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Abstract

The purpose of this paper is to survey and to provide a unified framework
to connect a diverse group of results, currently scattered in the literature, that
can be usefully viewed as consequences of applying variational methods to
problems involving symmetry. Here, variational methods refer to mathematical
treatment by way of constructing an appropriate action function whose critical
points—or saddle points—correspond to or contain the desired solutions.

1 Introduction

The purpose of this paper is to survey and to provide a unified framework to
connect a diverse group of results, currently scattered in the literature, that
can be usefully viewed as consequences of applying variational methods to
problems involving symmetry. Here, variational methods refer to mathematical
treatment by way of constructing an appropriate action function whose critical
points correspond to or contain the desired solutions.

Variational methods can be viewed as a mathematical form of the least
action principle in physics. Variational methods have been a powerful tool in
both pure and applied mathematics ever since the systematic development of
calculus of variations commenced over 300 years ago. With the discovery of
modern variational principles and the development of nonsmooth analysis, the
range of application of such techniques has been extended dramatically (see
recent monographs [14, 19, 33, 40, 43]).
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Symmetry is ubiquitous in the real world and its modelling, and it also
presents frequently in variational problems. Often when the action function is
symmetric the solution also has a certain symmetry. Research on such symmet-
ric variational problems is currently scattered in the literature and sometimes
is treated only implicitly. Since Felix Klein introduced his Erlangen Program
[29], symmetry is, in general, treated as invariance with respect group actions.
This, however, proves to be inadequate in dealing with many variational prob-
lems involving symmetry.

For example, a key result leading to Adrian Lewis’ celebrated representa-
tion of subdifferentials of spectral functions [31] is:

Proposition 1. Let f be a convex permutation invariant function of several
real variables. Then y ∈ ∂f(x) = {y : 〈y, z − x〉 ≤ f(z)− f(x)} if and only if

y↓ ∈ ∂f(x↓) and 〈y, x〉 = 〈y↓, x↓〉.

Here x↓ denotes the decreasing rearrangement of x.

We note that in Proposition 1 (a) the permutation invariance of the action
function f is not preserved by the solution – its subdifferential and (b) the
decreasing rearrangement is not invertible and, therefore, cannot be described
by a group action. These are not the only special features of variational prob-
lems involving symmetry. Some other ‘anomalies’ include (c) there may be
no compatible topology for the symmetrization process and (d) at times only
approximate symmetries can be constructed. A typical example involving (c)
and (d) is the existence of Schwarz-symmetric solutions to Laplace-type partial
differential equations as discussed in Section 3.4.2.

There have been some prior efforts to deal systematically with variational
problems involving symmetry. An early result is the Palais principle of sym-
metric criticality [35]. When the action group consists of differentiable isome-
tries, this principle states that finding symmetric critical points of a smooth
action function requires only handling its restriction to the invariant sub-
manifold corresponding to the group action. Limiting the application of the
Palais principle is its strong smoothness requirement on the action function
and the restrictive isometric property it needs for the group action.

In [30], Ledyaev and Zhu adopted the use of nonsmooth functions on
smooth manifolds as a framework to deal with symmetry in variational prob-
lems. Spectral functions provide examples that can benefit from such a frame-
work (see [14, Chapter 7]). The research in [30] established a set of tools for
nonsmooth variational problems on smooth manifolds and illustrated that lin-
earity of the underlying space is not essential in dealing with many variational
problems. However, this approach still relies on characterizing symmetry as
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invariance with respect to group actions. As a result the special features of
variational problems involving symmetry alluded to above were not adequately
addressed.

Recently, van Schaftingen [42] and Squassina [45] proposed versions of sym-
metric minimax and variational principles—in different levels of generality—
that are stimulated by polarization approximations of Steiner symmetry [15].
Tailoring variational principles to a specific type of symmetry helps in fitting
such variational principles to the targeted problem. Yet this also limits the
application of such principles to other problems. A more practicable approach
to understanding variational problems involving symmetry is by providing a
few simple overarching principles which lead to the development of systematic
approaches for dealing with symmetries of diverse nature.

We follow this path in the current work. First we lay out a few such
simple general variational principles. To make the general principles flexible
enough and appropriate to the variational approach we define symmetry as
an invariance with respect to a semigroup and study action functions that
are ‘sub-invariant’ under the given semigroup action. The key to successfully
applying these principles then relies on finding appropriate semigroups and
related symmetrizations.

We shall illustrate this with a suite of examples of contexts in which varia-
tional methods have already been used successfully in solving problems. As it
is neither possible nor useful for our purpose to be comprehensive, we instead
will illustrate our approach using selected examples that effectively illustrate
the four special features, (a) through (d), highlighted above.

The organization of the remainder of the paper is as follows. We layout the
general principles in Section 2 and then turn to their applications in Section 3.
Section 4 is devoted to discussion of saddle points in the presence of symmetry,
and we make various conclusions in Section 5.

2 Variational Principles in Presence of Sym-

metry

2.1 Invariance and symmetry

As indicated, we frame symmetry as invariance or sub-invariance with respect
to the action of a prescribed semigroup G with identity (monoid) acting on
the ambient space. Throughout the paper, unless stated otherwise, we shall
assume each semigroup does possesses an identity. Let (X, d) be a complete
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metric space with the semigroup action G×X 7→ X

(g, x) 7→ gx. (1)

In the sequel we will always assume that, for any g ∈ G, mapping x 7→ gx is
continuous. For any subset S of X the G-orbit of S is defined by

G · S := {gs : g ∈ G, s ∈ S}.

Consider an extended valued lsc (lsc) function f : X 7→ R∪{+∞}. We denote
the (lower) level set of f at a ∈ (−∞,∞] by

[f ≤ a] := {x ∈ X : f(x) ≤ a}.

Definition 2 (Invariance). We say that an extended valued function f : X 7→
R∪{+∞} is sub-invariant with respect to the semigroup action (1) if, for any
g ∈ G and x ∈ X,

f(gx) ≤ f(x). (2)

If the inequality is strict for all gx 6= x, we say f is strictly sub-invariant.
We say that an extended valued function f : X 7→ R ∪ {−∞} is (strictly)

super-invariant with respect to the semigroup action (1) if −f is (strictly) sub-
invariant. If f : X 7→ R is both sub- and super-invariant then we say f is
invariant.

Clearly, when f is invariant its level set [f = a] := {x ∈ X : f(x) = a} is
invariant under the semigroup action, i.e.,

G · [f = a] ⊂ [f = a].

This relationship is convenient when working with equality constraints but
non-essential since

[f = a] = [f ≤ a] ∩ [−f ≤ −a].

Thus, we will focus on sub-invariance below. We also observe that if G is a
group then the concept of either sub-invariance or super-invariance coincides
with invariance.

Although the invariance of the level set under the semigroup action is a
type of symmetry property, in many situations the following stronger form of
symmetry is more significant.

Definition 3 (Symmetrization). Let G be a semigroup and let f be a sub-
invariant function. A map S : X 7→ X is a (G, f)-symmetrization if, for any
x ∈ X,
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(i) for any g ∈ G, S(gx) = gS(x) = S(x);

(ii) for any x, S2(x) = S(x);

(iii) for any x, f(S(x)) ≤ f(x).

In particular, if S(x) ∈ cl(G · s) then (iii) holds for any lsc function f . In this
case we will simply call S a G-symmetrization.

This framework relies on ideas in [42, 45]. The main difference is in con-
dition (iii) in the definition of symmetrization. In our definition, the sym-
metrization is linked to a particular action function f . Verifying (iii) is often
the key to application and is nontrivial. Such verification is, however, usually
much easier than trying to show S(x) ∈ cl (G ·s) which ensures that (iii) holds
for every lower semicontinuous function f ; an unnecessarily strong condition
which fails in many cases.

An important known concrete example that fits this framework is estab-
lishing the existence of symmetric solutions of certain Dirichlet type problems.
In those problems, as we shall see, often condition (iii) can be verified using
the Palais-Smale property [36] of the action function. The framework herein
is also more flexible.

2.2 Symmetric extremal principle

Many symmetry properties that one can derive using variational arguments
are based on the following simple result.

Proposition 4 (Symmetric extremal principle). Let f : X 7→ R ∪ {+∞} be
a sub-invariant extended valued function with respect to the semigroup action
(1). Then

G · [f ≤ a] ⊂ [f ≤ a].

In particular, letting a = inf f , we have

G · argmin(f) ⊂ argmin(f).

