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5. Experimental Mathematics
10. CARMA’s Mandate
11. CARMA’s Objectives
12. Communication, Computation and Collaboration

Experimental Mathematics: what it is?

Experimental mathematics is the use of a computer to
run computations — sometimes no more than
trial-and-error tests — to look for patterns, to identify
particular numbers and sequences, to gather evidence in
support of specific mathematical assertions that may
themselves arise by computational means, including
search.
Like contemporary chemists — and before them the alchemists
of old — who mix various substances together in a crucible and
heat them to a high temperature to see what happens, today’s
experimental mathematicians put a hopefully potent mix of
numbers, formulas, and algorithms into a computer in the hope
that something of interest emerges. (JMB-Devlin, 2008, p. 1)

• Quoted in International Council on Mathematical Instruction
Study 19: On Proof and Proving, 2011.
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Experimental Mathematics: Integer Relation Methods

Secure Knowledge without Proof. Given real
numbers β, α1, α2, . . . , αn Ferguson’s integer
relation method (PSLQ), finds a nontrivial linear
relation of the form

a0β + a1α1 + a2α2 + · · ·+ anαn = 0, (1)

where ai are integers — if one exists and
provides an exclusion bound otherwise.

• If a0 6= 0 then (1) assures β is in rational
vector space generated by {α1, α2, . . . , αn}.

• β = 1, αi = αi means α is algebraic of degree n.

• In 2000 Computing in Science and Engineering
named PSLQ one of the top 10 algorithms of
the 20th century. 20 OCTOBER 2006 VOL 314 SCIENCE www.sciencemag.org412

B A LT I M O R E ,  M A RY L A N D — H e l a m a n

Ferguson’s sculpture studio is set back

from the road, hidden behind a construc-

tion site. Inside, pieces of art line shelves

and cover tabletops. Ferguson, clad in a

yellow plastic apron and a black T-shirt,

serenely makes his  way through the

room. The 66-year-old is tall and white-

haired, his bare arms revealing a strength

requisite for his avocation.

The most striking work in the studio is a

more than 2-meter-tall, 5-ton chunk of gran-

ite. When it is finished, it will stand in the

entry to the science building at Macalester

College in St. Paul, Minnesota. Right now, it

is a mass of curving surfaces sloping in dif-

ferent directions, its surface still jagged

with the rough grains left by the diamond-

toothed chainsaw Ferguson uses to carve

through the stone.

“I’m in my negative-Gaussian-curvature

phase,” Ferguson says. “Say we’re going to

shake hands, but we don’t quite touch. OK,

see the space between the two hands?” That

saddle-shaped void, he explains, is a perfect

example of negative Gaussian curvature.

Our bodies contain many others, he adds:

the line between the first finger’s knuckle

and the wrist, for instance, and where the

neck meets the shoulders.

The topological jargon is no surprise:

Ferguson spent 17 years as a mathematics

professor at Brigham Young University

(BYU) in Provo, Utah. What is unusual is

how successfully he has pursued a dual

career as mathematician and artist and the

ease with which he blurs the categories.

Math inspires and figures in almost all of

Ferguson’s artistic works. Through

them, he has helped some mathe-

maticians appreciate the

artist’s craft and aesthetic.

And he’s persuaded per-

haps even more artists

that math may not be

as frighteningly elu-

sive as they believe,

or even if it is out of

their reach, it’s as

beau t i f u l  a s  any

work  o f  a r t  t hey

might imagine. “The

way he has brought

together the worlds

of science and the

arts—this is an admirable

t h i n g ,”  s ay s  H a r vey

Bricker, Ferguson’s former

college roommate. 

Twin callings
Ferguson himself finds it hard to say which

calling came first. As a teenager in upstate

New York, he learned stone carving as an

informal apprentice to his adopted father, a

stonemason. Artistically, however, he was

more drawn to painting. After f inishing

high school in 1958, he wanted to study art

as well as math. He chose Hamilton Col-

lege, a liberal arts school in upstate New

York near where he had spent most of his

childhood, where he could do both.

After getting his math degree, he

enrolled in a doctoral program in math at the

University of Wisconsin, Madison. He paid

for some of his living expenses by selling

paintings. He also met and began dating an

undergraduate art student, Claire. The cou-

ple married in 1963 and had their first child

(of an eventual seven) in 1964. Ferguson

dropped out of school for a couple of years

to work as a computer programmer, then

resumed his math studies. He obtained his

master’s degree in mathematics at BYU and

a doctorate in group representations—a

broad area of math that involves algebra,

geometry, topology, and analysis—at the

University of Washington, Seattle. In 1971,

he accepted an appointment as assistant

professor at BYU.

As a mathematician, Ferguson is perhaps

best known for the algorithm he developed

with BYU colleague Rodney Forcade. The

algorithm, called PSLQ, finds mathemati-

cal relations among seemingly unrelated

real numbers. Among many other applica-

tions, PSLQ provided an efficient way of

computing isolated digits within pi and

blazed a path for modeling hard-to-calculate

particle interactions in quantum physics.

In 2000, the journal Computing

in Science and Engineering

named i t  one of the top

1 0  algori thms of

the 20th century.

M e a n w h i l e ,

Fe rguson’s artistic

career also developed

apace. When he married

Claire, a painter, the two

struck a deal: “I get the

floors, she gets the walls,” he

says. He began focusing more on

sculpture. The art department at BYU

allotted him some studio space, and he

turned out a regular stream of work. He’s

done commissions for the Maryland Sci-

ence and Technology Center, the University

of California, Berkeley, the University of

Carving His Own Unique Niche, 
In Symbols and Stone
By refusing to choose between mathematics and art, a self-described “misfit” has
found the place where parallel careers meet

PROFILE: HELAMAN FERGUSON

Func t ion -a l  fo rm.  The
F i bonac c i  F ount a i n  a t
the  Mary land  Sc i ence
and Technology Center
wa s  i n sp i red  by  t he
“golden ratio.”

C
R

E
D

IT
S

: 
J
. 
M

O
G

L
IA

/S
C

IE
N

C
E

Published by AAAS

CMS D.Borwein Prize

Madelung constant

J.M. Borwein CARMA and Me



4. CARMA’s Mandate
12. About CARMA

18. My Current Interests
30. Computing Individual Digits of π

5. Experimental Mathematics
10. CARMA’s Mandate
11. CARMA’s Objectives
12. Communication, Computation and Collaboration

Experimental Mathematics: Integer Relation Methods

Secure Knowledge without Proof. Given real
numbers β, α1, α2, . . . , αn Ferguson’s integer
relation method (PSLQ), finds a nontrivial linear
relation of the form

a0β + a1α1 + a2α2 + · · ·+ anαn = 0, (1)

where ai are integers — if one exists and
provides an exclusion bound otherwise.

• If a0 6= 0 then (1) assures β is in rational
vector space generated by {α1, α2, . . . , αn}.

• β = 1, αi = αi means α is algebraic of degree n.

