 2)/12

3 :

∫ π/2

0

et cos t dt = (eπ/2 − 1)/2

4 :

∫ 1

0

arctan(
√

2 + t2)

(1 + t2)
√

2 + t2
dt = 5π2/96

5 :

∫ 1

0

√
t log t dt = −4/9

6 :

∫ 1

0

√

1 − t2 dt = π/4

7 :

∫ 1

0

√
t√

1 − t2
dt = 2

√
πΓ(3/4)/Γ(1/4)

8 :

∫ 1

0

log2 t dt = 2

9 :

∫ π/2

0

log(cos t) dt = −π log(2)/2

10 :

∫ π/2

0

√
tan t dt = π

√
2/2

11 :

∫ ∞

0

1

1 + t2
dt = π/2

12 :

∫ ∞

0

e−t

√
t

dt =
√

π

13 :

∫ ∞

0

e−t2/2 dt =
√

π/2

14 :

∫ ∞

0

e−t cos t dt = 1/2

7. 1-D Performance Results

The results of the 1-D parallel quadrature tests are given in Table 2. The
first line gives the run time, in seconds, for the initialization process (calculating
all abscissa-weight pairs). The second column gives the levels of abscissa-weight
pairs (see Sections 2 and 4) required to achieve the target accuracy (10−2000)
for the individual problems. The corresponding number of abscissa-weight pairs
is roughly 8.7 × 2k, where k is the number of levels shown in the table. The
target accuracy was achieved in each problem, except in Problem 14 where the
accuracy was 10−1972. When 14 levels are used, or if a slightly smaller value of
h is used, the error target is achieved here also.

8

Problem Levels Processors
Number Required 1 4 16 64 256 1024

Init 4329.04 1085.34 271.87 68.88 17.73 5.02
1 10 480.07 101.63 25.55 6.45 1.65 0.53
2 10 1403.63 294.32 74.04 18.83 4.99 1.54
3 10 1421.99 317.01 79.69 20.42 5.24 1.83
4 10 1553.24 328.73 82.13 20.84 5.52 1.63
5 9 236.68 51.62 12.90 3.30 0.93 0.30
6 10 26.31 5.62 1.42 0.36 0.11 0.05
7 10 52.65 11.46 2.87 0.72 0.20 0.10
8 9 234.06 50.98 12.85 3.26 0.90 0.27
9 10 1552.38 333.24 83.60 21.34 5.44 1.84

10 10 1138.78 245.45 61.39 15.73 3.99 1.44
11 11 25.30 5.17 1.30 0.33 0.09 0.04
12 12 655.03 161.99 40.71 10.20 2.65 0.80
13 13 871.99 216.50 54.13 13.65 3.52 0.97
14 13 8291.43 1826.02 457.02 114.84 29.48 7.87

Total 22272.58 5035.08 1261.47 319.15 82.44 24.23
Speedup 1.00 4.42 17.66 69.79 270.17 919.22

Table 2: Parallel run times (in seconds) and speedup ratios for 1-D problems

These runs were made on “System X,” an Apple G5-based parallel supercom-
puter at Virginia Technical University, using the IBM xlf90 Fortran-90 compiler
(for the parallel quadrature application program) and the IBM xlC C++ com-
piler (for the ARPREC library). The parallel program performs all functions
of the single processor code, including the calculation of an estimated error in
the result [11]. The one-processor timings shown in Table 2 are for an efficient
single-processor version of this program, with no parallel constructs. Thus the
speedup ratios shown in the table are true comparisons to single-processor per-
formance. Note that these are not scaled speedup figures—each run, including
the 1-CPU run, is for the same full-sized problem.

Note also that these timings exhibit super-linear speedup up to 256 CPUs,
but drop back a bit for 1024 CPUs. The reason for these super-linear speedups
is that the array space required on individual processors, for large processor
counts, drops to the level that all required data can be contained in first or
second level cache, thus permitting faster execution times. Only at 1024 CPUs
does the performance loss due to very high parallelism overcome the savings
from favorable cache behavior.

8. Two-Dimensional Quadrature

The tanh-sinh scheme described above can be generalized to two or more di-

9

mensions. In particular, a 2-D iterated integral can be approximated as follows:
∫ 1

−1

∫ 1

−1

f(x, y) dx dy =

∫ ∞

−∞

∫ ∞

−∞

f(g(s), g(t))g′(s)g′(t) ds dt

= h
∞
∑

k=−∞

∞
∑

j=−∞

wjwkf(xj , xk) + E(h),

where g(t) = tanh(π/2 · sinh(t)) as in the 1-D case, and where xj and wj are
the 1-D abscissas and weights. This same approach can easily be extended to
numerically evaluate more general integrals of the form

∫ b

a

∫ d(y)

c(y)

f(x, y) dx dy.