Moreover, if f is strictly sub-invariant, then, for any x ∈ argmin(f) and any
g ∈ G, gx = x.

Proof. For any x ∈ [f ≤ a] and any g ∈ G, f(gx) ≤ f(x) ≤ a implies
gx ∈ [f ≤ a]. The two set inclusions follows directly. The last conclusion
follows directly from the definition of strict sub-invariance. This suffices to
complete the proof. �

Similarly to Proposition 4 we have
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Proposition 5 (Symmetric minimization). Let f : X 7→ R ∪ {+∞} be an
sub-invariant extended valued function with respect to the semigroup action
(1) and S is a (G,F )−symmetrization. Then

S(argmin(f)) ⊂ argmin(f).

Proof. It is impossible to lie strictly below the minimum! �

2.3 Symmetric variational principles

The symmetric extremal principle only applies to a problem that attains its
infimum—that is, has a minimum. When the existence of a minimum is not
guaranteed we need symmetric versions of a ‘variational principle’ [12, 22].
Versions of symmetric variational principles related to Steiner symmetriza-
tion have been discussed in [45]. These results require additional structure
assumptions to ensure the compatibility with the Steiner symmetrization and
its approximation by polarizations. We present simpler versions with more
flexibility of application. The trade-off is a loss of precision when dealing with
a specific Steiner symmetrization.

2.3.1 Symmetric Ekeland variational principle

Theorem 6 (Symmetric variational principle). Let (X, d) be a complete metric
space with a semigroup action G. Let f : X 7→ R∪{+∞} be a G-sub-invariant
lsc function which is bounded from below. Suppose that

f(z) < inf
X
f + ε.

Then, for any g ∈ G and λ > 0 there exists y such that

(i) d(y, gz) ≤ λ;

(ii) f(y) + (ε/λ) d(y, gz) ≤ f(z); and

(iii) f(x) + (ε/λ) d(x, y) > f(y) for x 6= y.

Proof. Since f is sub-invariant we have f(gz) ≤ f(z) < infX f + ε. Applying
Ekeland’s variational principle [14, 22] to gz suffices to complete the proof. �

Remark 7. We note that for the trivial semigroup action gx = x,∀g ∈ G, any
function on X is invariant. Thus, Theorem 6 is a true, if easy, generalization
of the Ekeland variational principle. ♦
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Figure 1: Ekeland (L) and Borwein-Preiss (R) variational principles.

2.3.2 Symmetric Borwein-Preiss variational principle

Similarly we have the following symmetric special case of the Borwein-Preiss
variational principle. Recall that a Banach space is super-reflexive if it possess
an equivalent uniformly convex norm or an equivalent uniformly smooth norm
[12, 13]. Hilbert space and each abstract Lp space with 1 < p < ∞ is super-
reflexive.

Theorem 8 (Symmetric smooth variational principle). Let (X, ‖·‖) be a super-
reflexive Banach space with a semigroup action G. Let f : X 7→ R ∪ {+∞} be
a G-sub-invariant lsc function which is bounded from below. Suppose that

f(z) < inf
X
f + ε.

Then, for any g ∈ G and λ > 0, p ≥ 1 there exists y such that

(i) f(gz) < infX f(x) + ε,

(ii) ‖y − gz‖ ≤ λ;

(iii) f(y) + (ε/λp) ‖y − gz‖p ≤ f(gz); and

(iv) f(x) + (ε/λp) ‖x− y‖p ≥ f(y).
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Proof. This is similar to the proof of the symmetric Ekeland variational
principle except we use the super-reflexive Borwein-Preiss variational principle
[12] as a starting point. �

Figure 1 illustrates the difference in the two principles.

3 Applications

Applying the framework in Section 2 to concrete problems requires us to care-
fully determine the action function f , to find a suitable semigroup G with
related symmetrization S, and to verify their compatibility. Although there
are some general patterns, this process is largely problem-specific.

The main purpose of this section is to illustrate this process with several
examples involving different forms of symmetry. We arrange our examples
according to the special features alluded to in the introduction.

3.1 Symmetrization not compatible with topology

We start with a simple example:

Example 9 (Minimum of a symmetric function). Consider the problem of
minimizing a permutation invariant lsc convex function f(x) : RN 7→ R ∪
{+∞}. Assume that f is coercive (has compact lower level sets) and is bounded
from below. Thus, f attains its minimum.

Let G1 := P (N) be the permutation group on {1, 2, . . . , N} and define
S1(x) := x̄~1, where x̄ :=

∑N
n=1 xn/N and the vector ~1 has all components

1. We can directly verify that S1 is a (G1, f)-symmetrization. Thus, by the
Symmetric Extremal Principle the minimizer of f must have the form z = z̄~1.

This has reduces an N -dimensional optimization problem to to a one di-
mensional problem. We note that in this case S1(x) 6∈ clG1 · x unless x = a~1
for some a ∈ R. ♦

Since f need only be a lsc function, the method in Example 9 can easily
be applied to minimization problems with invariant constraints, on using an
indicator function (as defined below) to turn the constrained minimization
problem into an unconstrained one. As an illustration, we use symmetry with
respect to P (N) to give a proof of the well known algebraic-geometric mean
inequality.

Example 10 (Arithmetic-Geometric mean inequality). Consider

min f(x) := −
N∑
n=1

log(xn) + ιC(x),
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where C := {x : 〈x,~1〉 = K,x ≥ 0}, and ιC(x) = 0 for x ∈ C and is ∞
otherwise; represents the indicator function of the set C.

Then f satisfies all the conditions for the function in Example 9 and, there-
fore, has a minimum of the form S1(x) = x̄~1. The constraint S1(x) ∈ C forces
x̄ = K/N and the minimum is −N log(K/N). This now easily leads to the
Arithmetic-Geometric mean inequality. ♦

Likewise, we prove the classical relative entropy inequality [9] using sym-
metry.

Example 11 (Relative entropy inequality). Consider

min f(p, q) := −
N∑
n=1

pn log(pn/qn) + ιC(p, q),

C := {(p, q) : 〈p,~1〉 = 〈q,~1〉 = 1, (p, q) ≥ 0.}.
We shall show that f(p, q) ≥ f(~1,~1) = 0. Now f is invariant with respect

to the group action G2 : g(p, q) := (gp, gq), g ∈ P (N), and S2(p, q) := (p̄~1, q̄~1)
is a (P (N), f)-symmetrization. Again, f has a minimum S2(p, q) = (p̄~1, q̄~1).
The constraint S2(p, q) ∈ C forces S2(p, q) = (~1,~1) and the minimum to be 0
as needed.

Note that, in general, f(p, q) > f(S2(p, q)), that is, the invariance of f
is not preserved by the symmetrization. Moreover, although f is defined on
R2N it is not P (2N)-invariant. Carefully choosing the semigroup G2 is very
important. ♦

Certainly, using convexity in these last two examples leads to shorter proofs.
Nevertheless, the proofs here highlight the role of symmetry in such inequali-
ties.

3.2 The role of sub-invariance

Much of the analysis of symmetrical properties using variational arguments
follows the pattern in the three examples 9, 10, 11 described above. The hard
work lies in verifying the conditions. Since the symmetric extremal principle
is a consequence of the G-sub-invariance property of the given function f , it
is unsurprising that the latter is often more powerful. We illustrate with two
more subtle inequalities.

We start with the Muirhead inequality [34] which is described in terms
of majorization (see e.g. [8]). Recall that, for vectors x, y ∈ RN , we say x
majorizes y, denoted by x ≺ y, if

k∑
n=1

x↓n ≥
k∑

n=1

y↓n, for 1 ≤ k < N and

N∑
n=1

x↓n =

N∑
n=1

y↓n.
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We will use a semigroup characterization of majorization that follows the ex-
position in [26].

We define, for δ > 0, the δ-average operators aδij by

aδijx :=

{
x− δei + δej if xi − xj > 2δ,

x otherwise,

and use G3 to denote the semigroup of all the finite compositions of the δ-
average operators. Then [26, Lemma 4] can be stated as

Proposition 12 (Characterization of majorization). We have x ≺ y if and
only if y = gx for some g ∈ G3.

The Muirhead inequality concerns the following function

T [y](x) :=
∑

π∈P (N)

xy1π(1)x
y2
π(2)...x

yN
π(N) y, x ∈ R

N
+ .

Theorem 13 (Muirhead inequality). For any x ∈ RN+ , the function y 7→
T [y](x) is G-sub-invariant.