• In 2000 Computing in Science and Engineering
named PSLQ one of the top 10 algorithms of
the 20th century. 20 OCTOBER 2006 VOL 314 SCIENCE www.sciencemag.org412

B A LT I M O R E ,  M A RY L A N D — H e l a m a n

Ferguson’s sculpture studio is set back

from the road, hidden behind a construc-

tion site. Inside, pieces of art line shelves

and cover tabletops. Ferguson, clad in a

yellow plastic apron and a black T-shirt,

serenely makes his  way through the

room. The 66-year-old is tall and white-

haired, his bare arms revealing a strength

requisite for his avocation.

The most striking work in the studio is a

more than 2-meter-tall, 5-ton chunk of gran-

ite. When it is finished, it will stand in the

entry to the science building at Macalester

College in St. Paul, Minnesota. Right now, it

is a mass of curving surfaces sloping in dif-

ferent directions, its surface still jagged

with the rough grains left by the diamond-

toothed chainsaw Ferguson uses to carve

through the stone.

“I’m in my negative-Gaussian-curvature

phase,” Ferguson says. “Say we’re going to

shake hands, but we don’t quite touch. OK,

see the space between the two hands?” That

saddle-shaped void, he explains, is a perfect

example of negative Gaussian curvature.

Our bodies contain many others, he adds:

the line between the first finger’s knuckle

and the wrist, for instance, and where the

neck meets the shoulders.

The topological jargon is no surprise:

Ferguson spent 17 years as a mathematics

professor at Brigham Young University

(BYU) in Provo, Utah. What is unusual is

how successfully he has pursued a dual

career as mathematician and artist and the

ease with which he blurs the categories.

Math inspires and figures in almost all of

Ferguson’s artistic works. Through

them, he has helped some mathe-

maticians appreciate the

artist’s craft and aesthetic.

And he’s persuaded per-

haps even more artists

that math may not be

as frighteningly elu-

sive as they believe,

or even if it is out of

their reach, it’s as

beau t i f u l  a s  any

work  o f  a r t  t hey

might imagine. “The

way he has brought

together the worlds

of science and the

arts—this is an admirable

t h i n g ,”  s ay s  H a r vey

Bricker, Ferguson’s former

college roommate. 

Twin callings
Ferguson himself finds it hard to say which

calling came first. As a teenager in upstate

New York, he learned stone carving as an

informal apprentice to his adopted father, a

stonemason. Artistically, however, he was

more drawn to painting. After f inishing

high school in 1958, he wanted to study art

as well as math. He chose Hamilton Col-

lege, a liberal arts school in upstate New

York near where he had spent most of his

childhood, where he could do both.

After getting his math degree, he

enrolled in a doctoral program in math at the

University of Wisconsin, Madison. He paid

for some of his living expenses by selling

paintings. He also met and began dating an

undergraduate art student, Claire. The cou-

ple married in 1963 and had their first child

(of an eventual seven) in 1964. Ferguson

dropped out of school for a couple of years

to work as a computer programmer, then

resumed his math studies. He obtained his

master’s degree in mathematics at BYU and

a doctorate in group representations—a

broad area of math that involves algebra,

geometry, topology, and analysis—at the

University of Washington, Seattle. In 1971,

he accepted an appointment as assistant

professor at BYU.

As a mathematician, Ferguson is perhaps

best known for the algorithm he developed

with BYU colleague Rodney Forcade. The

algorithm, called PSLQ, finds mathemati-

cal relations among seemingly unrelated

real numbers. Among many other applica-

tions, PSLQ provided an efficient way of

computing isolated digits within pi and

blazed a path for modeling hard-to-calculate

particle interactions in quantum physics.

In 2000, the journal Computing

in Science and Engineering

named i t  one of the top

1 0  algori thms of

the 20th century.

M e a n w h i l e ,

Fe rguson’s artistic

career also developed

apace. When he married

Claire, a painter, the two

struck a deal: “I get the

floors, she gets the walls,” he

says. He began focusing more on

sculpture. The art department at BYU

allotted him some studio space, and he

turned out a regular stream of work. He’s

done commissions for the Maryland Sci-

ence and Technology Center, the University

of California, Berkeley, the University of

Carving His Own Unique Niche, 
In Symbols and Stone
By refusing to choose between mathematics and art, a self-described “misfit” has
found the place where parallel careers meet

PROFILE: HELAMAN FERGUSON

Func t ion -a l  fo rm.  The
F i bonac c i  F ount a i n  a t
the  Mary land  Sc i ence
and Technology Center
wa s  i n sp i red  by  t he
“golden ratio.”

C
R

E
D

IT
S

: 
J
. 
M

O
G

L
IA

/S
C

IE
N

C
E

Published by AAAS

CMS D.Borwein Prize

Madelung constant

J.M. Borwein CARMA and Me



4. CARMA’s Mandate
12. About CARMA

18. My Current Interests
30. Computing Individual Digits of π

5. Experimental Mathematics
10. CARMA’s Mandate
11. CARMA’s Objectives
12. Communication, Computation and Collaboration

Experimental Mathematics: Integer Relation Methods

Secure Knowledge without Proof. Given real
numbers β, α1, α2, . . . , αn Ferguson’s integer
relation method (PSLQ), finds a nontrivial linear
relation of the form

a0β + a1α1 + a2α2 + · · ·+ anαn = 0, (1)

where ai are integers — if one exists and
provides an exclusion bound otherwise.

• If a0 6= 0 then (1) assures β is in rational
vector space generated by {α1, α2, . . . , αn}.

• β = 1, αi = αi means α is algebraic of degree n.

• In 2000 Computing in Science and Engineering
named PSLQ one of the top 10 algorithms of
the 20th century. 20 OCTOBER 2006 VOL 314 SCIENCE www.sciencemag.org412

B A LT I M O R E ,  M A RY L A N D — H e l a m a n

Ferguson’s sculpture studio is set back

from the road, hidden behind a construc-

tion site. Inside, pieces of art line shelves

and cover tabletops. Ferguson, clad in a

yellow plastic apron and a black T-shirt,

serenely makes his  way through the

room. The 66-year-old is tall and white-

haired, his bare arms revealing a strength

requisite for his avocation.

The most striking work in the studio is a

more than 2-meter-tall, 5-ton chunk of gran-

ite. When it is finished, it will stand in the

entry to the science building at Macalester

College in St. Paul, Minnesota. Right now, it

is a mass of curving surfaces sloping in dif-

ferent directions, its surface still jagged

with the rough grains left by the diamond-

toothed chainsaw Ferguson uses to carve

through the stone.

“I’m in my negative-Gaussian-curvature

phase,” Ferguson says. “Say we’re going to

shake hands, but we don’t quite touch. OK,

see the space between the two hands?” That

saddle-shaped void, he explains, is a perfect

example of negative Gaussian curvature.

Our bodies contain many others, he adds:

the line between the first finger’s knuckle

and the wrist, for instance, and where the

neck meets the shoulders.

The topological jargon is no surprise:

Ferguson spent 17 years as a mathematics

professor at Brigham Young University

(BYU) in Provo, Utah. What is unusual is

how successfully he has pursued a dual

career as mathematician and artist and the

ease with which he blurs the categories.