As before, the Euler-Maclaurin formula asserts that for a certain class of
functions f(x, y), including many with infinite derivatives and blow-up singu-
larities at the boundaries of the rectangle, the error E(h) in the above approx-
imation goes to zero faster than any power of h. As a result, 2-D tanh-sinh
quadrature, like the 1-D version, often achieves quadratic convergence, wherein
each additional level of abscissa-weight pairs yields twice as many correct digits
in the result.

However, 2-D quadrature inherently is much more expensive than 1-D quadra-
ture, because the number of function evaluations in a 2-D array, assuming the
same overall spacing, is many times larger than in a 1-D problem. Millions of
function evaluations may be required to obtain, say, 100-digit accuracy in the
result. Also, it has been found that 2-D tanh-sinh scheme is more sensitive to
anomalies such infinite derivatives or blow-up singularities at boundaries. In
such cases, each additional level typically yields only about 1.4 times as many
correct digits, whereas in 1-D quadrature, problems with similar anomalies typi-
cally exhibit quadratic convergence (each additional level approximately doubles
the number of correct digits). What’s more, in 2-D quadrature, each additional
level quadruples the computational cost instead of merely doubling the cost,
since four times as many function evaluations are required.

9. 2-D Parallel Implementation

The parallel implementation of the 2-D scheme again relies crucially on
a carefully chosen scheme for allocating processors to the abscissa array for
function evaluations. The program assigns a batch of 16 consecutively num-
bered processors to each column, and then assigns the function evaluations
in this column among these 16 processors. In this way, the program exploits
available parallelism in both dimensions. The particular assignment scheme
used by the program is as follows: the 16 processors p that satisfy ⌊p/16⌋ =
mod(j + j/16, n/16) are assigned to column j of the 2-d array of abscissas.
Then within column j, location (i, j) is assigned to the processor p that satis-
fies mod(p, 16) = mod(i + i/16, 16). Note that both rows and columns employ
a mixed cyclic, block-cyclic scheme, which provides an even load balance for
function evaluations, yet avoids difficulties with power-of-two strides.

10

10. 2-D Test Problems

The serial and parallel implementations of this 2-D tanh-sinh quadrature
scheme have been tested on a suite of eight test problems. Because of the much
higher computational cost of 2-D quadrature, a more modest goal of 100-digit
accuracy was established in these problems, using 120-digit working precision.
As before, this set includes some rather difficult examples, including one problem
with a non-differentiable point at a boundary (Problem 1), two problems with a
blow-up singularity at a boundary (Problems 4 and 6), two problems where the
inner integral boundary is not merely an interval but instead bounded by two
functions (Problems 7 and 8), and one problem on an infinite interval (Problem
5).

1 :

∫ 1

0

∫ 1

0

√

s2 + t2 ds dt =
√

2/3 − log(2)/6 + log(2 +
√

2)/3

2 :

∫ 1

0

∫ 1

0

√

1 + (s − t)2 ds dt = −
√

2/3 − log(
√

2 − 1)/2 + log(
√

2 + 1)/2 + 2/3

3 :

∫ 1

−1

∫ 1

−1

(1 + s2 + t2)−1/2 ds dt = 4 log(2 +
√

3) − 2π/3

4 :

∫ π

0

∫ π

0

log[2 − cos s − cos t] ds dt = 4πG − π2 log 2

5 :

∫ ∞

0

∫ ∞

0

√

s2 + st + t2 e−s−t ds dt = 1 + 3/4 · log 3

6 :

∫ 1

0

∫ 1

0

(s + t)−1[(1 − s)(1 − t)]−1/2 ds dt = 4G

7 :

∫ 1

0

∫ t

0

(1 + s2 + t2)−1/2 ds dt = −π/12 − 1/2 · log 2 + log(1 +
√

3)

8 :

∫ π

0

∫ t

0

(cos s sin t)e−s−t ds dt = 1/4 · (1 + e−π)

11. 2-D Performance Results

Performance results for the 2-D quadrature program are shown in Table 2.
In each problem over 100-digit accuracy was achieved, except for Problems 4
and 6, where the errors were 10−86 and 10−80, respectively. No results are shown
in this table for four processors, since the parallel program assumes a minimum
of 16 processors.

