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Abstract

We consider conditions ensuring the monotonicity of right and left Rie-
mann sums of a function f : [0, 1] → R with respect to uniform partitions.
Experimentation suggests that symmetrization may be important and leads
us to results such as: if f is decreasing on [0, 1] and its symmetrization,
F (x) := 1

2 (f(x) + f(1− x)) is concave then its right Riemann sums increase
monotonically with partition size. Applying our results to functions such as
f(x) = 1/

(
1 + x2

)
also leads to a nice application of Descartes’ rule of signs.

1 Introduction

For a bounded function f : [0, 1] → R the left and right Riemann sums of f with
respect to the uniform partition Un of [0, 1] into n equal intervals are,

σn := σn(f) =
1

n

n−1∑
k=0

f

(
k

n

)
, and τn := τn(f) =

1

n

n∑
k=1

f

(
k

n

)
.
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Both are linear functionals with σn(1) = τn(1) = 1 and σn(f) − τn(f) =
1

n
(f(0) −

f(1)). If f is decreasing (increasing) on [a, b] then σn is the upper (lower), and
τn the lower (upper), Riemann sum of f with respect to Un. And, of course, if f is
Riemann integrable (as it is in either of the above cases) then both σn and τn converge

to
∫ 1

0
f(x)dx (see, for example [1]). Further, for all n, σn(f(1− x)) = τn(f(x)), so if

f is symmetric about the midpoint of [0, 1]; that is, f(x) = f(1− x), then τn = σn.

We seek conditions which will ensure the sequence (σn), (τn), or perhaps some other
sequence of related Riemann sum, increases/decreases with n. If for example f is

decreasing then τ2n ≥ τn, so τ2n increases monotonically to
∫ 1

0
f , but how does τn+1

compare to τn?

In the process of producing [2] one of the current authors gave the following example.

Example 1 (Digital assistance, arctan(1) and a black-box). Consider for integer
n > 0 the sum

σn :=
n−1∑
k=0

n

n2 + k2
.

The definition of the Riemann sum means that

lim
n→∞

σn = lim
n→∞

n−1∑
k=0

1

1 + (k/n)2
1

n

=

∫ 1

0

1

1 + x2
dx

= arctan(1). (1)

Even without being able to do this Maple will quickly tell you that

σ1014 = 0.78539816339746 . . .

Now if you ask for 100 billion terms of most slowly convergent series, a computer
will take a long time. So this is only possible because Maple “knows”

σN = − i
2

Ψ (N − iN) +
i

2
Ψ (N + iN) +

i

2
Ψ (−iN)− i

2
Ψ (iN)

and has a fast algorithm for computing our new friend the psi function of a complex
variable. Now identify(0.78539816339746) yields π

4
.
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Figure 1: Difference in the lower Riemann sums for 1
1+x2

We can also note that

τn :=
n∑
k=1

n

n2 + k2

is another (lower) Riemann sum converging to
∫ 1

0
1

1+x2
dx. Indeed, σn− τn = 1

2n
> 0.

Moreover, experimentation suggests that σn decreases, and τn increases, to π/4. As
we will see, the validity of this at least for τn is a consequence of our principal result.♦

If we enter “monotonicity of Riemann sums” into Google, one of the first entries is
http://elib.mi.sanu.ac.rs/files/journals/tm/29/tm1523.pdf which is a 2012
article by Szilárd[4] that purports to show the monotonicity of the two sums for the
function

f(x) :=
1

1 + x2
.

The paper goes on to prove that if f : [0, 1]→ R is concave, or convex, and decreasing

then τn := 1
n

∑n
k=1 f( k

n
) increases and σn := 1

n

∑n−1
k=0 f( k

n
) decreases to

∫ 1

0
f(x) dx, as

n→∞. Related results for a concave, or convex, and increasing function follow by
applying these results to −f .

All proofs in [4] are based on looking at the rectangles which comprise the difference
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between τn+1 and τn as in Figure 1 (or the corresponding sums for σn). This yields

τn+1(f)− τn(f) =
1

n

n∑
k=1

{
(n+ 1− k)

n+ 1
f

(
k

n+ 1

)
+

k

n+ 1
f

(
k + 1

n+ 1

)
− f

(
k

n

)}
.