Math inspires and figures in almost all of

Ferguson’s artistic works. Through

them, he has helped some mathe-

maticians appreciate the

artist’s craft and aesthetic.

And he’s persuaded per-

haps even more artists

that math may not be

as frighteningly elu-

sive as they believe,

or even if it is out of

their reach, it’s as

beau t i f u l  a s  any

work  o f  a r t  t hey

might imagine. “The

way he has brought

together the worlds

of science and the

arts—this is an admirable

t h i n g ,”  s ay s  H a r vey

Bricker, Ferguson’s former

college roommate. 

Twin callings
Ferguson himself finds it hard to say which

calling came first. As a teenager in upstate

New York, he learned stone carving as an

informal apprentice to his adopted father, a

stonemason. Artistically, however, he was

more drawn to painting. After f inishing

high school in 1958, he wanted to study art

as well as math. He chose Hamilton Col-

lege, a liberal arts school in upstate New

York near where he had spent most of his

childhood, where he could do both.

After getting his math degree, he

enrolled in a doctoral program in math at the

University of Wisconsin, Madison. He paid

for some of his living expenses by selling

paintings. He also met and began dating an

undergraduate art student, Claire. The cou-

ple married in 1963 and had their first child

(of an eventual seven) in 1964. Ferguson

dropped out of school for a couple of years

to work as a computer programmer, then

resumed his math studies. He obtained his

master’s degree in mathematics at BYU and

a doctorate in group representations—a

broad area of math that involves algebra,

geometry, topology, and analysis—at the

University of Washington, Seattle. In 1971,

he accepted an appointment as assistant

professor at BYU.

As a mathematician, Ferguson is perhaps

best known for the algorithm he developed

with BYU colleague Rodney Forcade. The

algorithm, called PSLQ, finds mathemati-

cal relations among seemingly unrelated

real numbers. Among many other applica-

tions, PSLQ provided an efficient way of

computing isolated digits within pi and

blazed a path for modeling hard-to-calculate

particle interactions in quantum physics.

In 2000, the journal Computing

in Science and Engineering

named i t  one of the top

1 0  algori thms of

the 20th century.

M e a n w h i l e ,

Fe rguson’s artistic

career also developed

apace. When he married

Claire, a painter, the two

struck a deal: “I get the

floors, she gets the walls,” he

says. He began focusing more on

sculpture. The art department at BYU

allotted him some studio space, and he

turned out a regular stream of work. He’s

done commissions for the Maryland Sci-

ence and Technology Center, the University

of California, Berkeley, the University of

Carving His Own Unique Niche, 
In Symbols and Stone
By refusing to choose between mathematics and art, a self-described “misfit” has
found the place where parallel careers meet

PROFILE: HELAMAN FERGUSON

Func t ion -a l  fo rm.  The
F i bonac c i  F ount a i n  a t
the  Mary land  Sc i ence
and Technology Center
wa s  i n sp i red  by  t he
“golden ratio.”

C
R

E
D

IT
S

: 
J
. 
M

O
G

L
IA

/S
C

IE
N

C
E

Published by AAAS

CMS D.Borwein Prize

Madelung constant

J.M. Borwein CARMA and Me



4. CARMA’s Mandate
12. About CARMA

18. My Current Interests
30. Computing Individual Digits of π

5. Experimental Mathematics
10. CARMA’s Mandate
11. CARMA’s Objectives
12. Communication, Computation and Collaboration

Experimental Mathematics: Integer Relation Methods

Secure Knowledge without Proof. Given real
numbers β, α1, α2, . . . , αn Ferguson’s integer
relation method (PSLQ), finds a nontrivial linear
relation of the form

a0β + a1α1 + a2α2 + · · ·+ anαn = 0, (1)

where ai are integers — if one exists and
provides an exclusion bound otherwise.

• If a0 6= 0 then (1) assures β is in rational
vector space generated by {α1, α2, . . . , αn}.

• β = 1, αi = αi means α is algebraic of degree n.

• In 2000 Computing in Science and Engineering
named PSLQ one of the top 10 algorithms of
the 20th century. 20 OCTOBER 2006 VOL 314 SCIENCE www.sciencemag.org412

B A LT I M O R E ,  M A RY L A N D — H e l a m a n

Ferguson’s sculpture studio is set back

from the road, hidden behind a construc-

tion site. Inside, pieces of art line shelves

and cover tabletops. Ferguson, clad in a

yellow plastic apron and a black T-shirt,

serenely makes his  way through the

room. The 66-year-old is tall and white-

haired, his bare arms revealing a strength

requisite for his avocation.

The most striking work in the studio is a

more than 2-meter-tall, 5-ton chunk of gran-

ite. When it is finished, it will stand in the

entry to the science building at Macalester

College in St. Paul, Minnesota. Right now, it

is a mass of curving surfaces sloping in dif-

ferent directions, its surface still jagged

with the rough grains left by the diamond-

toothed chainsaw Ferguson uses to carve

through the stone.

“I’m in my negative-Gaussian-curvature

phase,” Ferguson says. “Say we’re going to

shake hands, but we don’t quite touch. OK,

see the space between the two hands?” That

saddle-shaped void, he explains, is a perfect

example of negative Gaussian curvature.

Our bodies contain many others, he adds:

the line between the first finger’s knuckle

and the wrist, for instance, and where the

neck meets the shoulders.

The topological jargon is no surprise:

Ferguson spent 17 years as a mathematics

professor at Brigham Young University

(BYU) in Provo, Utah. What is unusual is

how successfully he has pursued a dual

career as mathematician and artist and the

ease with which he blurs the categories.

Math inspires and figures in almost all of

Ferguson’s artistic works. Through

them, he has helped some mathe-

maticians appreciate the

artist’s craft and aesthetic.

And he’s persuaded per-

haps even more artists

that math may not be

as frighteningly elu-

sive as they believe,

or even if it is out of

their reach, it’s as

beau t i f u l  a s  any

work  o f  a r t  t hey

might imagine. “The

way he has brought

together the worlds

of science and the

arts—this is an admirable

t h i n g ,”  s ay s  H a r vey

Bricker, Ferguson’s former

college roommate. 

Twin callings
Ferguson himself finds it hard to say which

calling came first. As a teenager in upstate

New York, he learned stone carving as an

informal apprentice to his adopted father, a

stonemason. Artistically, however, he was

more drawn to painting. After f inishing

high school in 1958, he wanted to study art

as well as math. He chose Hamilton Col-

lege, a liberal arts school in upstate New

York near where he had spent most of his

childhood, where he could do both.

After getting his math degree, he

enrolled in a doctoral program in math at the

University of Wisconsin, Madison. He paid

for some of his living expenses by selling

paintings. He also met and began dating an

undergraduate art student, Claire. The cou-

ple married in 1963 and had their first child

(of an eventual seven) in 1964. Ferguson

dropped out of school for a couple of years

to work as a computer programmer, then

resumed his math studies. He obtained his

master’s degree in mathematics at BYU and

a doctorate in group representations—a

broad area of math that involves algebra,

geometry, topology, and analysis—at the

University of Washington, Seattle. In 1971,

he accepted an appointment as assistant

professor at BYU.

