Slices, Bumps and Cusps:l
Underpinnings of Nonsmooth Analysisl

Jonathan M. Borwein, FRSC

B* 0l Research Chair in 1T ¥l
Dalhousie University

Dalhousie Distributed Research

Institute and Virtual Environment H a | ifax N oVva SCOtia Ca na d a

First Franco-Canadian Meetingl

Toulouse, July 15th 2004

If mathematics describes an objective world
just like physics, there is no reason why in-
ductive methods should not be applied in
mathematics just the same as in physics.

Kurt Godel (1951)

URL: www.cs.dal.ca/~jborwein

ToVA: CMS-Springer 04 Talk revised: 11-07-04
1



MY INTENTIONS IN THIS TALKI

Most significant results or constructions in
non-smooth analysis rely on exposing and re-
ally understanding underlying objects.

Insight taking place

Usually these objects
are

e Cconvex or

e differentiable
or both

v. As an illustration, in R"

Theorem 1 (BFKL, 2001) Every ‘“reason-
able” connected set with zero interior to
its domain is exactly the range of the
gradient of a continuously differentiable
bump function, i.e., with compact sup-
port.*

*Online slides are a superset of this talk



“But this is the simplified version for the general public.”



After a topological detour, I shall illustrate
this in five ways:

1. Smooth variational principles and bumps

2. Bumps and generalized gradients

3. Derivatives and best approximations to
sets

4. Non-differentiable mean value theorems
and convex sandwich theorems

5. Convex functions and the Banach spaces
they populate

e Full references will be found in

J.M. Borwein and Qiji (Jim) Zhu, Tech-
niques of Variational Analysis CMS-
Springer Books, in Press, 2004.



Michael Faradayl

The most prominent requisite to a lec-
turer, though perhaps not really the most
important, is a good delivery; for though
to all true philosophers science and na-
ture will have charms innumerably in every
dress, yvyet I am sorry to say that the gen-
erality of mankind cannot accompany us
one short hour unless the path is strewed
with flowers.

e SO I offer nano-flowers and nourishing tubers



Franciscus Vieta |

m (1540-1603)

Arithmetic is absolutely as much science as
geometry [is|]. Rational magnitudes are con-
veniently designated by rational numbers, and
irrational magnitudes by irrational [numbers].
If someone measures magnitudes with num-
bers and by his calculation get them different
from what they really are, it is not the reck-
oning’s fault but the reckoner’s.

Rather, says Proclus, ARITHMETIC IS
MORE EXACT THAN GEOMETRY. 7o
an accurate calculator, if the diameter is set
to one unit, the circumference of the inscribed
dodecagon will be the side of the binomial
[i.e. square root of the difference] 72—+/3888.
Whosoever declares any other result, will be
mistaken, either the geometer in his measure-
ments or the calculator in his numbers.



SOME TOPOLOGYI

The acronym usco (cusco) denotes a (convex-
valued) upper semicontinuous non-empty
compact-valued multifunction (set-valued
function).

These are fundamental because they de-
scribe common features of maximal mono-
tone operators, convex subdifferentials and
Clarke generalized gradients.

Cuscos are the most natural extensions of
continuous (single-valued) functions.

The Clarke gradient is usually much too
large (generically “maximal’, see below).

By contrast convex subdifferentials and
maximal monotone operators are always
“minimal” (interior to their domains), as
are the Clarke subdifferentials of a.e. strictly
differentiable functions (BM).



e An usco (cusco) mapping ¢ from a topo-
logical space T to subsets of a (linear)
topological space X isa minimal usco (cusco)
if its graph does not strictly contain the
graph of any other usco (cusco) on T.

e A Banach space is of class (S) (Stegall)
provided every weak™ usco from a Baire
space into X* has a selection which is
generically weak* continuous. Every smooth
Banach space is class (5).

e A Banach space is (weak) Asplund if con-
vex functions on the space are generically
Fréchet (Gateaux) differentiable. Equiva-
lently, every separable subspace has a sep-
arable dual (e.g., reflexive spaces).