It is clear from these results that, unlike the 1-D case, there is a large differ-
ence in run times between well-behaved integrands and those with singularities
at a corner or boundary. Those without such anomalies can be evaluated to
over 100-digit accuracy with just six levels, requiring only a few minutes run
time. For those problems that do exhibit such anomalies, nine levels are needed,
requiring many more function evaluations. Indeed, for Problems 4 and 6, even
nine levels of abscissa-weight pairs evidently were not sufficient—it appears that

11

Problem Levels Processors
Number Required 1 16 64 256 1024

1 9 1246.26 96.42 24.66 7.05 3.33
2 6 19.03 1.52 0.46 0.27 0.73
3 7 82.79 6.56 1.91 0.64 1.17
4 9 15310.44 1194.52 305.11 81.88 24.40
5 9 2209.86 170.84 44.38 12.23 4.62
6 9 1552.87 120.86 30.80 8.67 3.37
7 6 21.79 1.72 0.54 0.28 0.73
8 6 113.04 8.90 2.87 1.08 1.51

Total 20556.08 1601.34 410.73 112.10 39.86
Speedup 1.00 12.84 50.05 183.37 515.71

Table 3: Parallel run times (in seconds) and speedup ratios for 2-D problems

one additional level would be required in each case to achieve over 100 digit ac-
curacy, which would multiply the run times by a factor of four.

As in the 1-D case, the parallel run times are real-time measurements in
seconds. Also, as in the 1-D case, the run times shown for 1 CPU are true
single-processor runs without any parallel constructs. Thus the speedup ratios
are true parallel speedups, and not “scaled speedups” or other ratios.

The parallel speedups for 2-D quadrature are not nearly as high as for 1-
D quadrature, in part because features such as estimated error calculation are
significantly more complicated than in the 1-D case, and also because it is
more difficult to allocate tasks evenly in 2-D. Also, much of this reduction in
scalability occurs in the shorter-running problems, whose modest computational
work cannot be as efficiently distributed among 1024 processors.

12. Application: Confirmation of a Conjectured 1-D Identity

In the introduction, we briefly mentioned the conjectured identity

24

7
√

7

∫ π/2

π/3

log

∣

∣

∣

∣

∣

tan t +
√

7

tan t −
√

7

∣

∣

∣

∣

∣

dt
?
= L−7(2) = (6)

∞
∑

n=0

[

1

(7n + 1)2
+

1

(7n + 2)2
− 1

(7n + 3)2
+

1

(7n + 4)2
− 1

(7n + 5)2
− 1

(7n + 6)2

]

.

This integral arose out of some studies in quantum field theory, in analysis of the
volume of ideal tetrahedra in hyperbolic space. Note that the integrand function
has a nasty singularity at t = arctan(

√
7) (see Figure 1). The question mark is

used because no formal proof is yet known. We note that Richard Crandall [14]
has observed that the right-hand expression L−7(2) is also given by the integral

L−7(2) = −
∫ 1

0

1 + 2u + u2 + 2u3 + u4

1 + u + u2 + u3 + u4 + u5 + u6
log u du. (7)

12

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 1 1.1 1.2 1.3 1.4 1.5 1.6

Figure 1: Integrand function with singularity

Because of the interest expressed by researchers in the above conjecture and
some related conjectures [12], we decided to calculate the integral

24

7
√

7

∫ π/2

π/3

log

∣

∣

∣

∣

∣

tan t +
√

7

tan t −
√

7

∣

∣

∣

∣

∣

dt = 1.15192547054449104710169239732054996 . . .

to 20,000-digit accuracy (which approaches the limits of presently feasible com-
putation) and compare with a 20,000-digit evaluation of the six-term infinite
series on the right-hand side of (6). This integral was evaluated by splitting
it into two integrals, the first from π/3 to arctan(

√
7), and the second from

arctan(
√

7) to π/2, and then applying the 1-D tanh-sinh scheme to each part.
This test was successful—the numerical value of the integral on the left-hand
side of (6) agrees with the numerical value of the six-term infinite series on the
right-hand side of (6) to at least 19,995 digits. The infinite series in was evalu-
ated in approximately five hours on a personal computer using Mathematica.