As a mathematician, Ferguson is perhaps

best known for the algorithm he developed

with BYU colleague Rodney Forcade. The

algorithm, called PSLQ, finds mathemati-

cal relations among seemingly unrelated

real numbers. Among many other applica-

tions, PSLQ provided an efficient way of

computing isolated digits within pi and

blazed a path for modeling hard-to-calculate

particle interactions in quantum physics.

In 2000, the journal Computing

in Science and Engineering

named i t  one of the top

1 0  algori thms of

the 20th century.

M e a n w h i l e ,

Fe rguson’s artistic

career also developed

apace. When he married

Claire, a painter, the two

struck a deal: “I get the

floors, she gets the walls,” he

says. He began focusing more on

sculpture. The art department at BYU

allotted him some studio space, and he

turned out a regular stream of work. He’s

done commissions for the Maryland Sci-

ence and Technology Center, the University

of California, Berkeley, the University of

Carving His Own Unique Niche, 
In Symbols and Stone
By refusing to choose between mathematics and art, a self-described “misfit” has
found the place where parallel careers meet

PROFILE: HELAMAN FERGUSON

Func t ion -a l  fo rm.  The
F i bonac c i  F ount a i n  a t
the  Mary land  Sc i ence
and Technology Center
wa s  i n sp i red  by  t he
“golden ratio.”

C
R

E
D

IT
S

: 
J
. 
M

O
G

L
IA

/S
C

IE
N

C
E

Published by AAAS

CMS D.Borwein Prize

Madelung constant

J.M. Borwein CARMA and Me



4. CARMA’s Mandate
12. About CARMA

18. My Current Interests
30. Computing Individual Digits of π

5. Experimental Mathematics
10. CARMA’s Mandate
11. CARMA’s Objectives
12. Communication, Computation and Collaboration

Top Ten Algorithms
Top Ten Algorithms

file:///C|/Users/jb616.UNCLE/Desktop/Top%20Ten%20Algorithms.htm[7/05/2011 2:46:34 PM]

Algorithms for the Ages

"Great algorithms are the poetry of computation," says Francis Sullivan of the Institute for
Defense Analyses' Center for Computing Sciences in Bowie, Maryland. He and Jack Dongarra of
the University of Tennessee and Oak Ridge National Laboratory have put together a sampling
that might have made Robert Frost beam with pride--had the poet been a computer jock.
Their list of 10 algorithms having "the greatest influence on the development and practice of
science and engineering in the 20th century" appears in the January/February issue of
Computing in Science & Engineering. If you use a computer, some of these algorithms are no
doubt crunching your data as you read this. The drum roll, please:

1. 1946: The Metropolis Algorithm for Monte Carlo. Through the use of random processes, this
algorithm offers an efficient way to stumble toward answers to problems that are too complicated to
solve exactly.

2. 1947: Simplex Method for Linear Programming. An elegant solution to a common problem in
planning and decision-making.

3. 1950: Krylov Subspace Iteration Method. A technique for rapidly solving the linear equations
that abound in scientific computation.

4. 1951: The Decompositional Approach to Matrix Computations. A suite of techniques for
numerical linear algebra.

5. 1957: The Fortran Optimizing Compiler. Turns high-level code into efficient computer-readable
code.

6. 1959: QR Algorithm for Computing Eigenvalues. Another crucial matrix operation made swift
and practical.

7. 1962: Quicksort Algorithms for Sorting. For the efficient handling of large databases.
8. 1965: Fast Fourier Transform. Perhaps the most ubiquitous algorithm in use today, it breaks down

waveforms (like sound) into periodic components.
9. 1977: Integer Relation Detection. A fast method for spotting simple equations satisfied by

collections of seemingly unrelated numbers.
10. 1987: Fast Multipole Method. A breakthrough in dealing with the complexity of n-body

calculations, applied in problems ranging from celestial mechanics to protein folding.

From Random Samples, Science page 799, February 4, 2000.
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Experimental Mathematics: PSLQ is core to CARMA

Experimental Mathematics (2004-08, 2009, 2010)
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Experimental Mathematics: KARMA takes many forms

... and there are always black swans
Experimental Mathematics?
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CARMA’s Mandate toc

Mathematics, as “the language of high technology” which
underpins all facets of modern life and current Information and
Communication Technology (ICT), is ubiquitous. No other research
centre exists focussing on the implications of developments in ICT,
present and future, for the practice of research mathematics.

• CARMA fills this gap through exploitation and development
of techniques and tools for computer-assisted discovery and
disciplined data-mining including mathematical visualization.

CARMA’s Access Grid Room
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CARMA’s Objectives:
To perform R&D relating to the informed use of computers

as an adjunct to mathematical discovery (including current
advances in cognitive science, in information technology, op-
erations research and theoretical computer science).

– of mathematics underlying computer-based decision support
systems, particularly in automation and optimization of scheduling,
planning and design activities, and to undertake mathematical
modelling of such activities. (NUOR and partners)

– To promote and advise on the use of appropriate tools (hardware,
software, databases, learning object repositories, mathematical
knowledge management, collaborative technology) in academia,
education and industry.

– To make the University of Newcastle a world-leading institution for
Computer Assisted Research Mathematics and its Applications.1

12010 ERA. UofN received the only ‘5’ in Applied Mathematics
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Communication and Computation: are entangled

Communicating Mathematics (2008, 2010)

• See http://carma.newcastle.edu.au/jon/c2c08.pdf for chapter on Access Grid.
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CARMA’s Deep History toc skip

The co-evolution of symbolic/numeric (hybrid)
computation, experimental mathematics,

collaborative technology and HPC. (Experimentally
found image took 3 hrs to print)

1982 PBB and JMB start ‘minor’ collaboration on fast computation
at Dalhousie; becoming experimental mathematicians before
the term was current.2

1993-03 Moved to SFU and founded Centre for Experimental and
Constructive Mathematics (www.cecm.sfu.ca).