In our setting a fundamental result is:



e A Banach space X is Asplund if and only
if every locally bounded minimal weak*
cusco from a Baire space into X™ is gener-
ically singleton and norm-continuous. A
fortiori, Asplund spaces are class (.S).

We show the power of minimality by easily
proving a generic (partial) differentiability re-
sult:

Theorem 2 Suppose that f is locally Lips-
chitz on an open subset A of a Banach space
X and possesses a minimal subgradient on A.

(@) WhenY is a class (S) subspace of X then
f is generically Y —Hadamard smooth through-
out A.

(b) When Y is an Asplund subspace of X then

f is generically Y —Fréchet smooth throughout
A.



Proof. Let €2y be the restriction of elements
of Of to Y.

As the composition of the ‘restriction’ linear
operator

R:z* — z*|Y

and the minimal cusco 0f, 2y is a minimal
cusco from A C X to Y™ .

(a) Consider first the class (S) case.

Then 2y is generically single-valued on the
open (Baire) set A. An easy application of
Lebourg’s mean-value theorem establishes that
at each such point f is (strictly) Y-Hadamard
smooth.

(b) The Asplund case follows similarly. ©

o Note how Y and X™ have been ‘detached’!
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e An immediate consequence is that in any
Banach space, continuous convex func-
tions are generically Fréchet (respectively
Gateaux) differentiable with respect to any
fixed Asplund (respectively class (S)) sub-
space.

Remark 1 Fabian, Zajicek and Zizler give a
category version of Asplund’s result that if a
Banach space and its dual have rotund renorms
one can find a rotund renorm whose dual norm
is rotund simultaneously.

e [ heir technique allows us to show that if
Y is a subspace of X such that both X
and X* admit ‘Y-rotund’ renorms (appro-
priately defined), then X can be renormed
to be simultaneously Y-smooth and Y-
rotund.

11



BUMPS I: VARIATIONAL PRINCIPLESI

e All variational principles devolve from Eke-
land’s powerful (1974) reworking of the
Bishop-Phelps theorem™ (1961).

e More powerful recent ones exploit smooth-
ness of the underlying space—Dby partially
capturing the smoothness of an osculat-
INg norm or bump function

Legend

function
,,,,,,,,,,,,,,,,,, oscullant
,,,,,,,,,,,,,,,,,,,,,, tangent

*All Banach spaces are “sub-reflexive’”
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Viscosity is Fundamentall

Definition [BZ, 1996] f is p-viscosity sub-
differentiable with subderivative z* at =z if

there is a locally Lipschitz g, 3-smooth at =,
with

VP g(z) = a*

and f —g taking a local minimum at x. De-
note all B-viscosity subderivatives by ag f(x).

All variational principles rely implicitly or ex-
plicitly on viscosity subdifferentials.

All Fréchet subdifferentials
are viscosity subdifferentials

13



v. We know many facts such as ...

e Bornology H = F in Euclidean space

e Bornology F WH in reflexive space

e For locally Lipschitz f

oo f=0kf O f=0nf

e When ¢t ¢ X

Ownuf=0rf

for locally Lipschitz concave f

e When X has a Fréchet renorm

Opf=0frf
(e.q., reflexive or WCG Asplund spaces)

14



Example 1 Let f : R®" - R (n > 1) be con-
tinuous and Gateaux but not Fréchet differ-
entiable at 0.

Explicitly in R?, take

3

Ty
f(xay) T m2_|_y4_

when (x,y) 7= (0,0) and f(0,0) = 0.

Let

g(h) := —[f(h) — f(0) = Vg f(0)h|

Then g is locally uniformly continuous and

1. Uniquely, 05 g(0) = {0}.

2. But 94 g(0) is empty.

v. The proof is easy but instructive ...