Efficiently performing any numerical computation to 20,000-digit accuracy
requires advanced techniques. The key idea here is to note that high-precision
multiplications can be evaluated using a linear convolution scheme, which in
turn can be performed using fast Fourier transforms. High-precision divisions
can then be done using Newton iterations. Quadratically convergent algorithms
(where every iteration roughly doubles the number of correct digits) are known
for most transcendental functions. These advanced algorithms are incorporated

13

CPUs Init Integral #1 Integral #2 Total Speedup
1 ∗190013 ∗1534652 ∗1026692 ∗2751357 1.00

16 12266 101647 64720 178633 15.40
64 3022 24771 16586 44379 62.00

256 770 6333 4194 11297 243.55
1024 199 1536 1034 2769 993.63

Table 4: Parallel run times (in seconds) and speedup ratios for the 20,000-digit
problem

in the ARPREC multi-precision package and are automatically invoked when
a numeric precision of greater than about 2,000 digits is specified [10]. Aside
from precision level, the parallel integration was performed exactly as described
in Section 5. Thirteen levels (approximately 85,000) abscissa-weight pairs were
required to achieve the target accuracy in this problem.

Performance results on the Virginia Tech system are shown in Table 4. Multi-
CPU timings include barrier waits and communication operations, as before.
The one-CPU timings (noted by asterisks) are the sums of individual process
timings in a 64-CPU run, in which only local computation was timed. Based on
tests on other problems and problem sizes, these summed timings are accurate
estimates of the timings of a true 1-CPU run, which would have taken 32 days
in this case. In these runs, as well as the others reported in the paper, timing
variations of up to 6% have been noted in tests. The performance rate for the
1024-CPU run is 690 Gflop/s, based on a measurement of floating-point opera-
tion count done on the Seaborg system at LBNL, using a hardware performance
monitoring tool.

As a separate test of our computer program, we also evaluated Crandall’s
integral (7), which, as noted above, is equal to L−7(2), or in other words the
right-hand side of the conjectured identity (6). On 1024 CPUs, our program
was able to evaluate this integral to 20,000 digits (which completely agrees with
the results above) in 416 seconds runtime, including initialization.

We believe that these two evaluations are the highest-precision non-trivial
numerical integrations performed to date.

13. Application: Identifying Ising Integrals

As mentioned above, the present authors, together with Richard Crandall,
have recently investigated certain integrals that arise in the Ising theory of

14

mathematical physics [5]. The three classes we studied are:

Cn :=
4

n!

∫ ∞

0

· · ·
∫ ∞

0

1
(

∑n
j=1(uj + 1/uj)

)2

du1

u1
· · · dun

un
(8)

Dn :=
4

n!

∫ ∞

0

· · ·
∫ ∞

0

∏

i<j

(

ui−uj

ui+uj

)2

(

∑n
j=1(uj + 1/uj)

)2

du1

u1
· · · dun

un
(9)

En := 2

∫ 1

0

· · ·
∫ 1

0

∏

i<j

(

ui − uj

ui + uj

)2
du1

u1
· · · dun

un
. (10)

As we noted above, Cn can be transformed to a fairly simple 1-D integral:

Cn =
2n

n!

∫ ∞

0

pKn
0 (p) dp,

where K0 is the modified Bessel function [1]. We have computed Cn to 500-
digit accuracy, for 2 ≤ n ≤ 8, and for all powers of two up to n = 1024. These
numerical values are available at [6]. As we noted in the introduction, this data
alerted us to the fact that Cn converge to a limiting value, namely 2e−2γ. This
and numerous other facts are established in [5]

Computing Dn and En to high precision is substantially more difficult, be-
cause there is no known transformation to a simple 1-D integral as in the case of
Cn. However, we were able to reduce the dimension of these integrals by two, so
that, for instance, D5 and E5 are given by tractable but very complicated triple
integrals. In this way, we have been able to calculate Dn and En to precision
levels between 120 and 500 digits for n up to six.

Needless to say, these computations are very demanding, both of hardware
and software. Defining the integrand function for E5, for instance, requires 60
lines of high-level computer code, even after some simplification. The integrand
for D6 requires 700 lines of code, most of which have over 60 characters per line.
For these runs, where the integrands are well-behaved at boundaries, we were
able to use multi-dimensional Gaussian quadrature. We could have used tanh-
sinh quadrature here, but the run times would have been somewhat longer. The
computer runs themselves were performed on the Bassi system, an IBM Power5-
based parallel computer system at the Lawrence Berkeley National Laboratory,
and on System X, an Apple G5-based parallel computer system at the Virginia
Institute of Technology. The computation of D5 to 500 digits required 18 hours
on 256 CPUs; the computation of E6 to 250 digits required 28 hours on 256
CPUs.