1995 Organic Mathematics Project: www.cecm.sfu.ca/organics

2004-09 JMB opens D-Drive (Dalhousie Distributed Research Institute
and Virtual Environment) with Canada Research Chair funding

2004 PBB opens IRMACS (www.irmacs.sfu.ca) with CFI funds
2008 CARMA funded/ opened as Univ. Priority Research Centre

2J. Experimental Mathematics founded in 1993.
J.M. Borwein CARMA and Me
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CARMA’s Structure toc

Roughly 30 current Members and Associates:

• Steering Committee (Assoc Directors for Applied/Pure/Stats)

• External Advisory Committee (IBM, Melbourne, LBNL)

• Members and Students from Newcastle

• Associate Members from Everywhere

• Scientific and Administrative Officers

Frequent visitors: both student and faculty, short and long-term

CARMA’s AMSI AGR and Inner Sanctum Rooms
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Continuing Scientific Activities Include toc

• Regular Colloquia and Seminar Series
• NUOR, SigmaOpt,

Discrete Maths, Analysis
and Number Theory

• AMSI Access Grid Activities: www.amsi.org.au
• ANZIAM SIGMAopt Seminar with UoSA and RMIT
http://sigmaopt.newcastle.edu.au

• Trans Pacific Workshop: with UBC-O and SFU (monthly-ish)
• Short Lecture Series (2-5 lectures)

2010 Rockafellar on Risk and Diestel on Haar measure
2011 Cominetti on Scheduling and Zhu on Finance

• AMSI Honours (MSc) Courses (400 hours per term)

• International Workshops and Conferences:
• IP Down Under Satellite for INFORS 2011 (July 6-8, 2011)
• Number Th. in Honour of Alf Van der Poorten (March, 2012).
• ANZIAM 2013 (Jan 27-31, 2013)

J.M. Borwein CARMA and Me
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Our Services Include toc

AGR Grid-enabled interconnected rooms for classes, seminars,
meetings: Likely to become HQ for AMSI AGRs + NeCTAR?

V205 for dis-located collaboration;

V206 for co-located collaboration.

HPC 64 core MacPro Cluster and x-grid plus access to NSW and
National computing services.

Web Services include:
• DocServer http://docserver.carma.newcastle.edu.au:

CECM → DDRIVE → CARMA Archie → Mosaic → Google
• Inverse symbolic calculator (ISC Plus)
http://isc.carma.newcastle.edu.au

• BBP digit database http://bbp.carma.newcastle.edu.au
• The Top Ten Numbers University Outreach
http://numbers.carma.newcastle.edu.au

• Ask CARMA http://ask.carma.newcastle.edu.au for
School Outreach: β-test
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(ENIAC and Story)

The one true Larry

Pi (Life of Pi (2010))

 

Dr. Jonathan M. Borwein
FRSC FAAAS FBAS FAA

(Pics)

Book Covers

Recent or Notable Items:

2012

March 12-16, 2012. Number Theory Conference in Memory of Alf van der Poorten at CARMA.

2011

June 16, 2011. Second semester AMSI Honours Course on MZVs (Borwein-Zudilin).
June 2-4. JMB at the World Science Festival
May 16-20. JonFest at the IRMACS centre. (Pictures and videos of lectures available.)
April 19. Blue Gene BBP article from Australian. Also Pi, HPCnet and energy.gov.
April 5. Interactive BBP digit database online.
March 15. My AGR PiDay Talk V206 at Univ of Newcastle at 10am (Details)
March 14. My webcast PiDay Talk from University of Technology Sydney

Details, RECORD Blue-Gene Computations and Press Release
March 10. Happy Pi Day: The infinite appeal of Pi.
Feb 1. Newcastle Applied Maths ranked top in Australia.

2010

Spring 2010 Experimental Maths Australian Maths Sciences Institute Access Grid Honours Course.
March 29 JMB elected Fellow of Australian Academy of Science (Press Release.)
February 22, 24, 25 Rockafellar talks on Risk on AGR at CARMA.
February 7 Inverse Symbolic Calculator (ISC) is now at CARMA.
January 15 Convex Functions (CUP) is in print.

2009

November 15 Records of CARMA Official Opening
Spring 2009 Experimental Mathematics Honours Course
Oct 30 - Nov 1 Official CARMA Opening and Workshop
August 18 CARMA Multidimensional Integration Workshop
June 26 The CARMA website is online
June 10 Our Math Drudge Science and Mathematics blog.
April 1 My Linked In profile (education, references, etc)

2008

October 4 Flier for my New Books
July 16 Math Digital Library is open
May 12-16 Peter Borwein Birthday Conference
May 4 My ISI Hot Paper in Math for May 2008

2007

[SHOW/HIDE]

2006

[SHOW/HIDE]

2005

[SHOW/HIDE]

2004
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Current Research Interests Include toc

1 Optimization Theory and Applications
• Inverse problems & Phase reconstruction
• Projection methods & Entropy optimization
• Signal & (Medical) Image reconstruction

2 Nonlinear Functional Analysis
• Convex analysis and Monotone operators
• Geometric fixed point theory

3 Computational Number Theory
• Arithmetic of random walks
• Mahler measures of polynomials
• Algorithms for Special Functions
• Pi & friends — and JB-AvdP-WZ book.

4 Algorithmic Complexity Theory
• Fast extreme precision computation
• Multidimensional numerical quadrature
• Mathematical visualization (and 3D)
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The Fractal Nature of Me: Examples of Each

1 Divide and Concur:
Douglas-Rachford methods
for phase reconstruction

2 Three Optimization Texts
— one on previous page:

3 Short Random Walks

4 Single Digit Algorithms:
BBP for π, π2, G.
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1. . . . Visual Theorems: Reflect-Reflect-Average

To find a point on a sphere and in an affine subspace

Briefly, a visual theorem is the graphical or visual output
from a computer program — usually one of a family of
such outputs — which the eye organizes into a coherent,
identifiable whole and which is able to inspire
mathematical questions of a traditional nature or which
contributes in some way to our understanding or
enrichment of some mathematical or real world situation.
— Davis, 1993, p. 333.
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3. Three Ramblers: Straub, Borwein, Wan
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3. Moments of Random Walks (Flights)

Definition (Moments)

For complex s the n-th moment function is

Wn(s) =

∫
[0,1]n

∣∣∣∣ n∑
k=1

e2πxki

∣∣∣∣sdx
=

∫
[0,1]n−1

∣∣∣∣1 +
n−1∑
k=1

e2πxki

∣∣∣∣sd(x1, . . . , xn−1)

Thus, Wn := Wn(1) is the expectation.

• So

W2 = 4

∫ 1/4

0
cos(πx) dx =

4

π

and W2(s) =
(
s/2
s

)
(combinatorics).
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3. One 1500-step Walk in the plane: a familiar picture

2D and 3D lattice walks are

different:

A drunk man will
find his way
home but a
drunk bird may
get lost forever.
— Shizuo
Kakutani
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3. 50, 100, 1000 3-step Walks: a less familiar picture? toc skip

W3(1) = 16 3√4π2

Γ( 1
3

)6
+

3Γ( 1
3

)6

8 3√4π4
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3. Moments of a Three Step Walk: in the complex plane

Theorem (Tractable hypergeometric form for W3)

(a) For s 6= −3,−5,−7, . . . , we have

W3(s) =
3s+3/2

2π
β

(
s+

1

2
, s+

1

2

)
3F2

(
s+2

2 , s+2
2 , s+2

2

1, s+3
2

∣∣∣∣14
)
.