15



Proof. We check that V4 g¢(0) =0, so
0cg(0) = {0}. As always

9¢ 9(0) C 959(0).

Thus, if (2) fails, 64 g(0) = {0}, and yet there
is a locally Lipschitz Gateaux (hence Fréchet)
differentiable function k such that

k(0) =g(0) =0, Vgk(0)=Vgg(0)=0

and £ < g in a neighbourhood of zero.

Thus, for small h,

f(0+h) — f(O) =V fO)r] _ k(h)—k(O)

IRl =
1B ~ k(0)
= Al

This implies that f is Fréchet-differentiable at
O, a contradiction. ©
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The Smooth Variational PrincipIeI

Theorem 3 (Borwein-Preiss, 1987) Let X be
Banach and let f : X — (—o0,0] be Isc, let

A>0andletp>1. Supposee >0 and z € X
satisfy

f(z) <inff+e.

Then there exist y and a sequence {x;} C X
with x1 = z and a continuous convex function
wp : X — R of the form

oo
pep(z) == ) pille — 4|2,
i—1

where p; > 0 and > 72, u; = 1 such that
(M) ||lz; —yl| < An=1,2,...,
(i) f(y) + (e/M)pp(y) < f(2), and

(i) f(x) + 5 ep(x) > f(y) + 5 ep(y) forz £y

17



Corollary 1 All extended real-valued Isc (resp.
convex) functions on a smoothable (Gateaux,
Fréchet, ...) space are densely subdifferen-
tiable (resp. differentiable) in the same sense.

e f:X — (oc0,00] attains a strong minimum
at x € X if f(x) = infx f and whenever
x; € X and f(x;) — f(x), we have ||z; — x|
(The problem is well posed.)

e also we set ||g|loo := sup{|g(z)|: x € X}.

Theorem 4 (Deville-Godefroy-Zizler, 1992)
Let X be Banach and letY be a Banach space
of continuous bounded functions on X such
that

(1) llglloo < llglly for all g €Y.

(ii) ForgeY and ze X, z — g.(x) = g(x+ 2)
isinY and ||g:|ly = [lglly-

(iii) ForgeY and a € R, z +— g(ax) isinY.

(iv) There exists a bump function in'Y.

18



Then, whenever f : X — (o00,00] is Isc and
bounded below, the set G of g € Y such that
f 4+ g attains a strong minimum on X is resid-
ual (in fact a dense Gy set).

e Picking Y appropriately leads to:

Theorem 5 Let X be Banach with a Fréchet
smooth bump and let f be Isc. Thereisa > 0
(a = a(X)) such that fore € (0,1) and y € X
satisfying

f(y) < ig(ff + ag?,

there is a Lipschitz Fréchet differentiable g
and x € X such that

(i) f+ g has a strong minimum at x,
(i) llglloc <& and ||g'lloo <e,

(iii) [z -yl < e.

Corollary 2 For any Cl bump function b on
a finite dimensional space
0 € int R(Vb)

19



T he Stegall Variational Principlel

As we add more geometry we may often refine
the variational principle:

e Again, x € § is a strong minimum of f on
Sif f(z) =infg f and f(z;) — f(z) implies

|z — ;|| — O.

e A slice for f bounded above on S is:

S(f,S,a) ={zxeS: f(x) >sn§p f—al.

e A necessary and sufficient condition for a
f to attain a strong minimum on a closed
set S is diam S(—f,S,a) — 0 as a — 0+.

Theorem 6 (Stegall, (1978)) Let X be Ba-
nach and let C C X be a closed bounded
convex set with the Radon-Nikodym property,
Let f be Isc on C and bounded from below.

For any € > 0 there exists x* € X™* such that

|x*|| < e and f+x* attains a strong minimum
on C.

20



e The following variant due to Fabian (1983)
is often convenient in applications

Corollary 3 Let X be Banach with the Radon-
Nikodym property (e.g., reflexive) and let f be
Isc. Suppose there existsa > 0 and b € R such
that

f(2) > allal| +b, =€ X.