Proof. We need only to show that aδijy = z implies T [y](x) ≥ T [z](x). If
yi−yj < 2δ then y = z and T [y](x) = T [z](x). We now consider the nontrivial
case in which yi−yj > 2δ so that zi = yi−δ and zj = yj+δ and zk = yk, k 6= i, j.
Without loss of generality assuming i < j, we calculate

T [y](x)− T [z](x) (3)

=
∑

π∈P (N)

xy1π(1)...x
yi−1

π(i−1)x
yi+1

π(i+1)...x
yj−1

π(j−1)x
yj+1

π(j+1)...x
yN
π(N)x

yN
π(N) ×

×[xyiπ(i)x
yj
π(j) + xyiπ(j)x

yj
π(i) − x

yi−δ
π(i) x

yj+δ

π(j) − x
yi−δ
π(j) x

yj+δ

π(i) ]

=
∑

π∈P (N)

xy1π(1)...x
yi−1

π(i−1)x
yi+1

π(i+1)...x
yj−1

π(j−1)x
yj+1

π(j+1)...x
yN
π(N)x

yN
π(N) ×

×xyjπ(i)x
yj
π(j)[x

yi−yj
π(i) + x

yi−yj
π(j) − x

yi−yj−δ
π(i) xδπ(j) − x

yi−yj−δ
π(j) xδπ(i)]

=
∑

π∈P (N)

xy1π(1)...x
yi−1

π(i−1)x
yi+1

π(i+1)...x
yj−1

π(j−1)x
yj+1

π(j+1)...x
yN
π(N)x

yN
π(N) ×

×xyjπ(i)x
yj
π(j)(x

yi−yj−δ
π(i) − xyi−yj−δπ(j) )(xδπ(i) − x

δ
π(j)).

Now it is easy to see that all the summands are nonnegative and, therefore,
T [y](x) ≥ T [z](x) as asserted. �
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For fixed x ∈ RN+ , T [y](x) attains its minimum on any compact simplex

{y ∈ RN+ : 〈y,~1〉 = k}. Also, it is easy to check that S3(y) = ȳ~1 is a G3-
symmetry. Thus, by the symmetric extremal principle, for any y, x ∈ RN+ ,

T [y](x) ≥ T [ȳ~1](x). (4)

Relation (4) is very potent. Here are some attractive special cases:

Example 14. For y = e1 we have T [e1](x) ≥ T [ 1
N
~1](x) or

(N − 1)!
N∑
n=1

xn ≥ N ! (x1...xN )1/N .

Dividing both sides by N ! we get the AG-inequality. ♦

Example 15. For y = e1 + e2 we have T [e1 + e2](x) ≥ T [ 2
N
~1](x) which

simplifies to √∑
n6=m xnxm

N(N − 1)
≥ (x1...xN )1/N .

♦

Example 16. In general T [e1 + e2 + ...+ ek](x) ≥ T
[
k
N
~1
]

(x) gives us

(∑
1≤n1<...<nk≤N xn1 ...xnk(

N
k

) )1/k

≥ (x1...xN )1/N .

♦

We point out that since (4) is a consequence of the Muirhead inequality,
the Muirhead inequality itself is more powerful. What follows are two simple
illustrations.

Example 17. It is easy to check that a1
12(2e1) = e1 + e2. Thus, by Muirhead

inequality we have T [e1 + e2](x) ≤ T [2e1](x). Explicitly this is

N

N∑
n=1

x2
n ≥

∑
n6=m

xnxm.

♦

Note that neither Example 16 nor Example 17 is a consequence of the
general inequality (4).

Using the semigroup G3 we can also state the Karamata inequality [28] as
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Theorem 18 (Karamata inequality). Let f be an extended convex function
on R and define F : RN 7→ R ∪ {+∞} by

F (x) :=
N∑
n=1

f(xn).

Then F is G3-sub-invariant.

Proof. This is a direct consequence of Lemma 12 and [26, Theorem 1]. How-
ever, the semigroup characterization of majorization given in Proposition 12
leads to the following simple argument which better represents the nature of
the inequality.

By the definition of G3 we need only to show that F (x) ≥ F (aδijx). When

aδijx 6= x, this is equivalent to, for xi − δ ≥ xj + δ,

f(xi) + f(xj)− f(xi − δ)− f(xj + δ) ≥ 0

or
f(xi)− f(xi − δ)
xi − (xi − δ)

≥ f(xj + δ)− f(xj)

(xj + δ)− xj
,

which follows directly from the convexity of f . �
Again, we could apply the symmetric extremal principle to F (x) but this

only gives us
N∑
n=1

f(xn) ≥ Nf

(∑N
n=1 xn
N

)
a weak form of the convexity of f . That said, the Karamata inequality itself
has many rather useful applications as shown in [26]. This is yet another illus-
tration that the sub-invariance property itself often captures more information
than is encapsulated by the symmetric extremal principle.

3.3 Invariance mismatch

Next we consider examples in which the invariance properties of the action
function and the solution are at odds.

Let uij : RN 7→ RN be a map such that uijx switches the components
xi, xj of x when

(xi − xj)(i− j) < 0.

Proposition 19. Let G4 be the semigroup of all the finite compositions of
uij, and let S4(x) := x↓ be a rearrangement of the components of x in non-
increasing order. Then S4 is a G4-symmetrization.
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Proof. Define

f(x) := Nx1 + (N − 1)x2 + . . .+ 2xN−1 + xN .

It is easy to check that f is a strict G4-sub-invariant function. Since for any
x ∈ RN , G4 · x is compact, f attains its minimum at some y on G4 · x. By
Proposition 4, for any g ∈ G4, gy = y and, therefore, y = y↓. Since y ∈ G4 · x,
y and x have the same components so that y = x↓ = S4(x). It is easy to
directly check that S4(gx) = S4(x) for any g ∈ G4 and S2

4(x) = S4(x). �
This symmetry will help us in calculating the subdifferential of convex

rearrangement-invariant functions. A general result [31] is:

Proposition 20 (Subdifferential of convex rearrangement invariant functions).
Let f : RN 7→ R∪{+∞} be a convex lsc rearrangement (i.e., P (N)-invariant)
function. Then y ∈ ∂f(x) if and only if

y↓ ∈ ∂f(x↓) and 〈x, y〉 = 〈x↓, y↓〉.

Proof. We can apply a finite number of uij operations to y consecutively to
change y to y↓. Thus, there is an element g ∈ G4 ⊂ P (N) such that gy = y↓.
Then y ∈ ∂f(x) implies that the function

h(z) := f(z)− 〈y↓, z〉 = f(g−1z)− 〈y, g−1z〉

attains its minimum at some z = gx. (Here g−1 is the inverse of g in the
permutation group P (N); note that G4 is not a group.)

Since f is P (N)-invariant and, therefore, G4-invariant, we see that h is G4-
sub-invariant. By Propositions 5 and 19, h attains its minimum at (gx)↓ = x↓.
That is, y↓ ∈ ∂f(x↓). Moreover,

f(x)− 〈y, x〉 = f(gx)− 〈y↓, gx〉 = f(x↓)− 〈y↓, x↓〉,

implies 〈x, y〉 = 〈x↓, y↓〉. The converse is evident from the inequalities

f(z)− 〈y, z〉 = f(gz)− 〈y↓, gz〉 ≥ f(x↓)− 〈y↓, x↓〉 = f(x)− 〈y, x〉,

and we are done. �

Remark 21. One of the keys in the proof is that we can take the inverse g−1

in P (N) without changing f . Thus, we needed to require f to be invariant
with respect to the larger group P (N). This is a stronger invariance than the
G4-invariance we ultimately derived for the subdifferential of f . ♦

Remark 22. Semigroup G4 provides us a clear path to iteratively deriving x↓

from x. For proving Proposition 20, however, the semigroup G′4 generated by
S4 and the identity mapping suffices. ♦
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Remark 23. Proposition 20 directly assisted in calculating the subdifferential
of

f(x) := max{xn : n = 1, 2, . . . , N}

but only helps indirectly in dealing with a min function or more generally with
the kth order statistics [14].

Easy generalizations to non-convex functions is not to be expected since we
have a simple counter-example in f(x1, x2) := x1x2 whose derivative f ′(x1, x2) =
(x2, x1) certainly does not have the symmetry property of Proposition 20. ♦

When f is smooth, Proposition 20 characterizes the so called Schur convex-
ity of f [44]. Since Schur convexity is related to many classical inequalities—
such as the AG-mean inequality and Muirhead inequality, see [18]—we may
expect semigroup G4 also to help in proving such inequalities. Here is an
illustration.