(2)

(b) For every natural number k = 1, 2, . . .,

W3(−2k − 1) =

√
3
(

2k
k

)2
24k+132k 3F2

( 1
2 ,

1
2 ,

1
2

k + 1, k + 1

∣∣∣∣14
)
.
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3. Moments of a Four Step Walk
Theorem (Meijer-G form for W4)

For Re s > −2 and s not an odd integer

W4(s) =
2s

π

Γ(1 + s
2)

Γ(− s
2)

G22
44

(
1, 1−s

2 , 1, 1
1
2 −

s
2 ,−

s
2 ,−

s
2

∣∣∣∣1
)
. (3)

W4 with phase colored continuously (L) and by quadrant (R)
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3. Density of a Three and Four Step Walk (BSW, 2010)

p3(α) =
2
√

3α

π (3 + α2)
2F1

(
1
3 ,

2
3

1

∣∣∣∣α2
(
9− α2

)2
(3 + α2)3

)

1 2 3 4 5

0.05

0.10

0.15

0.20

0.25

0.30

0.35

1 2 3 4 5 6

0.05

0.10

0.15

0.20

0.25

0.30

0.35

For n ≥ 7 the asymptotics pn(x) ∼ 2x
n e
−x2/n are good.

(These are hard to draw.)

p4(α) =
2

π2

√
16− α2

α
Re 3F2

(
1
2 ,

1
2 ,

1
2

5
6 ,

7
6

∣∣∣∣
(
16− α2

)3
108α4

)
.
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4. BBP Digits Extraction Algorithms

⊙
Notices AMS in press:
carma.newcastle.edu.au/jon/bbp-bluegene.pdf
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Computing Individual Digits of π toc ibm

1971. One might think everything of interest about computing π
has been discovered. This was Beckmann’s view in A History of π

Yet, the Salamin-Brent quadratic

iteration was found only five years

later. Higher-order algorithms fol-

lowed in the 1980s.

1990. Rabinowitz and Wagon found a ‘spigot’ algorithm for

π: It ‘drips’ individual digits (of π in any desired base) using

all previous digits.

But even insiders are sometimes surprised by a new discovery: in
this case BBP series.
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What a BBP Algorithm Does?

Prior to 1996, most folks thought to compute the d-th digit of π,
you had to generate the (order of) the entire first d digits.

• This is not true, at least for hex (base 16) or binary (base 2)
digits of π. In 1996, P. Borwein, Plouffe, and Bailey found an
algorithm for individual hex digits of π. A BBP algorithm is
one that produces:

• a modest-length string hex or binary digits of π (or other
constants) beginning at an any position, using no prior bits;

1 is implementable on any modern computer;
2 requires no multiple precision software;
3 requires very little memory; and has
4 a computational cost growing only slightly faster than the digit

position.
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What BBP Is? Reverse Engineered Mathematics
This is based on the following then new formula for π:

π =

∞∑
i=0

1

16i

(
4

8i+ 1
− 2

8i+ 4
− 1

8i+ 5
− 1

8i+ 6

)
(4)

• The millionth hex digit (four millionth binary digit) of π can
be found in under 30 secs on a fairly new computer in Maple
(not C++) and the billionth in 10 hrs.

Equation (4) was discovered numerically using integer relation
methods over months in our Vancouver lab, CECM. It arrived in
the coded form:

π = 4 2F1

(
1,

1

4
;
5

4
,−1

4

)
+ 2 tan−1

(
1

2

)
− log 5

where 2F1(1, 1/4; 5/4,−1/4) = 0.955933837 . . . is a Gauss
hypergeometric function.
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Edge of Computation Prize Finalist

• BBP was the only mathematical finalist (of about 40) for the
first Edge of Computation Science Prize

– Along with founders of Google, Netscape, Celera and many
brilliant thinkers, ...

• Won by David Deutsch — discoverer of Quantum Computing.
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BBP Formula Database http://carma.newcastle.edu.au/bbp skip

Matthew Tam has built an interactive website.

1 It includes most known BBP formulas.

2 It allows digit computation, is searchable,
updatable and more.Below are the results obtained using the interactive calculator.

In order to add a new formula, users must first login.
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Mathematical Interlude: (Maple, Mathematica and Human)

Proof of (4). For 0 < k < 8,∫ 1/
√

2

0

xk−1

1− x8
dx =

∫ 1/
√

2

0

∞∑
i=0

xk−1+8i dx =
1

2k/2

∞∑
i=0

1

16i(8i+ k)
.

Thus, one can write
∞∑
i=0

1

16i

(
4

8i+ 1
− 2

8i+ 4
− 1

8i+ 5
− 1

8i+ 6

)

=

∫ 1/
√
2

0

4
√

2− 8x3 − 4
√

2x4 − 8x5

1− x8
dx,

which on substituting y :=
√

2x becomes∫ 1

0

16 y − 16

y4 − 2 y3 + 4 y − 4
dy =

∫ 1

0

4y

y2 − 2
dy −

∫ 1

0

4y − 8

y2 − 2y + 2
dy = π.

QED
J.M. Borwein CARMA and Me
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Tuning BBP Computation

• 1997. Fabrice Bellard of INRIA computed 152 bits of π
starting at the trillionth position;

– in 12 days on 20 workstations working in parallel over the Internet.

Bellard used the following variant of (4):

π = 4

∞∑
k=0

(−1)k

4k(2k + 1)
− 1

64

∞∑
k=0

(−1)k

1024k

(
32

4k + 1
+

8

4k + 2
+

1

4k + 3

)
(5)

This frequently-used formula is a little faster than (4).

Colin Percival (L) and Fabrice Bellard (R)
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Hexadecimal Digits
1998. Colin Percival, a 17-year-old at Simon Fraser, found the five
trillionth and ten trillionth hex digits on 25 machines.
2000. He then found the quadrillionth binary digit is 0.

• He used 250 CPU-years, on 1734 machines in 56 countries.

• The largest calculation ever done before Toy Story Two.

Position Hex Digits

106 26C65E52CB4593

107 17AF5863EFED8D

108 ECB840E21926EC

109 85895585A0428B

1010 921C73C6838FB2

1011 9C381872D27596

1.25× 1012 07E45733CC790B

2.5× 1014 E6216B069CB6C1
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Everything Doubles Eventually skip

July 2010. Tsz-Wo Sz of Yahoo!/Cloud comput-
ing found the two quadrillionth bit. The computa-
tion took 23 real days and 503 CPU years; and
involved as many as 4000 machines.

Abstract

We present a new record on computing specific bits of π, the
mathematical constant, and discuss performing such computations on
Apache Hadoop clusters. The new record represented in hexadecimal is

0 E6C1294A ED40403F 56D2D764 026265BC A98511D0

FCFFAA10 F4D28B1B B5392B8

which has 256 bits ending at the 2, 000, 000, 000, 000, 000, 252th bit

position. The position of the first bit is 1, 999, 999, 999, 999, 997 and the

value of the two quadrillionth bit is 0.
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BBP Formulas Explained

Base-b BBP numbers are constants of the form

α =

∞∑
k=0

p(k)

q(k)bk
, (6)

where p(k) and q(k) are integer polynomials and b = 2, 3, . . ..

• I illustrate why this works in binary for log 2. We start with:

log 2 =

∞∑
k=0

1

k2k
(7)

as discovered by Euler.

• We wish to compute digits beginning at position d+ 1.