Then for any € > 0 there exists z* € X™ such
that ||z*|| < e and f+x* attains a strong min-
imum on X.

v' In separable space we may set the pertur-
bation in advance:

21



A One-perturbation Variational PrincipIeI

Theorem 7 Let X be a Hausdorff space which
admits a proper Isc function
p: X - RU{+o0}

with compact level sets. For any proper Isc
bounded below function f : X — R U {+o0}
the function f + ¢ attains its minimum.

In particular, if domy is relatively compact,
the conclusion is true for any proper Isc f.

Key application. In separable Banach space,
a nice convex choice is:

T

tan (IS~ 2|%), if S el < 5,

o(x) = ( H> | 2
o0, otherwise.

for an appropriate compact, linear and injec-
tive mapping S: H — X (H :=¥5).

e ¢ is almost Hadamard smooth: x € dom

i e £+ o th) ~ 26() _
t .0 hedom ¢ t

O

22



e We recover a recent result (CF, 2001)
open for 25 years:

Corollary 4 GDS x Sep C GDS.

Proof Sketch. Suppose Y is the Gateaux
differentiability space factor. Let f:Y x X —
R be convex continuous, and €2 C Y x X non
empty open. Without loss, 2By X 2By C £2
and f is bounded on 2.

Let ¢ : X — [0,40cc0] be as in Theorem 7 with
domain in By, and define

Jinf{—f(y,x) + p(x); v € X}, ifye2By
g(y) =
—+ o0, else.

Then g is concave and continuous on 2By.
As Y is a GDS, the function g is Gateaux
differentiable at some y in By

Moreover

g(y) = —f(y,z) + ¢(x)
and (y,z) is a point of joint differentiability
©
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e [ his is particularly interesting because we
cannot show the corresponding generic re-
Ssult:

e
WASP x Sep C WASP,

while recently Moors and Somasundaram
(2003) showed—unconditionally—that

Example 2

WASP ?C& GDS

answering another long open question with
delicate set-theoretic topological tools.

e Lassonde and Revalski (2004) have ex-
tended the single perturbation principle to
ensure generic strong minimality.

24



Two Open Questionsl

1. Viscosity. In Hilbert space is

0 f(z) & Og f(=)
possible for Lipschitz f7
v’ For continuous f we saw it was:

A non-viscosity subdifferential

?
2. Genericity. WASP x Sep C WASP.

25



BUMPS II: SUBDIFFERENTIALS'
Maximality and Genericityl

e [ hese powerful positive results are com-
plemented by the following negative ones:

Below Bxx is the dual ball, (Xg,,,p) is the
space of real-valued non-expansive mappings

f(z) — f(y)] <z =y

in the uniform metric, while 9g and 9, denote
the Clarke and approximate subdifferentials

Oaf(x) i={a*: «* = z¥ € O f(xn), xn — x}
and

Oof(z) = €0 0 f(x).

e In reasonable (reflexive or separable) spaces,
Jof(x) is the limit of nearby gradients.

26



Theorem 8 (Maximal Subdifferentials) Let A
be open in a Banach space X.
(i) Then

{g € XBX* : Oog(x) = By for all x € A}

is residual in (Xg,.,,p).

(ii) If X is smooth

{9 € XB,. : Oug(z) = Bx~ for all x € A}

is residual in (Xg,.,,p).

¢ Thus usually (generically) even the lim-
iting subdifferential is everywhere maxi-

mal (and convex, agreeing with the Clarke
subdifferential).

e T'(x) :=Vf(x)+Bx~ is also a subgradient.
Much more is true (BMW).

27



e Despite this, the limiting subdifferential of
a Lipschitz function can be non-convex
a.e. (BBW)—save on R where it differs
from the Clarke subdifferential at most

countably.

Moreover,

Theorem 9 Let O € A be an open connected
and bounded subset of RY and let € > 0.