As with G4 we define G5 to be the finite composition of maps vij : RN 7→
RN such that each vijx switches the components xi, xj of x when

(xi − xj)(i− j) > 0.

We can also verify that S5(x) := x↑, the rearrangement of the components of
x in non-decreasing order, is a G5-symmetrization.

The semigroups G4 and G5 also enable us to give a more honest symmetry
proof of the arithmetic-geometry mean inequality than that of Example 10.

Example 24. Consider the constrained minimization problem

minimize f(x) := x1 + x2 + . . .+ xN (5)

subject to g(x) := x1x2 . . . xN ≥ 1,

xn ≥ 0, n = 1, 2, . . . , N.

Since f is linear the minimum is attained on the part of the boundary of the
convex feasible set defined by x1x2 . . . xN = 1. Let z be a minimal point.
Since both f and g are invariant with respect to the group action P (N) which
contains both G4 and G5, the minimum is also attained at both z↓ and z↑.
Since f and the feasible set are both convex, we have that the convex hull
[z↓, z↑] ⊂ argmin. This implies that z↓ = z↑ because x1x2 . . . xN = 1 does
not contain any non-degenerate line segment. Again we conclude that all
components of z are the same and deduce that the minimum N is attained at
z1 = z2 = . . . = zN = 1, which implies

x1 + x2 + . . .+ xN
N

≥ (x1x2 . . . xN )1/N .

This is again the classical algebraic-geometric mean inequality. ♦
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Proposition 20 is a special case of a more general formula for subdifferentials
of convex spectral functions. Let O(N) be the group of N × N orthogonal
matrices and S(N) be the N ×N symmetric matrices endowed with the norm
induced by the matrix inner product

〈A,B〉 = tr(A>B).

For U ∈ O(N) and A ∈ S(N), we define a group action by

U ·A := UAU>.

Define S∗4(A) := diag λ(A), where λ(A) is the vector of eigenvalues of A in
a non-increasing order and diag(x) signifies the diagonal matrix generated by
vector x. Then by virtue of the von Neumann-Theobald inequality [9, 14]

〈A,B〉 ≤ 〈S∗4(A), S∗4(B)〉. (6)

Correspondingly to Proposition 20 we have:

Proposition 25 (Orthogonal invariance). Let f : S(N) 7→ R ∪ {+∞} be a
convex lsc function invariant with respect to the orthogonal transformations.
Then Y ∈ ∂f(X) if and only if

diag λ(Y ) ∈ ∂f(diag λ(X)) and 〈X,Y 〉 = 〈λ(X), λ(Y )〉.

Proof. Define G∗4 to be the semigroup generated by S∗4 and the identity
mapping. We now verify that Z 7→ f(Z) − 〈S∗4(Y ), Z〉 is sub-invariant with
respect to G∗4. The rest of the proof is like that of Proposition 20—as simplified
in Remark 22. �

Remark 26. Define φ(x) := f(diag x). It is an easy matter to check that
when f is orthogonally invariant then φ is permutation invariant and y ∈ ∂φ(x)
if and only if diag y ∈ ∂f(diag x). Thus, Proposition 25 actually reduces the
problem of computing the subdifferential of f on S(N) to one of computing
the subdifferential of φ on the much smaller dimensional space RN . �

It is not hard to verify that, for any w ∈ RN ,

A 7→ 〈w↓, λ〉(A) := 〈w↓, λ(A)〉

is a convex O(N)-invariant function. As a corollary of Proposition 25 we have

Corollary 27. For any vectors w, x ∈ RN ,

diag w↓ ∈ ∂〈w↓, λ〉(diag x↓). (7)

Formula (7) is one of the keys in building the representation theorem for
subdifferentials of the spectral functions (see [14, 31]).
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3.4 Approximation of symmetrization

3.4.1 Rearrangement of infinite series

Let us first consider how to extend Theorem 20 from finite dimensions to l2

or another sequence space. Although the idea is similar to that of the finite
dimensional case, two technical difficulties need to be addressed. First, using
decreasing or increasing rearrangements of the components as a target sym-
metry no longer works directly. Moreover, in order to generalize the Theobald
inequality of (6) to l2 we may need to strip away some of the zeros components
to avoid the pathological situation identified in [14, Exercise 7.3.8].

In [10, 11] this is achieved through a particular rearrangement which sand-
wiches zeros in between positive and negative components. Here, we adopt
a different approach that is more natural both in using the symmetry and in
being closer to the argument for the case of finite dimensional problem. One
main difference in comparison to the finite dimensional arguments is that we
must resort to approximations to help prove that the symmetry is compatible
with the semigroup and the action function.

We fix notation first. We represent l2 bilaterally as

l2 = {x =

∞∑
n=−∞

xne
n :

∞∑
n=−∞

x2
n <∞},

where en is the standard base in which the nth component is 1 and all the
other components are 0. We will use the left and right shift operators defined
by

RSx :=
∞∑

n=−∞
xn−1e

n and LSx :=
∞∑

n=−∞
xn+1e

n.

The inner product and the Hamilton product are defined by

〈x, y〉 :=

∞∑
n=−∞

xnyn (8)

and

x ◦ y :=

∞∑
n=−∞

xnyne
n, (9)

respectively. For k < l, we denote

1lk :=
l∑

n=k

en,
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and we will allow k = −∞ and l =∞.
For any x ∈ l2, define S6(x) := x∗ to be a rearrangement of the components—

with the possibility of deleting or adding an arbitrary number of zeros—such
that all the positive components have nonnegative indices and are arranged
in non-increasing order, followed by zeros if necessary, and all the negative
components have negative indices arranged in non-increasing order, preceded
by zeros as necessary. For example, if

x = (......− 2, 3,−1,−5,−4,7, 4, 5, 2, 0, 0, ......)

then
x∗ = (......0,−1,−2,−4,−5,7, 5, 4, 3, 2, 0, ......)

where the boldfaced component 7 corresponding to index 0.
Our next goal is to define a semigroup action for which S6 = ∗ is the natural

symmetry. We need two basic operations: ‘switch’ and ‘move’ as defined next.
The switch operator snm switches components xn and xm if n < m < 0 or
0 ≤ n < m and when doing so brings x closer to x∗ in norm. More precisely,
if n < m < 0 or 0 ≤ n < m,

snmx := x− xnen − xmem + max(xn, xm)en + min(xn, xm)em.

The move operator moves positive components to the right of n = 0 (in-
clusive) and negative components to the left of n = −1. In doing so we must
shift some of the components to make room and we must also make sure the
move brings x closer to x∗. The precise definition follows:

mnx :=


x ◦ 1k−1

−∞ − xnen + xne
k +RS(x ◦ 1∞k ) if n < 0 and xn > 0

x ◦ 1∞l+1 − xnen + xne
l + LS(x ◦ 1l−∞) if n ≥ 0 and xn < 0

x otherwise,

where k := min{m ≥ 0 : supi≥m |xi| < xn} and l := max{m < 0 : supi≤m |xi| <
−xn}. The most important property of these two operators is that when ap-
plied to x they increase the inner product 〈y∗, x〉 with respect to any y∗.

Lemma 28. Let x, y ∈ l2 and assume that y = y∗. Then

〈y, x〉 ≤ 〈y, snmx〉,

and
〈y, x〉 ≤ 〈y,mnx〉.
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Proof. The first inequality is obvious. We turn to the second. When n < 0
and xn > 0, the inequality follows from the following estimates

〈y,mnx〉 − 〈y, x〉

=

k−1∑
i=−∞

yixi − ynxn + xnyk +

∞∑
i=k+1

xi−1yi −
∞∑

i=−∞
xiyi

= −ynxn + xnyk − xkyk +
∞∑

i=k+1

(xi−1 − xi)yi

= −ynxn + xnyk −
∞∑
i=k

xi(yi − yi+1) (using Abel′s formula)

≥ xnyk −
∞∑
i=k

|xi|(yi − yi+1) (since− xnyn ≥ 0 and yi − yi+1 ≥ 0)

≥ xn(yk −
∞∑
i=k

(yi − yi+1)) = 0 (since xn ≥ |xi|, i ≥ k).