• Equivalently, we need {2d log 2} ({·} is the fractional part).
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BBP Formula for log 2

We can write

{2d log 2} =

{{
d∑
k=0

2d−k

k

}
+

{ ∞∑
k=d+1

2d−k

k

}}

=

{{
d∑
k=0

2d−k mod k

k

}
+

{ ∞∑
k=d+1

2d−k

k

}}
. (8)

• The key: the numerator in (8), 2d−k mod k, can be found
rapidly by binary exponentiation, performed modulo k. So,

317 = ((((32)2)2)2) · 3

uses only 5 multiplications, not the usual 16. Moreover, 317

mod 10 is done as 32 = 9; 92 = 1; 12 = 1; 12 = 1; 1× 3 = 3

J.M. Borwein CARMA and Me
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Catalan’s Constant G: and BBP for G in Binary

The simplest number not proven irrational is

G := 1− 1

32
+

1

52
− 1

72
+ · · ·, π2

12
= 1 +

1

32
+

1

52
+

1

72
+ · · ·

2009. G is calculated to 31.026 billion digits. Records often use:

G =
3

8

∞∑
n=0

1(
2n
n

)
(2n+ 1)2

+
π

8
log(2 +

√
3) (Ramanujan) (9)

– holds since G = −T (π4 ) = − 3
2 T ( π12 ) where T (θ) :=

∫ θ
0

log tanσdσ.

– An 18 term binary BBP formula for G = 0.9159655941772190 . . . is:

Eugene Catalan (1818-94)– a revolutionary
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A Better Formula for G

A new 16 term binary formula in concise BBP notation is:

G = P (2, 4096, 24,−→v ) where
−→v := (6144,−6144,−6144, 0,−1536,−3072,−768, 0,−768,

−384, 192, 0,−96, 96, 96, 0, 24, 48, 12, 0, 12, 6,−3, 0)

It takes almost exactly 8/9th the time of 18 term formula for G.

• This makes for a very cool calculation

• Since we can not prove G is irrational, Who can say what
might turn up?
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What About Base Ten?

• The first integer logarithm with no known binary BBP formula
is log 23 (since 23× 89 = 210 − 1).

Searches conducted by numerous researchers for base-ten formulas
have been unfruitful. Indeed:

2004. D. Borwein (my father), W. Gallway
and I showed there are no BBP formulas of
the Machin-type of (4) for π if base is not a
power of two.

• Bailey and Crandall have shown connections between the
existence of a b-ary BBP formula for α and its base b
normality (via a dynamical system conjecture).
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Pi Photo-shopped: a 2010 PiDay Contest

“Noli Credere Pictis”
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π2 in Binary and Ternary (unlike π)

Bailey and Pi on a Bus. Only in Berkeley?

Thanks to Dave Broadhurst, a ternary BBP formula exists for π2:

π2 =
2

27

∞∑
k=0

1

36k
×

{
243

(12k + 1)2
− 405

(12k + 2)2
− 81

(12k + 4)2

− 27

(12k + 5)2
− 72

(12k + 6)2
− 9

(12k + 7)2

− 9

(12k + 8)2
− 5

(12k + 10)2
+

1

(12k + 11)2

}
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A Partner Binary BBP Formula for π2

π2 =
9

8

∞∑
k=0

1

26k

{
16

(6k + 1)2
− 24

(6k + 2)2
− 8

(6k + 3)2
− 6

(6k + 4)2
+

1

(6k + 5)2

}

• We do not fully understand why π2 allows BBP formulas in
two distinct bases.

• 2π2 is the area of a sphere in four-space.
• 1

2π
2 is the volume inside a sphere in four-space (R).
– So in binary we are computing these fundamental physical

constants.
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IBM’s New Record Results

Algorithm (What We Did)

Dave Bailey, Andrew Mattingly (L) and Glenn Wightwick (R) of
IBM Australia, and I, have obtained and confirmed:

1 106 digits of π2 base 2 at the ten trillionth place base 64

2 94 digits of π2 base 3 at the ten trillionth place base 729

3 141 digits of G base 2 at the ten trillionth place base 4096

on a 4-rack BlueGene/P system at IBM’s Benchmarking Centre in
Rochester, Minn, USA.
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How The Australian Reported This
Supercomputer cracks 'impossible' calculation                                                            
Jennifer Foreshew
From: The Australian Calculation easy as pi
April 19, 2011 12:00AM

HUMAN ingenuity and awesome computing power have combined to deliver an algorithm that can 
identify potential weaknesses in computer system hardware and software.

The BlueGene/P supercomputer system, used for IBM's benchmarking tests and quality control, was used byThe BlueGene/P supercomputer system, used for IBM s benchmarking tests and quality control, was used by 
experts to conquer a calculation thought to be unachievable.

"It was believed to be impossible until not very long ago that we would ever know the billionth decimal 
digit of pi," said Newcastle University laureate professor Jon Borwein.

Professor Borwein a world‐famous mathematical expert said the computer time spent on the work wasProfessor Borwein, a world famous mathematical expert, said the computer time spent on the work was 
equivalent to the time that went into creating a computer‐generated movie such as Toy Story 3. "My 
estimate is that it may be by a factor of three the largest single computation done for any mathematical 
object ever," he said.

The work would have taken about 1500 years on a single CPU, but it took just a few months of super‐The work would have taken about 1500 years on a single CPU, but it took just a few months of super
computing time. The project was done in conjunction with the Lawrence Berkeley National Laboratory 
and IBM Australia.

"What this is driving is a new attack on various classical questions about how random or how complex 
various bits of math are, and how best to program these things on really large environments with tens , p g g y g
or hundreds of thousands of processors," said Professor Borwein, who is also an expert on pi, the ratio 
of the circumference of a circle to its diameter, especially its computation.

"If we could prove pi squared was random in some sense then we could use it instead of all the expensive 
quantum random number generators or pseudo‐random number generators that make all of our 
banking codes safe," he said.

Professor Borwein believes the calculation means more realistic samples could be made.
"We may be able to put some of these algorithms together, mixing this idea of algorithmic randomness with 

this fairly new area called quantum randomness, using natural processes to build random things," he y q g p g
said.

Professor Borwein hopes a prototype planned for later this year may lead to further advances in the field.
"I think we may be able to improve or maintain the quality of this kind of random number generator," he 

said.
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The 3 Records Use Over 1380 CPU Years (135 rack days)

An enormous amount of delicate computation: 1380 years is a
long time. Suppose a spanking new IBM single-core PC went back
1379 years.
• It would find itself in 632 CE.

• The year that Mohammed died, and the
Caliphate was established. If it then calculated
π nonstop:

I Through the Crusades, black plague, Moguls,
Renaissance, discovery of America,
Gutenberg, Reformation, invention of steam,
Napoleon, electricity, WW2, the transistor,
fiber optics,...

• With no breaks or break-downs:

• It would be done next year.
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IBM’s New Results: π2 base 2

Algorithm (10 trillionth digits of π2 in base 64 — in 230 years)

1 The calculation took, on average, 253529 seconds per thread.
It was broken into 7 “partitions” of 2048 threads each.
For a total of 7 · 2048 · 253529 = 3.6 · 109 CPU seconds.