(2)

In the easiest case, each bracketed term

δn(k) :=
(n+ 1− k)

n+ 1
f

(
k

n+ 1

)
+

k

n+ 1
f

(
k + 1

n+ 1

)
− f

(
k

n

)
has the same sign for all n and 1 ≤ k ≤ n as happens for a function which is concave,
or convex, and decreasing.

But in [4] the author mistakenly asserts this applies for 1/(1 + x2) which has an
inflection point at 1/

√
3. Indeed, the proffered proof flounders at the inequality in

the last line of [4, p. 115] which fails for instance when n = 5 and k = 1. This same
error invalidates the assertion in [4] that the monotonicity of the corresponding σn
can be proved by by similar reasoning (left to the reader). Below in Corollary 3 and
Example 2 we supply a correct proof that τn =

∑n
k=1 n/(n

2 + k2) increases, but we
are unable as of yet to prove that the corresponding σn decreases.

It appears, however, on checking in a computer algebra system (CAS), that δn(k) +
δn(n− k) ≥ 0 which if rigourously established would repair the hole in the proof, it
also suggests that symmetry may have a role to play.

In our opinion all of this provides a fine instance of digital assistance in action.

For the convenience of the reader we supply the following proofs of Szilárd’s theorems.
The proofs are basically his but a bit cleaner. The proofs use telescoping and do not
need consideration of the + and - rectangles of Figure 1.

2 Szilárd’s Theorems

Theorem 1. If the function f : [0, 1]→ R is concave and decreasing on the interval
[0, 1], then τn(f) increases and σn(f) decreases as n increases.

Theorem 2. If the function f : [0, 1] → R is convex and decreasing on the interval
[0, 1], then τn(f) increases and σn(f) decreases as n increases.
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Before proceeding to the proofs of Theorems 1 and 2 we first give two lemmas.

Lemma 1. If f : [0, 1]→ R is concave and decreasing on the interval [0, 1], then

f

(
k + 1

n+ 1

)
≥ n− k

n
f

(
k + 1

n

)
+
k

n
f

(
k

n

)
. (3)

Proof. Since f is concave on [0, 1] we have

n− k
n

f

(
k + 1

n

)
+
k

n
f

(
k

n

)
≤ f

(
n− k
n
· k + 1

n+ 1
+
k

n
· k
n

)
= f

(
nk + n− k

n2

)
. (4)

Due to the monotonicity of f on [0, 1] and the readily verified inequality

nk + n− k
n2

≥ k + 1

n+ 1
, (5)

we have

f

(
k + 1

n+ 1

)
≥ f

(
nk + n− k

n2

)
. (6)

Together, inequalities (4) and (6) imply inequality (3). This completes the proof of
the lemma.

Lemma 2. If f : [0, 1]→ R is convex and decreasing on the interval [0, 1], then

f

(
k

n

)
≤ n+ 1− k

n+ 1
f

(
k

n+ 1

)
+

k

n+ 1
f

(
k + 1

n+ 1

)
. (7)

Proof. Since f is convex on [0, 1] we have

n+ 1− k
n+ 1

f

(
k

n+ 1

)
+

k

n+ 1
f

(
k + 1

n+ 1

)
≥ f

(
n+ 1− k
n+ 1

· k

n+ 1
+

k

n+ 1
· k + 1

n+ 1

)
= f

(
(n+ 2)k

(n+ 1)2

)
. (8)

Due to the monotonicity of f on [0, 1] and the inequality

(n+ 2)k

(n+ 1)2
≤ k

n
, (9)
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we have

f

(
(n+ 2)k

(n+ 1)2

)
≥ f

(
k

n

)
. (10)

Together, inequalities (8) and (10) imply inequality (7). This completes the proof of
the lemma.

Proof of Theorem 1. Since for any constant K we have τn(f +K) = τn(f) +K (and
the same for σn), we may suppose without loss in generality that f(1) = 0 . Observe
that inequality (3) is equivalent to

1

n+ 1
f

(
k + 1

n+ 1

)
≥ 1

n
f

(
k + 1

n

)
+

1

n(n+ 1)

(
kf

(
k

n

)
− (k + 1)f

(
k + 1

n

))
, (11)

from which it follows that

1

n+ 1

n−1∑
k=0

f

(
k + 1

n+ 1

)
≥ 1

n

n−1∑
k=0

f

(
k + 1

n

)
,

or equivalently

τn+1(f) =
1

n+ 1

n+1∑
k=1

f

(
k

n+ 1

)
≥ 1

n

n∑
k=1

f

(
k

n

)
= τn(f). (12)

This completes the proof of the first part of Theorem 1. The second part can be
obtained by applying the first part of Theorem 2 (established below) to−f(1−x).