The case when n ≥ 0 and xn < 0 is analogous. �
For a natural number N we define GN := {all finite composition of snm

and mn where |n|, |m| ≤ N} and set G6 := ∪∞N=1G
N . It is easy to verify that

GN and G6 are semigroups and S6 is a G6-symmetrization.
Now, define H to be the semigroup of all self-mappings of l2 which add or

delete an arbitrary number of zeros and then perform a permutation of the
components. We can check that for any y ∈ l2 there exists hy, h

y ∈ H such
that hyy

∗ = y and y∗ = hyy. Next we observe, on applying Lemma 28, that
the function ϕ(x) := −〈y∗, x〉 is sub-invariant under the semigroup action G6.
Moreover, for x ∈ l2 and h ∈ H, if the components of x∗ ◦ 1lk are a subset of
{(hx)n, |n| ≤ N}, then ϕ(x) attains a minimum on GN (hx) at some xNh and
x∗ ◦ 1lk = xNh ◦ 1lk.

Letting k → −∞ and l → ∞ we see that xNh → x∗ as N → ∞. Now we
can show the following generalization of Proposition 20 holds:

Proposition 29 (Subgradients on Hilbert space). Let f : l2 7→ R∪{+∞} be a
convex lsc function invariant under the semigroup action H. Then y ∈ ∂f(x)
if and only if

y∗ ∈ ∂f(x∗) and 〈x, y〉 = 〈x∗, y∗〉.
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Proof. Let y ∈ ∂f(x). Then, for all z ∈ l2,

f(z)− 〈y∗, z〉 = f(hyz)− 〈hyy∗, hyz〉 (10)

= f(hyz)− 〈y, hyz〉
≥ f(x)− 〈y, x〉
= f(hyx)− 〈y∗, hyx〉.

Since f is invariant with respect to the action H, the minimum of f(hyx) −
〈y∗, hyx〉 is the same as that of the sub-invariant function−〈y∗, hyx〉 onGN (hyx)
and is xNhy . Thus, for all N ,

f(z)− 〈y∗, z〉 ≥ f(xNhy)− 〈y∗, xNhy〉.

Taking the limit as N →∞ we have

f(z)− 〈y∗, z〉 ≥ f(x∗)− 〈y∗, x∗〉,

or y∗ ∈ ∂f(x∗).
Setting z = x∗ in (10) we have f(x∗) − 〈y∗, x∗〉 ≥ f(x) − 〈y, x〉. Since

f(x∗) = f(x) we have 〈y∗, x∗〉 ≤ 〈y, x〉. But the opposite inequality always
holds, so we have 〈y∗, x∗〉 = 〈y, x〉.

On the other hand, if

y∗ ∈ ∂f(x∗) and 〈x, y〉 = 〈x∗, y∗〉,

then, for any z ∈ l2,

f(z)− 〈y, z〉 = f(hyz)− 〈y∗, hyz〉 (11)

≥ f(x∗)− 〈y∗, x∗〉
= f(x)− 〈y, x〉.

That is, y ∈ ∂f(x), as asserted. �

Remark 30. (a) Again the invariance property of the action function f (H-
invariance) is different from that of the subdifferential (G6-invariance, where
G6 is a proper subset of H). (b) The requirement of f being invariant with re-
spect to semigroup action H is stronger than rearrangement invariance. How-
ever, most commonly occurring spectral functions such as norms, the log bar-
rier, sup etc, do satisfy this requirement. (c) To check that ∗ is a (H, f)-
symmetrization using approximation from GN seems crucial. ♦
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3.4.2 Rearrangement of measurable functions

Similar ideas can also be implemented in continuous infinite dimensional spaces.
One motivation is the search for symmetric solutions to Laplace’s equation

∆u = f in Ω, u|∂Ω = 0. (12)

Solutions of equation (12) correspond to critical points of the action function

F (u) :=

∫
Ω

(
|∇u|2

2
+ fu

)
µ(dx), (13)

in the Sobolev space H1
0 (Ω).

Arguing directly that F attains its infimum is more than a bit technical.
Variational principles help here since F is bounded from below, and so as a
consequence of the Ekeland variational principle, there is a sequence un such
that

F ′(un)→ 0 and F (un)→ c = inf F. (14)

It turns out that F satisfies the Palais-Smale condition [36], i.e., convergence
of sequences in (14) implies that un has a convergent subsequence H1

0 (Ω) whose
limit attains the minimum of F and thus the solution to (12).

We turn to describing an appropriate concept of symmetry. Consider the
Lebesgue measure space (Rn,M, µn). We write µ when the dimension is clear.
A set transformation T :M 7→M is called a rearrangement if T is monotone:
A ⊂ B implies T (A) ⊂ T (B) and measure preserving : µ(T (A)) = µ(A) for all
A ∈ M. A rearrangement of sets induce a rearrangement of functions in the
class of symmetrizable functions S := {u : µ(u > inf u) <∞} by

Tu(x) := sup{c > inf u : x ∈ T ({u > c})}, ∀x ∈ Rn.

Clearly, all the rearrangements form a semigroup. Rearrangement is nonex-
pansive as established in Theorem 3, Corollary 1 of [20]:

Theorem 31. Let T be a rearrangement and let j be a strictly convex function
with j(0) = 0. Then∫

Rn
j(|Tu− Tv|) dµ ≤

∫
Rn
j(|u− v| )dµ, ∀u, v ∈ S, (15)

as soon as either of the integrals in (15) is finite.
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For j(t) := t2, this leads to ‖Tu− Tv‖2 ≤ ‖u− v‖2 and, as a consequence,
we obtain the following Hardy-Littlewood inequality∫

Rn
u v dµ ≤

∫
Rn
TuTv dµ, ∀u, v ∈ L2

+(Rn). (16)

Moreover, any measure preserving rearrangement, satisfies Cavalieri’s prin-
ciple [15, Eqn. (3.7)], for any continuous function f ,∫

RN
f(u)u(dµ) =

∫
RN

f(Tv) v(dµ). (17)

3.4.3 Steiner symmetrization

We now turn to Steiner symmetrization. Let Σ ⊂ Rn be a k-dimensional plane.
We say that S : M 7→ M is a (k, n)-Steiner symmetry induced by Σ if, for
every x ∈ Σ and M ∈M,

S(M) ∩ (x+ Σ⊥) := Br(x) ∩ (x+ Σ⊥)

with µk(Br(x)∩ (x+Σ⊥)) = µk(M ∩ (x+Σ⊥)). In particular, for k = 0 we get
as a special case the Schwarz symmetry or decreasing rearrangement symmetry
defined by S7(M) = Br(0) for r such that µ(Br(0)) = µ(M). Clearly, Schwarz
symmetry induces a rearrangement. The induced rearrangement for functions
u in S will be denoted by u∗ := S7(u).

We wish to show that when f and Ω are Schwarz symmetric so is the
solution u to equation (12). For this we need to find a semigroup G7 such that
the action function F is G7-sub-invariant and the Schwarz symmetry S7 := ∗
is a (G7, F )-symmetrization. It turns out again that we need to approximate
∗. A polarization first introduced by Wolontis for plane sets [50] and later
extended to functions by Baenstein and Taylor [7] suits this purpose.

Let X0 be a hyperplane in RN that does not contain the origin and so
dividing RN into two closed half-spaces. Denote by X+ the half-space contains
0 and X− the closed half-space complementary to X+. Let σ be the reflection
exchanging the two half-spaces. The polarization of a function f at X0 is

fσ(x) :=


max{f(x), f(σx)} x ∈ X+,

min{f(x), f(σx)} x ∈ X−,
f(x) x ∈ X0.

It turns out the semigroup G7 of all finite compositions of polarizations is
exactly what we need as shown in the following theorem summarizing relevant
results by Brock and Solynin [15] and in Schaftingen [41].
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Theorem 32 (Properties of polarization). Let G7 denote the semigroup all
finite compositions of polarizations. Then we have

(1) Hardy-Littlewood inequality:∫
fg ≤

∫
fσgσ, ∀σ ∈ G7. (18)

(2) Decreasing Lp norm:

‖f − g‖p ≥ ‖fσ − gσ‖p, p ≥ 1, ∀σ ∈ G7. (19)

(3) Universal strong approximation of Schwarz symmetrization in Lp: There
exists a sequence gk ∈ G7 such that, for any f ∈ LP , ‖gkf − f∗‖p → 0.

(4) Weak approximation of Schwarz symmetrization in W 1,p: Let f ∈W 1,p.
Then there exists a sequence gk ∈ G7 such that gkf → f∗ weakly in W 1,p.

(5) Characterization of ∗: f∗ = f if and only if fσ = f for all σ ∈ G7.