2 On a single Blue Gene/P CPU it would take 115 years!

Each rack of BG/P contains 4096 threads (or cores).
Thus, we used 7·2048·253529

4096·60·60·24 = 10.3 “rack days”.

3 The verification run took the same time (within a few
minutes): 106 base 2 digits are in agreement.

base-8 digits = 75|60114505303236475724500005743262754530363052416350634|573227604

60114505303236475724500005743262754530363052416350634|22021056612
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IBM’s New Results: π2 base 3

Algorithm (10 trillionth digits of π2 in base 729 — in 414 years)

1 The calculation took, on average, 795773 seconds per thread.
It was broken into 4 “partitions” of 2048 threads each.
For a total of 4 · 2048 · 795773 = 6.5 · 109 CPU seconds.

2 On a single Blue Gene/P CPU it would take 207 years!

Each rack of BG/P contains 4096 threads (or cores).
Thus, we used 4·2048·795773

4096·60·60·24 = 18.4 “rack days”.

3 The verification run took the same time (within a few
minutes): 94 base 3 digits are in agreement.

base-9 digits = 001|12264485064548583177111135210162856048323453468|10565567|635862

12264485064548583177111135210162856048323453468|04744867|134524345
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IBM’s New Results: G base 2

Algorithm (10 trillionth digits of G in base 4096 — in 735 years)

1 The calculation took, on average, 707857 seconds per thread.
It was broken into 8 “partitions” of 2048 threads each.
For a total of 8 · 2048 · 707857 = 1.2 · 1010 CPU seconds.

2 On a single Blue Gene/P CPU it would take 368 years!

Each rack of BG/P contains 4096 threads (or cores).
Thus, we used 8·2048·707857

4096·60·60·24 = 32.8 “rack days”.

3 The verification run took the same time (within a few
minutes): 141 base 2 digits were in agreement.

base-8 digits = 76|34705053774777051122613371620125257327217324522|6000177545727

34705053774777051122613371620125257327217324522|57035105166025365
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4. Animation, Simulation and Stereo . . .

The latest developments in computer and video
technology have provided a multiplicity of computational
and symbolic tools that have rejuvenated mathematics
and mathematics education. Two important examples of
this revitalization are experimental mathematics and
visual theorems — ICMI Study 19

Cinderella, 3.14 min of Pi, Catalan’s constant and Passive Three D
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Thank You to All: Family, Mentors, Colleagues, Students

Related Material (in press):

1 Divide and Concur:
www.carma.newcastle.edu.au/jon/

dr-jmm11.pptx

2 Walks and Measures:

www.carma.newcastle.edu.au/jon/

nist-handbook.pdf

3 Pi Day 2011:

carma.newcastle.edu.au/jon/piday.

pdf

4 BBP and Blue Gene:
www.carma.newcastle.edu.au/jon/

bbp-bluegene.pdf

2010: Communication is
not yet always perfect

J.M. Borwein CARMA and Me

www.carma.newcastle.edu.au/jon/dr-jmm11.pptx
www.carma.newcastle.edu.au/jon/dr-jmm11.pptx
www.carma.newcastle.edu.au/jon/nist-handbook.pdf
www.carma.newcastle.edu.au/jon/nist-handbook.pdf
carma.newcastle.edu.au/jon/piday.pdf
carma.newcastle.edu.au/jon/piday.pdf
www.carma.newcastle.edu.au/jon/bbp-bluegene.pdf
www.carma.newcastle.edu.au/jon/bbp-bluegene.pdf


4. CARMA’s Mandate
12. About CARMA

18. My Current Interests
30. Computing Individual Digits of π

32. BBP Digit Algorithms
40. BBP Formulas Explained
46. BBP for Pi Squared — in Base 2 and Base 3
54. Modern Mathematical Visualization

Thank You to All: Family, Mentors, Colleagues, Students

Related Material (in press):

1 Divide and Concur:
www.carma.newcastle.edu.au/jon/

dr-jmm11.pptx

2 Walks and Measures:

www.carma.newcastle.edu.au/jon/

nist-handbook.pdf

3 Pi Day 2011:

carma.newcastle.edu.au/jon/piday.

pdf

4 BBP and Blue Gene:
www.carma.newcastle.edu.au/jon/

bbp-bluegene.pdf

2010: Communication is
not yet always perfect

J.M. Borwein CARMA and Me

www.carma.newcastle.edu.au/jon/dr-jmm11.pptx
www.carma.newcastle.edu.au/jon/dr-jmm11.pptx
www.carma.newcastle.edu.au/jon/nist-handbook.pdf
www.carma.newcastle.edu.au/jon/nist-handbook.pdf
carma.newcastle.edu.au/jon/piday.pdf
carma.newcastle.edu.au/jon/piday.pdf
www.carma.newcastle.edu.au/jon/bbp-bluegene.pdf
www.carma.newcastle.edu.au/jon/bbp-bluegene.pdf


4. CARMA’s Mandate
12. About CARMA

18. My Current Interests
30. Computing Individual Digits of π

32. BBP Digit Algorithms
40. BBP Formulas Explained
46. BBP for Pi Squared — in Base 2 and Base 3
54. Modern Mathematical Visualization

Thank You to All: Family, Mentors, Colleagues, Students

Related Material (in press):

1 Divide and Concur:
www.carma.newcastle.edu.au/jon/

dr-jmm11.pptx

2 Walks and Measures:

www.carma.newcastle.edu.au/jon/

nist-handbook.pdf

3 Pi Day 2011:

carma.newcastle.edu.au/jon/piday.

pdf

4 BBP and Blue Gene:
www.carma.newcastle.edu.au/jon/

bbp-bluegene.pdf

2010: Communication is
not yet always perfect

J.M. Borwein CARMA and Me

www.carma.newcastle.edu.au/jon/dr-jmm11.pptx
www.carma.newcastle.edu.au/jon/dr-jmm11.pptx
www.carma.newcastle.edu.au/jon/nist-handbook.pdf
www.carma.newcastle.edu.au/jon/nist-handbook.pdf
carma.newcastle.edu.au/jon/piday.pdf
carma.newcastle.edu.au/jon/piday.pdf
www.carma.newcastle.edu.au/jon/bbp-bluegene.pdf
www.carma.newcastle.edu.au/jon/bbp-bluegene.pdf

	4. CARMA's Mandate
	4. Experimental Mathematics
	9. CARMA's Mandate
	10. CARMA's Objectives
	11. Communication, Computation and Collaboration

	12. About CARMA
	12. CARMA's Background
	13. CARMA Structure
	14. CARMA Activities
	15. CARMA Services

	18. My Current Interests
	18. JMB's Webpages
	19. My Current Research
	20. Some Mathematics and Related Images
	22. A Short Ramble

	30.  Computing Individual Digits of 
	31. BBP Digit Algorithms
	39. BBP Formulas Explained
	45. BBP for Pi Squared — in Base 2 and Base 3 
	53. Modern Mathematical Visualization