Proof of Theorem 2. We again suppose without loss in generality that f(1) = 0 .
Observe that inequality (7) is equivalent to

1

n
f

(
k

n

)
≤ 1

n+ 1
f

(
k

n+ 1

)
+

1

n(n+ 1)

(
kf

(
k + 1

n+ 1

)
− (k − 1)f

(
k

n+ 1

))
,

(13)
from which it follows that

τn(f) =
1

n

n∑
k=1

f

(
k

n

)
≤ 1

n

n−1∑
k=1

f

(
k

n+ 1

)
= τn+1(f). (14)

This completes the first part of the proof of Theorem 2. The second part can be
obtained by applying the first part of Theorem 1 to −f(1− x).
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3 Extensions of Szilárd’s Theorems

Theorem 3. If the function f : [0, 1] → R is convex on the interval [0, c], concave
on [c, 1], and decreasing on [0, 1], then τn(f) increases and σn(f) decreases as n
increases.

Proof. Define

f1(x) :=

{
f(x) for 0 ≤ x ≤ c

f(c) for c < x ≤ 1,

f2(x) :=

{
f(c) for 0 ≤ x < c

f(x) for c ≤ x ≤ 1.

Observe first that f1(x) is convex and decreasing on [0, 1]. It is convex on [0, 1] since if
0 ≤ x1 < c < x2 ≤ 1, 0 < α < 1 then αf1(x1)+(1−α)f1(x2) = αf(x1)+(1−α)f(c) ≥
f(αx1 + (1 − α)c) = f1(αx1 + (1 − α)c) ≥ f1(αx1 + (1 − α)x2). Likewise, f2(x) is
concave and decreasing on [0, 1]. Observe next that f(x) + f(c) = f1(x) + f2(x). It
follows from Theorems 2 and 1 that τn(f1) and τn(f2) increase while σn(f1) and σn(f2)
decrease. Since τn(f) + f(c) = τn(f1) + τn(f2) and σn(f) + f(c) = σn(f1) + σn(f2),
this yields the desired conclusion.

Note that we cannot hope to have a version of Theorem 3 with convex and concave
interchanged, since for χ[0, 1

2
], the characteristic function of the interval [0, 1

2
], which

is concave on [0, 1
2
] and convex on [1

2
, 1], we have τ2m−1 + 1

2(m−1) = τ2m = τ2m+1 + 1
2m
.

However, applying Theorem 3 to −f yields:

Theorem 4. If the function f : [0, 1] → R is concave on the interval [0, c], convex
on [c, 1], and increasing on [0, 1], then τn(f) decreases and σn(f) increases as n
increases.

Next, we prove:

Theorem 5. If the function f : [0, 1] → R is concave on the interval [0, 1], with
maximum f(c), 0 < c < 1, then

τn(f)− f(c)− f(0)

n

increases as n increases.
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Proof. Define f1 and f2 as in the proof of Theorem 3, and note that f1(x) is concave
and increasing on [0, 1] while f2(x) is concave and decreasing on [0, 1]. The concavity
of f1 and f2 can be verified by the method used in the proof of Theorem 3. It follows
from Theorem 2 that −σn(f1) decreases and from Theorem 1 that τn(f2) increases,
and hence that

σn(f1) + τn(f2) = τn(f1)−
f(c)− f(0)

n
+ τn(f2)

= τn(f)− f(c)− f(0)

n
+ f(c)

increases as n increases.

Corollary 1. If the function f : [0, 1] → R is concave on the interval [0, 1] and
symmetric about its midpoint, then

τn(f)− f(1/2)− f(0)

n

increases as n increases.

3.1 Symmetrisation

The symmetrization of f : [0, 1]→ R about x = 1
2

is defined to be

F (x) := Ff (x) =
1

2
(f(x) + f(1− x)) . (15)

We will make use of Ff throughout the rest of this note and start by observing that
such a symmetrization never destroys convexity or concavity and often improves it.