There is a locally Lipschitz function f . RN
R such that

R(0qf) C A
and
p{z 2 Oaf(z) # A} <e.

The proof relies on two facts:

28



Fact 1 By Theorem 1, such connected A can
be realized as the range of the gradient of
a continuously differentiable bump (bounded
support) function by.

Step 1. The support function of a strictly
convex body

oc(z) ;= sup(y, z)
yeC
leads to a bump
_ 3V3 5 1\2
be(x) 1= == (max {1 - oc(-2)?,0})

with range exactly C.

0.4

0.2 (0,0) (2,0)

0.4

I I I I ]
0.5 0 0.5 1 15 2 25 3

e [ his is clearest for the case of an ellipse
E = {x: (Ax,z) < 1} where

op(y) = (Az,z)1/?

29



Step 2. A disjoint sum then leads to

2.5F

15F

0.5

05

A Non-convex Gradient Range Vg
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Step 3. Build a flat patch on a bump range

Step 4. Superposing a bump on a flat patch
of another leads to

A Non-simply Connected
Gradient Range Vbc,uc,

31



e Step 5. Careful analysis leads, in the limit,
to the general result.

o Indeed, thereisa Cl bump b : R?2 — R such
that Vb(RR?) is exactly the k-th approxima-
tion to the Sierpinski carpet (BFKL).

. .
= (=

GRADIENT RAMNGE I WWHITE

N . .

A Multiply Connected Gradient Range

32



Fact 2 One can ‘seed’ an open dense set of
small measure with dilated bumps of constant
gradient range, A, forcing all limits to be A.

Reason. As observed by Ioffe, dilation and
translation do not effect the range. Consider

fa(@) = Y 27" b (an + 2" 12)
n=0

Scaled bumps in one and two dimensions
Limiting blue subdifferential at right

v Now, Facts 1 and 2 prove Theorem 9.
33



Two Open Questionsl

e Can one build an explicit example of a
function on R? with 8,f(z) = By?

e Is it always true in RY that the range of a
Cl bump’s gradient is semi-closed:

R(Vb) = cl — int R (Vb)?

— with enough smoothness this is true
(CcN+1 Rifford, 2003).

e [ he situation is quite different in infinite
dimensions (BFL, Deville-Hajek and oth-
ers): the interior may be empty and one
can achieve many strange sets.
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DERIVATIVES I: PROXIMALITY I

e A norm is Kadec-Klee (sequentially) if the
weak and norm topologies coincide (se-
quentially) on the boundary of the unit
ball, as in Hilbert space.

Theorem 10 Let C be a closed subset of a
reflexive Banach space X with a Kadec-Klee
norm.

(a) (Density) The set of points in X at which
every minimizing sequence clusters to a best
approximation is dense in X.

(b) (Projection) If in addition, the original
norm is Fréchet then

Opdc(z) C Opdo(Po(x))
where Po(x) is the (set of) best approxima-
tions of x on C.

(c) In particular, in any Fréchet LUR norm
on a reflexive space, this holds for all sets in
the Fréchet sense with a single-valued metric
projection.

35



Proof. (a) We may assume x, —q p and at
any of the dense set of points with

¢ € Opde(z) # 0
all minimizing sequences actually converge in
norm to p since

¢(zn —x) — do(z) = |lon —z|| — [|p — =,
and by Kadec-Klee xp, — p, and p = Po(x).