(6) Preservation of the norm: ‖fσ‖H1 = ‖f‖H1 for all σ ∈ G7.

Now we can establish the symmetry of a solution to equation (12) when its
data is symmetric.

Theorem 33 (Symmetric Laplace solution). Suppose that both f and Ω are
Schwarz symmetric then so is every solution u to equation (12).

Proof. Since the action function F defined in (13) is convex, critical points
of F are all minima. Let G7 be the semigroup of finite compositions of po-
larizations. Then properties (1) and (6) of the polarization implies that, the
function F defined in (13) is G7-sub-invariant when f = f∗. Property (3), (4)
and (5) of the polarization implies that the Schwarz symmetry ∗ is a (G7, F )-
symmetrization. Thus, if Ω = Ω∗ and f = f∗, then every solution of the PDE
(12) is Schwarz symmetric, that is u = u∗. �

Remark 34. (a) The use of approximate polarization is essential and non-
trivial. (b) Using symmetrization helped but did not make the work easy. (c)
Although we have a general framework, interesting concrete problems have to
be dealt with symmetry by symmetry. ♦

For instance, we do not know whether the framework is applicable to the
periodical solutions of planar motion of two bodies. Mathematically, this can
be formulated as minimization of the action functional

F (x) :=

∫ P

0

[
‖x′(t)‖2

2
+

1

‖x(t)‖

]
dt
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in the space of periodic orbits {x ∈ H1([0, P ], R2) : x(0) = x(P )} [24]. Clearly
F is rotation-invariant and Kepler ‘showed’ the solution is a circle. Thus, both
the action function and the solution are rotation-invariant.

Can one find a (semi)group G and a (G,F )-symmetrization to fit this
problem into the above framework? We return to this problem in Example
49 using a different approach.

3.4.4 The isoperimetric problem

The isoperimetric problem has a long history. Legend says that Queen Dido
of Carthage already knew that among all the shapes with the same perimeter
a disk has the maximum area.

Rigorously, we can formulate the result as

Per(A) ≥ Per(A∗),

where A ⊂ R2 and ‘Per’ denotes the perimeter. However, rigorous solution
is rather recent. Here we discuss Steiner’s solution using symmetry [46]. The
method may have been known earlier to Gergonne (see [23, 37]). Following
[16], we will assume the more recent knowledge from geometric measure theory
that (a) for any A ⊂ R2, Per(A) ≥ Per(coA) so that we need only consider
convex sets; and that (b) among all convex sets with equal area contained in
a fixed bounded region, a perimeter minimizing set exists.

Labeling the standard coordinate system of R2 by 0, we use θ to denote
the coordinate system by rotating 0 counter-clockwise θ degrees. Let A be a
bounded convex set in R2 and let uθ and lθ be the functions representing the
upper and lower boundaries of A in θ so that

A = {(x, y) : aθ ≤ x ≤ bθ, lθ(x) ≤ y ≤ uθ(x)}.

We define the θ-symmetrization: of A by

sθA := {(x, y) : aθ ≤ x ≤ bθ, (lθ(x)− uθ(x))/2 ≤ y ≤ (uθ(x)− lθ(x))/2},

and we define the semigroup G8 to be the collection of finite compositions of
θ-symmetrizations. It is not hard to check that the Schwarz symmetrization ∗
is then a G8-symmetrization.

Also, the semigroup action on convex sets preserves the area and reduces
the perimeter as is made precise in the following lemma.

Lemma 35. Let A be a bounded convex set in R2. Then, for any g ∈ G8,

Area(A) = Area(gA) and Per(A) ≥ Per(gA).

Moreover, the inequality is strict if gA 6= A.
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Proof. We need only show the conclusion for g = sθ. The property of
preserving the volume follows directly from computation:

Area(A) =

∫ bθ

aθ

(uθ(x)− lθ(x)) dx

=

∫ bθ

aθ

(
uθ(x)− lθ(x)

2
− lθ(x)− uθ(x)

2

)
dx = Area(sθA).

For the reduction of the perimeter we use the convexity of the function t 7→√
1 + t2 and the representation

Per(A) = (uθ(a)− lθ(a)) + (uθ(b)− lθ(b)) +

∫ bθ

aθ

(√
1 + u′2θ (x) +

√
1 + l′2θ (x)

)
dx

to finish the proof. �
We are now ready to prove

Theorem 36 (Isoperimetric inequality). If A ⊂ R2 is convex and has finite
perimeter, then

Per(A) ≥ Per(A∗).

Proof. We know that Per attains a minimum at B ∈ G8 ·A and Per is strictly
G8-sub-invariant by Lemma 35. Thus, by Proposition 4 we must have gB = B
for any g ∈ G8. This means B is a disc centered at (0, 0). Moreover, B ∈ G8 ·A
implies that Area(B)=Area(A). Thus, B = A∗ and the inequality follows. �

4 Saddle Points

So far all the examples are about extrema of the action function. But sad-
dle points are also important. We illustrate two methods. The first uses
Ambrosetti and Rabinowitz’s notion of a mountain pass [4], and the second
introduces Palais’ principle of symmetric criticality [35].

4.1 Mountain passes

The mountain pass theorem due to Ambrosetti and Rabinowitz is an impor-
tant tool in dealing with solutions of both ordinary and partial differential
equations that correspond to saddle points of certain action functions. One
can understand this theorem intuitively as its name suggests. Consider a basin
surrounded by mountains as illustrated in Figure 2.

To travel from a village in the basin to a city outside these surrounding
mountains one must follow a mountain pass crossing the mountain ridge. We
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Figure 2: A typical mountain pass.

can see that for each such mountain pass, there will be a point with the highest
elevation. Assuming appropriate compactness, among all the possible moun-
tain passes, there must be a pass with a lowest highest elevation—which it
seems clear will give us a saddle-type critical point of the terrain. Following
[4], we now make this intuitive description precise.

Definition 37 (Separation). Let X be a Banach space and let S be a closed
subset of X. We say that S separates two points a and b in X provided that a
and b belong to disjoint connected components of X\S.

We can now precisely state the mountain pass theorem [4].

Theorem 38 (Mountain pass). Let X be a Banach space, let a, b ∈ X and let
f : X 7→ R be a continuous and Gâteaux differentiable function. Define

c := inf
x∈Γ(a,b)

max
t∈[0,1]

f(x(t)),

where Γ(a, b) := {x ∈ C([0, 1], X) | x(0) = a, x(1) = b}.
Suppose that S is a closed subset of X such that S ⊂ {x ∈ X | f(x) ≥

c} and S separates a and b. Suppose also that f satisfies the Palais-Smale
condition of Section 3.4.2. Then there exists a point x̄ ∈ S such that f(x̄) = c
and f ′(x̄) = 0.

The Palais-Smale condition [36] ensures the existence of an exact critical
point. Without it, in general, one can only derive an approximate version
of the mountain pass theorem. Suppose in addition that f has a symmetric
property in the form of sub-invariance with respect to a semigroup action G
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on the space X. Then we can also expect the approximate critical point is
close to a symmetric point.

We present such an approximate version of the symmetric mountain pass
theorem below and then illustrate how to use it to derive the existence of
symmetric critical points. For this purpose we need the following definition.

Definition 39 (Compatible metric). Let (X, d) be a complete metric space
with a semigroup action G. We say that the metric d is compatible with G if,
for any x ∈ X and g ∈ G,

d(x, y) ≥ d(gx, gy).

Note that when G is a group, d compatible to G is equivalent to: for any
x ∈ X and g ∈ G, d(x, y) = d(gx, gy), that is to say, g is an isometry on X.

Theorem 40 (Approximate symmetric mountain pass). Let X be a Banach
space with a semigroup action G, and suppose the norm on X is compatible
with G. Let f : X 7→ IR be a continuous and Gâteaux differentiable G-sub-
invariant function. Suppose that a, b ∈ X are invariant under the semigroup
action G, that is, for any g ∈ G, a = ga and b = gb. Define

c := inf
x∈Γ(a,b)

max
t∈[0,1]

f(x(t)).

Suppose that S is a closed subset of X such that S ⊂ {x ∈ X | f(x) ≥ c} and
S separates a and b. Then, for any g ∈ G satisfying gS = S, there exist points
xε, zε ∈ X such that

(i) ‖xε − gzε‖ < 1
2ε,

(ii) c < f(xε) < c+ 5
4ε

2,

(iii) d(S;xε) <
3
2ε and

(iv) ‖f ′(xε)‖ < 3
2ε.