Example 2 (Concavity of the symmetrization of 1/(1+x2)). Although the function

f(x) =
1

1 + x2
(16)

is neither convex or concave on [0, 1] its symmetrization,

Ff (x) =
x2 − x+ 3/2

(x2 + 1) (x2 − 2x+ 2)
(17)
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is concave.

To establish this we show that F ′′f (x) ≤ 0 on [0, 1]. Since Ff and hence F ′′f are

symmetric about 1
2

we need only show this on [1
2
, 1]. Moreover, using the change of

variable x := 1
2
(y + 1) this is equivalent to showing

F ′′f

(
1

2
(y + 1)

)
≤ 0 for 0 ≤ y ≤ 1. (18)

Now,

F ′′f

(
1

2
(y + 1)

)
=

8(y8 + 44y6 − 30y4 − 660y2 − 125)

(y2 + 2y + 5)3(y2 − 2y + 5)3
. (19)

The denominator of (19) is always positive while the numerator is a polynomial, say
p(y), that is negative both at y = 0 and y = 1. To show that it is negative through-
out [0, 1] we invoke Descartes’ rule of signs, see http://mathworld.wolfram.com/

DescartesSignRule.html, which tells us that:

for a real polynomial p, the number, n(p), of zeros on the positive axis does
not exceed the number of sign changes, s(p), in the nonzero coefficients
(in order) and that 2|(n(p)− s(p)).

The coefficients of p(y) change signs only once so Descartes’ rule of signs tells us that
p(y) has at most one positive zero. It follows that p(y) ≤ 0 for all y ∈ (0, 1), indeed
if p(c) > 0 for some 0 < c < 1, then p(y) must have a zero in (0, c) and another zero
in (c, 1). This establishes (18) thus proving that Ff (x) is concave on [0, 1]. ♦

Another example of a class of functions with a concave symmetrization is ea := x 7→
e−ax

2
, for a > 0. The functions are themselves only concave on [0, 1] for a ≤ 1 since

e′′a(x) = 2 ae−ax
2

(2 ax2 − 1) . The concavity of the symmetrization for a > 1 is left
for the reader to verify.

4 Monotonicity and symmetrization

Numerical experiments suggest it is very common for f to be such that τn and σn
exhibit monotonicity but it is harder to find applicable conditions that assure this.
Thus, we seek verifiable conditions that in particular will apply to f(x) = 1/(1+x2).
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As will soon become apparent, calculations involving symmetric (concave) functions
lead us naturally to the introduction of the following symmetric Riemann sum.

For f : [0, 1]→ R we define:

λn := λn(f) =
1

n

n∑
k=0

f

(
k

n

)
− 1

n
f

(
1

2

)
. (20)

For all n ∈ N, λn(f) is linear and symmetric in that λn(f) = λn(f(1 − ·)) and so
λn(f) = λn(Ff ) where Ff is the symmetrization of f ; namely, as above Ff (x) :=
1
2

(f(x) + f(1− x)).

The term involving f
(
1
2

)
ensures that λn(1) = 1 by making a correction to the central

term(s) of 1
n

∑n
k=0 f

(
k
n

)
; if n is even we simply omit the central term, 1

n
f(1

2
), while

if n is odd we replace the two central terms by 1
n

(
f(1

2
− 1

2n
)− f(1

2
) + f(1

2
+ 1

2n
)
)
.

Further,

λn(f) =
τn + σn

2
+

1

2n

(
f(0) + f(1)− 2f

(
1

2

))
(21)

= σn +
1

n

(
f(1)− f

(
1

2

))
(22)

= τn +
1

n

(
f(0)− f

(
1

2

))
. (23)

As an immediate consequence of (23) and Corollary1 we get:

Theorem 6 (Monotonicity for symmetric concave functions). If the function f :
[0, 1] → R is concave on the interval [0, 1] and symmetric about its midpoint, then
λn(f) increases with n.

Corollary 2. If the function f : [0, 1] → R has a concave symmetrization and
f(0) > f(1/2), then τn increases with n.

Proof. Theorem 6 applies to Ff to show that λn(f) = λn(Ff ) is increasing and the
conclusion follows from (23).

In particular we have:
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Corollary 3 (Monotonicity for decreasing functions with a concave symmetrization).
If the function f : [0, 1]→ R is decreasing on the interval [0, 1] and its symmetriza-
tion; Ff (x) = 1

2
(f(x) + f(1− x)), is concave, then τn increases with n, necessarily

to
∫ 1

0
f .