These computations lie at the edge of presently available numerical tech-
niques and computing technology. Indeed, we are not aware of any other in-
stance of a successful multi-dimensional quadrature of a nontrivial function to
several-hundred-digit accuracy. Full details of the background and methodology
are given in [5]. The numerical values that we have obtained are available at
[6].

15

In at least one instance, the numerical value we obtained in our computation
led directly to a conjectured evaluation. For instance, using PSLQ we discovered
that

E5
?
= 42 − 1984 Li4(1/2) +

189π4

10
− 74ζ(3) − 1272ζ(3) log 2 + 40π2 log2 2

−62π2

3
+

40π2 log 2

3
+ 88 log4 2 + 464 log2 2 − 40 log 2.

As before, the notation
?
= is employed to emphasize that we do not yet have a

formal proof for this evaluation. However, this experimental detection is quite
strong—190 orders of magnitude beyond the level that could reasonably be
ascribed to numerical round-off error or any other artifact.

16

References

[1] Milton Abramowitz and Irene A. Stegun, Handbook of Mathematical

Functions, Dover, NY, 1970.

[2] Zafar Ahmed, “Definitely an Integral,” American Mathematical Monthly,
vol. 109 (2002), no. 7, pg. 670–671.

[3] Kendall E. Atkinson, Elementary Numerical Analysis, John Wiley and
Sons, 1993.

[4] David H. Bailey and Jonathan M. Borwein, “Effective Error Bounds in
Euler-Maclaurin-Based Quadrature Schemes,” Proceedings of the 2006

Conference on High-Performance Computing Systems, IEEE Computer
Society, 2006, available at
http://crd.lbl.gov/~dhbailey/dhbpapers/hpcs06.pdf.

[5] David H. Bailey, Jonathan M. Borwein and Richard Crandall, “Integrals
of the Ising Class,” 2006, available at
http://crd.lbl.gov/~dhbailey/dhbpapers/ising.pdf.

[6] David H. Bailey, Jonathan M. Borwein and Richard E. Crandall, “Ising
Data,” 2006, Journal of Physics A: Mathematical and General, vol. 39
(2006), pg. 12271–12302.

[7] David H. Bailey, Jonathan M. Borwein, Vishaal Kapoor and Eric
Weisstein, “Ten Problems in Experimental Mathematics: A Challenge,”
American Mathematical Monthly, vol. 113, no. 6 (Jun 2006), pg. 481-409.

[8] David H. Bailey and David Broadhurst, “Parallel Integer Relation
Detection: Techniques and Applications,” Mathematics of Computation,
vol. 70, no. 236 (2000), pg. 1719–1736.

[9] David H. Bailey and David J. Broadhurst, “A Seventeenth-Order
Polylogarithm Ladder,” manuscript, 1999, available at
http://crd.lbl.gov/~dhbailey/dhbpapers/ladder.pdf.

[10] David H. Bailey, Yozo Hida, Xiaoye S. Li and Brandon Thompson,
“ARPREC: An Arbitrary Precision Computation Package,” technical
report LBNL-53651, software and documentation available at
http://crdl.bl.gov/~dhbailey/mpdist.

[11] David H. Bailey, Xiaoye S. Li and Karthik Jeyabalan, “A Comparison of
Three High-Precision Quadrature Programs,” Experimental Mathematics,
vol. 14 (2005), no. 3, pg. 317–329.

[12] J. Borwein and D. Broadhurst, “Determination of rational Dedekind Zeta
Invariants of Hyperbolic Manifolds and Feynman Knots and Links,”
available at http://arxiv.org/hep-th/9811173.

17

[13] J. Borwein, J. Zucker and J. Boersma, “Evaluation of Character Euler
Double Sums,” Ramanujan Journal,
http://www.springerlink.com/content/x24044144434w803/fulltext.pdf.

[14] Richard E. Crandall, private communication, April 2005.

[15] William Gropp, Ewing Lusk, Anthony Skjellum, Using MPI: A Portable

Parallel Programming with the Message-Passing Interface, MIT Press,
Cambridge, MA, 1996.

[16] Yozo Hida, Xiaoye S. Li and David H. Bailey, “Algorithms for
Quad-Double Precision Floating Point Arithmetic,” 15th IEEE

Symposium on Computer Arithmetic, IEEE Computer Society, 2001, pg.
155–162.

[17] H. Takahasi and M. Mori, “Double Exponential Formulas for Numerical
Integration,” Publications of RIMS, Kyoto University, vol. 9 (1974), pg.
721–741.

18