The Fréchet slice forces
the approximating sequence to line up

The corresponding subgradient is a proximal
normal to C' at p.
36



(b-c) Finally, when the norm is F-smooth,
simple derivative estimates show that any mem-
ber of dpd~(x) must lie in

Opdc(Po(x)).

v, This used to be hard.

e (Lau-Konjagin (1976-86)) X is reflexive
and Kadec-Klee iff best approximations al-
ways exist densely (or generically).

e [ heorem 10 easily shows the normal cone
defined in terms of distance functions is
always contained in the normal cone de-
fined in terms of indicator functions.

e In Hilbert space we may conclude

Opdc(z) C Ordo(Po(x)),
where 0, denotes the set of proximal sub-
gradients.
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Random Subgradientsl

e Oodc is a minimal cusco for all closed C' iff
the norm is uniformly Gateaux.

e While do is often too well behaved, /d-(x)
is not Lipschitz and choosing C wisely pro-
vides many counter-examples:

Vds(@) = /|1 — ||z

Burke
Lewis
Overton

How random gradients fail
38



Two Open Questionsl

e Every closed set in every reflexive space
(every renorm of Hilbert space) admits at
least one best approximation.

(Stronger variant.) For every closed set
of every reflexive space the proximal nor-
mal points are norm dense in the norm
boundary.

v. Any counter-example is necessarily un-
bounded (and fractal-like)

e Every norm closed set in a reflexive Ba-
nach space with unique best approxima-
tions for every point in A (a Chebyshev
set) is convex.

[True in weak topology, and so in RV ]
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DERIVATIVES II and CONVEXITY I|
Duality Inequalitiesl

e T he following hybrid inequality is based on
the two-set Mean Value theorem of Clarke
and Ledyaev (94) and its Fenchel rework-
ing by Lewis & Ralph (96).

Theorem 11 (Three Functions) Let C C R"
be nonempty compact convex and let f and h
be Isc functions with dom (f) udom (h) C C.

For any Lipschitz ¢ : C — R there is z* &
dog(C) (the Clarke subdifferential) such that

(min(f —g) + min(h 4+ g))
< —f*(z*) — h*(=2*) < min(f +h).

40



A Three Function Sandwich

e The smooth case (BF) applies the classi-
cal Mean value theorem to ¢t — ¢g(z(t)) for
an arc, T, on [0, 1] obtained via Schauder’s
fixed point theorem.

e T he nonsmooth case follows by ‘mollification’'—
the limits lie in the Clarke subdifferential.

e Fenchel Duality is ‘recovered’ from g := f.
Recall, f*(t) = sup,y(z) — f(x).

41



Finding the arc. We may smoothify since
(f + || - ||2)* is differentiable.

Let M := 2sup{||c|]| : c € C} and
W :={z:[0,1] — C : Lip(z) < M}.
By Arzela-Ascoli, W is compact in the uniform

norm topology.

For x € W define a continuous self map T :
W — W by

t . 1 .
Tx(t) :=/0Vf ngoac—I—/t Vh*o (=Vg) o x.

Since W is compact and convex, the Schauder
fixed point theorem shows there is x € W such
that £ = T'z. That is,

t * 1 *
f(t)Z/OVf ngof—I—/t Vh*o (—=Vyg) o=.
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e A striking partner is:

Theorem 12 (Two Functions) Let C C R"
be nonempty compact convex and f proper
convex lower semicontinuous with dom (f) C
C. Ifa# 1 and g : [C,aC] — R is Lipschitz
then there are z* € Jgg([C,aC]) and a € C
such that

[9(aa) — g(a)]/(a— 1) — f(a) > f7(=z7).
¢ Two fine specializations follow.

Corollary 5 Let ¢ C R"™ be compact con-
vex and f proper convex lower semicontinuous
with dom (f) Cc C. If g : [C,—C] — R is Lip-
schitz then there are z* € 0gg([C,—-C]) and
a € C such that

[9(a) — g(—a)]/2 = f(a) > f7(z7).
Hence
ff(z") <0
if f dominates the odd part of g on C.
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e [ he comparison of f to the odd part of g
reinforces the suggestion that fixed point
theory is central to these results.