Example 3 (Monotonicity of τn for 1/(1 + x2)). Consider the function f(x) :=
1/(1 + x2) for which

τn :=
n∑
k=1

n

n2 + k2
.

Clearly f is decreasing on [0, 1] and we already observed in Example 2 that its
symmetrization Ff (x) := 1

2
(f(x) + f(1− x)) is concave, so Corollary 3 applies to

show that τn is increasing. ♦

Similarly, for a > 0 and fa(x) := e−ax
2
, we see by calculating f ′a and F ′′fa that τn(fa)

increases with n.

Remark 1 (Variations on the theme). Let f : [0, 1]→ R. Noting from their linearity
that τn(−f) = −τn(f) and similarly for σn, and also observing that σn(f(x)) =
τn(f(1− x)), we can deduce the following variants of the results above.

(i) If f is symmetric and convex, then λn is decreasing. [Apply Theorem 6 to −f .]

(ii) If f(0) < f(1/2) (in particular, if f is increasing) and has a convex symmetriza-
tion, then τn is decreasing. [Apply Corollary 2 to −f .]

(iii) If f(1/2) < f(1) (in particular, if f increasing) and has a concave symmetriza-
tion, then σn is increasing. [Apply Corollary 2 to f(1− x).]

(iv) If f(1/2) > f(1) (in particular if f is decreasing) and has a convex symmetriza-
tion, then σn is decreasing. [Apply Corollary 2 to −f(1− x).]

Since the symmetrization of f is concave (convex) if f is concave (convex) we observe
that Corollary 2 and part (iv) extend the final two theorems in [4]; our theorems 1
and 2. ♦
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5 Analysis of the function 1
1−bx+x2

As a way of highlighting the subtleties in a seemingly innocent question, we finish by
analyzing a one-parameter class of functions to which our results sometimes apply.

We consider the the family of functions

fb : [0, 1]→ R, where fb(x) :=
1

x2 − bx+ 1
(24)

in the parameter range |b| < 2 so that each fb assumes only positive values.

The symmetrization of fb about 1/2 is

Fb(x) :=
x2 − x+ (3− b)/2

(x2 − bx+ 1) (x2 − (2− b)x+ (2− b))
. (25)

Then f0(x) = 1/(1 + x2) while f1(x) = F1(x) = 1/(x2 − x+ 1). Now F0, F1 and F3/2

are concave on [0, 1], while F−1 is convex and

F2(x) =
(1− x)x+ 1/2

(1− x)2 x2

is convex as an extended value function from [0, 1] into (−∞,∞]. By contrast
F5/4, F7/4 are neither convex nor concave on the unit interval (for more details see
Remark 2 below).

In passing we compute for |b| < 2 that∫ 1

0

dx

x2 − bx+ 1
=

2√
4− b2

(
arctan

(
b√

4− b2

)
+ arctan

(
2− b√
4− b2

))
.

When b→ −2 we arrive at
∫ 1

0
dx

x2+2x+1
= 1

2
.

With a view to applying Corollary 2 or Corollary 3, we begin by noting that fb(x) is
decreasing on [0, 1] for b ≤ 0 and increasing only for b ≥ 2, however fb(0) > fb(1/2)
whenever b < 1/2.

We next prove that Fb is concave for 0 ≤ b ≤ 1; again we employ Descartes’ rule of
signs.
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Figure 2: The second derivative of Fb for 0 ≤ b, x ≤ 1.

Theorem 7 (Concavity of Fb). The function Fb given by (25) is concave on [0, 1]
for 0 ≤ b ≤ 1.

Proof. To establish concavity of Fb we show that F ′′b is negative on [0, 1], see Figure
2 and to do this we need only show its the numerator polynomial, nb, is negative, as
the denominator is always positive.1

Further, since Fb and hence F ′′b are symmetric about 1
2

we need only show this on
[1/2, 1]. Moreover, using the change of variable x := (y + 1)/2 allows us to use
Descartes’ rule of signs to detect roots of nb(x) for x ≥ 1/2 (that is, for y ≥ 0).