Proof. Since S separates a and b we can find two disjoint open sets U and
V such that X\S = U ∪ V and a ∈ U while b ∈ V . Fix ε so that 0 < ε <
1
2 min(1, d(S; a), d(S; b)). Let z ∈ Γ(a, b) satisfy

max{f(z(t)) | t ∈ [0, 1]} < c+
ε2

4
. (20)

Set h(x) := εmax(0, ε− d(S;x)), and define a function ϕ : Γ(a, b) 7→ IR by

ϕ(x) := max{f(x(t)) + h(x(t)) | t ∈ [0, 1]}.
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Note that for any x ∈ Γ(a, b) x([0, 1])∩S 6= ∅, since x(0) = a ∈ U , x(1) = b ∈ V
and X\S = U ∪ V . It follows that for any x ∈ Γ(a, b)

ϕ(x) ≥ max{f(x(t)) + h(x(t)) | t ∈ [0, 1] and x(t) ∈ S} ≥ c+ ε2

so that

inf
Γ(a,b)

ϕ ≥ c+ ε2. (21)

Moreover, we have

ϕ(z) ≤ max{f(z(t)) + h(z(t)) | t ∈ [0, 1]} ≤
(
c+

ε2

4

)
+ ε2 < inf

Γ(a,b)
ϕ+

ε2

4
. (22)

On the other hand, the mappings (gx)(t) = gx(t), for x ∈ Γ(a, b) together
with the identity mapping generate a semigroup on Γ(a, b) which we denote
G9. It is easy to see that ϕ is G9 sub-invariant. Applying the symmetric
Ekeland variational principle of Theorem 6 to ϕ on Γ(a, b) we can find a path
y ∈ Γ(a, b) such that

ϕ(y) ≤ ϕ(gz), (23)

‖y − gz‖ ≤ ε/2, (24)

and

ϕ(x) +
ε

2
‖x− y‖ ≥ ϕ(y) ∀x ∈ Γ(a, b). (25)

Now let M be the subset of [0, 1] consisting of all points where (f + h) ◦ y
attains its maximum on [0, 1]. We prove first that there exists t̄ ∈M such that
‖f ′(y(t̄))‖ ≤ 3

2ε.
Indeed, first note (25) shows that for any η ∈ C([0, 1];X) with η(0) =

η(1) = 0,

−ε
2
‖η‖ ≤ lim inf

s→0+

ϕ(y + sη)− ϕ(y)

s
.

Using the definition of the Gâteaux differential of f and the fact that h has
Lipschitz constant ε, it follows that the last inequality is dominated by

lim inf
s→0+

1

s

[
max
t∈[0,1]

((f + h)(y(t)) + s〈f ′(y(t)), η(t)〉)− max
t∈[0,1]

((f + h)(y(t))
]

+ ε‖η‖.

Hence

−3ε

2
‖η‖ ≤ lim inf

s→0+

m(k + sl)−m(k)

s
, (26)
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where k = (f + h) ◦ y, l = 〈f ′(y), η〉 and m is the continuous convex function
on C([0, 1];X) defined by m(x) := max{x(t) | t ∈ [0, 1]}.

Recall that the convex subdifferential of m has the following representation
[25] ∂m(x) = {µ | µ is a Radon probability measure supported in M(x)} where
M(x) := {t ∈ [0, 1] | x(t) = m(x)}. It follows from (26) and the ‘max-formula’
for the convex subdifferential (see e.g. [14, Theorem 4.2.7]) that

−3ε

2
‖η‖ ≤ lim inf

s→0+

m(k + sl)−m(k)

s
≤ max{〈l, µ〉 | µ ∈ ∂m(k)}

= max{
∫
〈f ′(y), η〉 dµ | µ ∈ ∂m(k)}.

By a standard minimax theorem (e.g., [5, Theorem 6.2.7]) we have

−3ε

2
= inf

η
max
µ

{∫
〈f ′(y), η〉 dµ

∣∣∣ µ ∈ ∂m(k), ‖η‖ ≤ 1, η(0) = η(1) = 0
}

= max
µ

inf
η

{∫
〈f ′(y), η〉 dµ

∣∣∣ µ ∈ ∂m(k), ‖η‖ ≤ 1, η(0) = η(1) = 0
}

= max
µ

{
−
∫
‖f ′(y)‖ dµ

∣∣∣ µ ∈ ∂m(k)
}

≤ −min
{
‖f ′(y(t))‖ | t ∈M(k)

}
.

Combining (20) and (21) we can verify that

M(k) ∩ {0, 1} = ∅. (27)

Therefore, there exists t̄ ∈M(k) = M such that ‖f ′(y(t̄))‖ ≤ 3ε/2. It remains
to show that points xε = y(t̄) and zε = z(t̄) satisfy (i), (ii) and (iii).

Clearly (i) follows directly from (24). For (ii) combine (21), (22) and (23)
to get

c+ ε2 ≤ inf
Γ(a,b)

ϕ ≤ f(y(t̄)) + h(y(t̄)) = ϕ(y) ≤ ϕ(z) ≤ c+
5ε2

4
.

Since 0 ≤ h ≤ ε2 we obtain c ≤ f(xε) ≤ c + 5ε2/4. For (iii) we combine
f(gz(t̄)) + h(gz(t̄)) ≥ ϕ(gz) ≥ ϕ(y) ≥ c + ε2 and (20) to conclude h(gz(t̄)) >
3ε2/4 > 0. This implies that d(S; gzε) = d(S; gz(t̄)) < ε. This combined with
(24) gives that d(S;xε) = d(S; y(t̄)) ≤ 3ε/2, and we are done. �

Example 41. Consider the function F (x, y) := x2 − y2. Define S10(x, y) =
(0, y) and define G10 to be the semigroup generated by S10 and the identity
mapping. Define the space of paths

Γ := {γ ∈ C([0, 1], R2) : γ(0) = a := (0, 1), γ(1) = b := (0,−1)}
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and set S = {(0, y) | y ∈ R}. We can check that

0 = inf
(x,y)(t)∈Γ

max
t∈[0,1]

F (x(t), y(t)),

and that S separates a = S10(a) and b = S10(b). Moreover, g = S10 maps Γ
to itself and gS = S.

Thus, applying Theorem 40, there exist sequences (xi, yi) and (0, zi) such
that ‖(xi, yi) − (0, zi)‖ → 0, F (xi, yi) → 0, and F ′(xi, yi) → 0. Taking limits
of this sequence of approximate critical points identifies (0, 0) as a symmetric
critical point for F . ♦

4.2 Symmetric solutions of a semilinear elliptic PDE

We now consider using the method of Section 4.1 to derive the existence of
Schwarz symmetric solutions for semilinear elliptic partial differential equa-
tions of the form

−∆x = F ′(x) y ∈ Ω,

x = 0 y ∈ ∂Ω.
(28)

Let X again be the Sobolev space H1
0 (Ω). Then solutions of (28) correspond

to critical points of the functional

f(x) :=
1

2
‖x‖2 −

∫
Ω
F (x(y)) dy.

Example 42. Consider the case when Ω = Ω∗ and F (x) = |x|p, where 2 <
p < 2∗ := (2N − 2)/(N − 2). Clearly, the Dirichlet problem (28) has the
trivial Schwarz (S7) symmetric solution x(y) = 0. We will show that there
also exits a nontrivial Schwarz symmetric solution by analyzing the related
action function defined on the Sobolev space H1

0 (Ω). We refer the readers to
Adams’ classical book [1] for properties of this Sobolev space. Since 2 < p <
2∗ := (2N − 2)/(N − 2), X = H1

0 (Ω) is compactly imbedded in Lp(Ω), i.e., the
imbedding X 7→ Lp(Ω) maps bounded closed subsets of X to compact subsets
of Lp(Ω). Thus, by the Sobolev inequality, f(x) ≥ r for some r > 0 on the
unit sphere SX of X. Clearly, f(0) = 0. Moreover, fixing x = x∗ 6= 0 we have,

f(tx) =
1

2
t2‖x‖2 − tp

∫
Ω
|x|p dy → −∞

as t→ +∞. Thus, there exists b = tx = b∗ such that f(b) ≤ 0.

It is tempting to apply the approximate symmetric mountain pass Theorem
40 with g = ∗ the Schwarz symmetrization. This does not work as it is known
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[2] that, for a continuous path u(t) ∈ Γ(a, b), (u(t))∗ may not be continuous.
Using the universal approximation property of Theorem 32, van Schaftingen
has provided a delicate version of the approximate symmetric mountain pass
lemma that does work [42]. The following is a simplified version.