Corollary 6 Let C C R"™ be nonempty, com-
pact and convex and f Isc with dom (f) C C.
If g : [C,0] — R is Lipschitz then there are
z* € 9p9g([C,0]) and a € C such that

fla) + f7(z") < g(a) — ¢(0).
Hence
f(z") <0

whenever f dominates g — g(0) on C.

e By contrast, this corollary can be obtained
and strengthened by variational methods.
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Theorem 13 Let A be nonempty open bounded
in a Banach space and let g : A — R be Lips-
chitz. If x € int A and

t == inf{||z¥]| : 2* € 8pg(2),z € A} >0
then

sup (g(w) — tllu — 2)) > g(e).
ucoA

v. Specialized to the unit ball with z := 0 we
obtain, a la Corvallec:

Corollary 7 (Rolle Theorem) Let B be the
closed unit ball in R™ and g : B — R a Lipschitz
function. Then there is x* € dgg(B) such that

¥« < max|g(a)l.
2" < maxg(a))

o Contrastingly:
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Corollary 8 (Odd Rolle Theorem) Let B be
the closed unit ball in R"™ and g : B — R a
Lipschitz function. Then there is x* € 0gg(B)
such that

||$*||>|< S maxg(a’) T g(_a’)
acB 2

e [ hat this last result is ‘topological’ is height-
ened by the following example (BKW):

Remark 2 Corollary 8 fails if B is replaced
by the unit sphere S. Indeed, there is a C*
mapping f : B C R2 — R such that

(i) f|S is even; but

(ii) f has no critical point in B.
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Two Open Questionsl

e [ he picture suggests that in the sandwich
theorem the slope is actually achieved by
a tangent. Is this true?

e Can one avoid using Brouwer’s fixed point
theorem in the proof—a variational proof?
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CONVEXITY II: BANACH SEQUENCESI

Convex function properties are tightly coupled
to the sequential properties of the spaces they

may inhabit. We finish by illustrating this in
three cases.

1. Finite dimensional spaces
2. Spaces containing £4

3. Grothendiek spaces.

Fact 3 (Josephson-Nissensweig) A Banach space
is infinite dimensional iff it contains a JN se-

quence: that is, a norm-one but weak-star
null sequence.

e [ his is easy in separable space—e.qg., the
unit vectors in ¢2—but appears hard in
general.
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Theorem 14 (a) Every continuous convex func-
tion finite throughout X is bounded on bounded
sets iIff (b) X is a JN space: weak-star and
norm convergence of sequences coincides iff
(c) X is finite dimensional.

Theorem 15 Every continuous convex func-
tion finite on X has f** finite on X** iff X s
a Grothendiek space: weak-star and weak
convergence of sequences coincides (e.g., in
reflexive space or £°°).

Theorem 16 Gateaux and Fréchet differen-
tiability agree for convex functions on X iff X
is a JN-space.

Theorem 17 Weak Hadamard and Fréchet
differentiability agree for convex functions on
X Iff X is a sequentially reflexive space:
¢} ¢ X iff norm and Mackey convergence of
sequences coincides.
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Proof of Theorem 14|

[(@) implies (b)] Suppose {yn} is JN. Define
fx) == 2" (yn(x))

where ¢ > 0 is convex, continuous with (1) =
1 and ¢([0,1/2]) = 0.

Then f is continuous since the sum is locally
finite, and unbounded on By since f(yn) = 1.

[(b) implies (a)] if f > 0 is unbounded on
Byx, so by the MVT, is 9f. Thus, there is
xn € Bx, zn € 0f(xn) and ||zn|| — oco. Then
yn = zn/||zn|| is IJN. Indeed

f(@) — f(zn)

[zn]|

<yn75€> S <yn,$n> + > 0.

©

& There are many other such results (e.g.,
characterizing Schur spaces, reflexive spaces,
strong separability etc).
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Two Open Questionsl

e Any two real valued Lipschitz functions on
Hilbert space are simultaneously densely
Fréchet differentiable.

& True in the separable Gateaux case.

e A convex continuous function on separa-
ble Hilbert space admits a second-order
Gateaux expansion densely.

& True in finite dimensions.

> False for Fréchet or nonseparable ¢2.
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