Now, the numerator of F ′′b ((y + 1)/2) is

nb(y) := 24 y8 + 32
(
b2 − 6 b+ 11

)
y6 + 48 (2 b− 5)

(
6 b2 − 10 b+ 1

)
y4

− 96 (2 b− 5)
(
4 b2 − 2 b− 11

)
(b− 1)2 y2 − 8

(
4 b2 − 6 b− 1

)
(2 b− 5)3 . (26)

For 0 < b < 1 the first two terms in (26) are always positive and the final two are
negative, so that irrespective of the sign of the coefficient of y4 (it in fact has three
zeroes, at 5/2 and (5±

√
19)/6) Descartes’ rule of signs applies to show the numerator

has one positive real zero (including multiplicity). This zero must lie to the right of

1Note in Figure 2 how much clearer the situation is made by also plotting the horizontal plane.
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Figure 3: Graph of nb(y) on [0, 3/2] for b = 3/4 (L), b = 1 (M), and b = 5/4 (R)

the point 1 except for b = 1 when it equals 1, as illustrated in Figure 3. (Note how
close to one the inflection point is for b = 5/4.)

For 0 ≤ b < 1 we have

nb(0) = 8
(
4 b2 − 6 b− 1

)
(5− 2 b)3 < 0

and
nb(1) = −1024 (b− 2) (b− 1)

(
b3 − 3 b2 + 3

)
< 0.

Thus, when 0 ≤ b ≤ 1 the numerator is non-positive for y ∈ [−1, 1) and so Fb(x) is
concave on [0, 1].

This proof of concavity for Fb was discovered by examining animations of the be-
haviour of nb and then getting a computer algebra system to provide the requisite
expressions after shifting the symmetry to zero so that Descartes’ rule was applica-
ble. Some snapshots of the animation are illustrated in Figure 3. The animation
makes it clear that the solution of nb(y) = 1 decreases monotonically with b.

Remark 2 (Convexity properties throughout the range |b| < 2). In this range the
function provides further interesting applications of Descartes’ rule.

A careful analysis of the coefficients ak of y2k for k = 0, 1, 2, 3 in (26) and of the signs
of nb(0) and nb(1) [see Figure 3 where we plot nb(0) and nb(1) with n0(b) a dashed
line], coupled with reasoning similar to that in the proof of Theorem 7 allows us to
extend the results of that theorem to the whole parameter range |b| < 2.

The analysis and conclusions are summarized in Table 1, wherein we denote
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α− = the negative root of b3 − 3b2 + 3 ≈ −0.8794

α = the smallest positive root of b3 − 3b2 + 3 = 1 +
√

3 sin(2π/9) ≈ 1.3473

α+ = the largest root of b3 − 3b2 + 3 ≈ 2.5231

β−, β+ = the roots of 4b2 − 6b− 1 = (3±
√

13)/3 ≈ −0.1539, 1.6514

γ−, γ+ = the roots of 6b2 − 10b+ 1 = (5±
√

19)/6 ≈ −0.1069, 1.5598

δ−, δ+ = the roots of 4b2 − 2b− 11 = (1±
√

45)/4 ≈ −1.4271, 1.9271

and

# = the number of positive roots of nb((y + 1)/2)

Table 1: Table of signs

b [−2, δ−] [δ−, α−] [α−, β−] [β−, γ−] [γ−, 1] [1, α] [α, γ+] [γ+, β+] [β+, δ+] [δ+, 2)

a4 + + + + + + + + + +
a3 + + + + + + + + + +
a2 - - - - + + + - - -
a1 + - - - - - - - - +
a0 + + + - - - - - + +
nb(0) + + + - - - - - + +
nb(1) + + - - - + - - - -

# 2 2 2 1 1 1 1 1 2 2

Fb(x) conv conv infl conc conc infl conc conc infl infl

The conclusion that Fb is convex for −2 < b ≤ α− requires the observation that in
this range nb(x) is negative for values of x > 1, so neither positive root can lie within
the interval [0, 1].

Putting all this together we are able to conclude that the sequence τn(fb) is increasing
for b ∈ [β−, 1/2] and σn(fb) is decreasing for b ∈ [−2, α−].

A similar analysis in the cases |b| > 2 is left to the interested reader. ♦
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6 Concluding Remarks

The role of symmetrization in mathematics is rich and various and includes the
first proofs of the isoperimetric problem. For a recent survey of techniques and
applications in analysis we refer the reader to [3].

The story we have told highlights the many accessible ways that the computer and
the internet can enrich mathematical research and instruction. The story would be
even more complete if we could also deduce that σn(1/(1 + x2)) was decreasing.
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