Theorem 43 (Approximate symmetric minimax). Let X := H1
0 (Ω) where

Ω = Ω∗. Let f : X 7→ IR be a continuous and Gâteaux differentiable G7-sub-
invariant function. Suppose that a∗, b∗ ∈ X. Define

c := inf
x∈Γ(a∗,b∗)

max
t∈[0,1]

f(x(t)).

Suppose that S is a closed subset of X such that S ⊂ {x ∈ X | f(x) ≥ c} and
S separates a∗ and b∗. Then, there exist points xε, z

∗
ε ∈ X such that

(i) ‖xε − z∗ε‖L2(Ω) < ε,

(ii) c < f(xε) < c+ 5
4ε

2,

(iii) d(S;xε) <
3
2ε and

(iv) ‖f ′(xε)‖ < 3
2ε.

Sketch of the proof. We need only to modify the proof of Theorem 40
slightly. For the pass z(t) defined in the proof of Theorem 40, define z̃(t) ∈
Γ(a∗, b∗) ∩ G7 · z(t) such that ‖z̃(t) − (z(t))∗‖L2(Ω) < ε/2 by [42, Proposition
3.1]. Then use z̃(t) to replace gz(t) in the proof of Theorem 40. �

We now continue our discussion of Example 42. For a∗ = 0 and b∗ = tx∗,
applying Theorem 43 we can find sequences xk, zk such that ‖xk − z∗k‖L2 → 0,
limk→∞ f(xk) ≥ r and f ′(xk)→ 0. It is well known that f satisfies the Palais–
Smith condition (see e.g. [14, p.279]). Thus, without loss of generality we may
assume xk converges to x̄ in H1

0 . It follows that z∗k converges to x̄ in L2, and
so x̄ = x̄∗ is a Schwarz symmetric critical point of f . ♦

Remark 44. The symmetric minimax theorem in [42] is more general and
also applies to several other symmetrizations that can be approximated by
polarizations. Squassina [45] proposed related versions of variational principles
that makes the proof of the above symmetric minimax theorem more efficient
besides various other applications. ♦

Remark 45. We note that symmetric mountain pass theorems have been used
in work [4, 27] among others in a different sense where symmetry of the action
function is used to derive the existence of infinitely many (not necessarily
symmetric) critical points. ♦
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4.3 Principle of symmetric criticality

Palais [35] proposed a powerful principle of symmetric criticality. Here we
provide a simplified version to illustrate the idea:

Theorem 46 (Principle of symmetric criticality). Let X be a Hilbert space
with an isometric linear group action G and let F ∈ C1(X) be G-invariant.
Denote

Σ := {x ∈ X : gx = x, ∀g ∈ G}.

Then any critical point of F |Σ is also a critical point for F .

Proof. For any g ∈ G, and a vector v in the tangent space of Σ at x ∈ Σ:
TΣ|x, F ◦ g = F implies that

dFx(v) = dFgx(g(v)).

Since g is an isometry

〈g∇F (x), g(v)〉 = 〈∇F (x), v〉 = dFx(v).

On the other hand gx = x implies

dFgx(g(v)) = 〈∇F (gx), g(v)〉 = 〈∇F (x), g(v)〉.

Thus,
〈g∇F (x), g(v)〉 = 〈∇F (x), g(v)〉.

or
g∇F (x) = ∇F (x).

It follows that ∇F (x) ∈ TΣ|x and x is a critical point of F . �

Example 47. Consider the function F (x, y) := x2 − y2. The reflection

r(x, y) := (−x, y),

is a linear isometry with the invariant set

Σ := {(0, y) : y ∈ R}.

We can see that F (x, y) := x2 − y2 is invariant with respect to r and (0, 0)
is a critical point of F (x, y)|Σ = y2. Hence (0, 0) is a critical point of F by
Theorem 46. ♦
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Figure 3: e0.2|x|.

Remark 48. The behavior of g(x, y) = |x|− |y| is similar to that of F (x, y) =
x2−y2. The Palais principle of symmetric criticality does not apply to g due to
the lack of smoothness. This restriction seems to be largely a technical issue.
In fact, the Moreau envelop (see [39, 40]) of the absolute function

eλ|x| :=


x− λ

2 x > λ
x2

2λ x ∈ [−λ, λ]

−x− λ
2 x < −λ

is a smooth function and approximates |x| as λ→ 0 (see Fig. 3).
Thus, gλ(x, y) := eλ|x| − eλ|y| is a family of smooth functions that approx-

imates g(x, y). Moreover, we can check that gλ inherits the symmetry of g.
Thus, we can apply the Palais principle of symmetric criticality to gλ and then
taking limits as λ → 0 to conclude that (0, 0) is a generalized critical point
of g in the sense that 0 belongs to the derivative container of Warga [48] at
(0, 0).

Whether such a scheme can be systematically applied to, say, the class of
difference convex (or DC) functions [6] is an interesting question. ♦

Example 49 (Two body problem revisited). Let us revisit the two body
problem in which we wish to minimize the action function

F (x) :=

∫ P

0

[
‖x′(t)‖2

2
+

1

‖x(t)‖

]
dt

in the space of periodic orbits {x ∈ H1([0, P ], R2) : x(0) = x(P )}. We noted
before that our invariance tools did not comport well. Let

G := {rotations around the origin}.
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Then G is a group of isometries. It is easy to check that the Lagrange action
function F is G-invariant. Thus, the Principle of symmetric criticality applies
to the two body problem. In other words to find the critical point of F we
need only to look for critical point of F (x) on

Σ := {x ∈ H1([0, P ], R2) : x(0) = x(P ), gx = x, g ∈ G}

which is the set of all P -periodic H1 cyclic trajectories. Thus, x ∈ Σ has the
form

x(t) := a

(
cos

2πt

P
, sin

2πt

P

)
,

where a is a parameter. Minimizing

F (a) = F (x) =

∫ P

0

[
(2πa)2

2P 2
+

1

a

]
dt

yields a = (P/2π)2/3. Hence the orbit is

x(t) =

(
P

2π

) 2
3
(

cos
2πt

P
, sin

2πt

P

)
,

as is well known [24]. ♦

5 Conclusion

Variational problems involving symmetry present new challenges that cannot
be adequately addressed by traditional views of symmetry as invariance with
respect to group actions. We have proposed a framework that expands the
description of symmetry to include sub-invariance with respect to semigroup
actions. As illustrated by the many examples discussed in this paper, the
framework in Section 2 provides alternative perspectives on diverse variational
problems involving symmetry in both finite and infinite dimensional spaces.

This exercise show us that the spirit of Erlangen program is very much ap-
plicable to variational problems involving symmetry: the key in understanding
such a problem is to understand the underlying semigroup. Our effort here is
only a first step in this direction. It certainly invites more questions then we
have resolved. A few directly related to our discussion here are listed below as
examples of challenges ahead.

1. The symmetric variational principles discussed in Section 2.3 represent
only one possible way of extending variational principles to deal with
problems involving symmetry. The emphasis in Section 2.3 is to make the
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symmetric variational principles simple and general so that they have the
possibility of application to many different situations. The downside is
the loss of precision in dealing with any given problems. Different forms of
symmetric variational principles were discussed in [45], motivated by and
specifically designed for the polarization approximation of the Schwarz
symmetry. There are of course many other possibilities. Where is the
right point of compromise? Or do we intrinsically need many different
types of symmetric variational principle?

2. It was shown in Example 49 that, using the Palais principle of symmetric
criticality [35], the two body problem has a periodic solution. However,
it is also clear that this periodic solution is, in fact, a minimum of the
action function. It is natural to ask whether it is possible to use the
framework in Section 2 to deal with it.

3. Many examples in Sections 3.1 and 3.2 show the close relationship be-
tween the symmetric variational principles and inequalities. Much can
be done in this direction. Adapting the proof of the Muirhead inequal-
ity of Theorem 13 for other functions with symmetry is an interesting
prospect. For example, whether this method can be helpful in dealing
with permanents and the permanent inequality and extensions [18, 32] is
a particularly interest question to explore.

4. Likewise we would like to see a nonsmooth extension of Palais principle
of symmetric criticality, at least to continuous difference convex functions
as discussed in Remark 47.

These are only a few of the many possible interesting directions for further
research. We hope that they will bring about the attention of researchers to
this interesting area and stimulate further research in this direction.
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