
Introduction
Motivation

Framework and tools
Eight Applications or Examples

Variational Methods in the Presence of Symmetry
Ongoing research with Jim Zhu (WMU)

Optimization of Planet Earth, AustMS 2013, Sydney

Jon Borwein and Qiji Zhu

University of Newcastle

and Western Michigan University

February 7, 2014

Jon Borwein and Qiji Zhu Variational Methods in the Presence of Symmetry



Introduction
Motivation

Framework and tools
Eight Applications or Examples

Abstract

This talk and associated paper [1] aim to survey and to provide a
unified framework to connect a diverse group of results, currently
scattered in the literature, that can be aided by applying
variational methods to problems involving symmetry.

Variational methods refer to mathematical treatment by
construction of an appropriate action function whose
critical points—or saddle points—correspond to or
contain the desired solutions.

How to capture and exploit symmetry is the theme of the talk

[1] JM Borwein and Qiji Zhu, “Variational methods in the presence
of symmetry.” Advances in Nonlinear Analysis. Online June 2013.
DOI: http://www.degruyter.com/view/j/anona.
ahead-of-print/anona-2013-1001/anona-2013-1001.xml
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Symmetry and invariance
Variational problems involving symmetry

Symmetry in our setting

Symmetry: is invariance with respect to some appropriate group or
more usually a semigroup action

Exploiting symmetry – as elsewhere – often simplifies
discovering and establishing solutions

Jim Qiji Zhu and Noah Erasmus Borwein
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Symmetry and invariance
Variational problems involving symmetry

What’s special when a problem involves symmetry?

Variational methods: Finding solutions by modeling them as
(approximate) critical points of an action function (potential).

In dealing with variational problems involving symmetry:

• The invariance of the action function may not be preserved in
the process of symmetrization

• The invariance of the action function maybe different from
what we need for critical points

• The process of symmetrization may not be compatible with
the geometry of the underlying space

• We may only be able to get approximate symmetry

Our goal is to summarize, in a systematic way, various methods for
dealing with variational problems with symmetry
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Invariance

Let G be a semigroup acting on a complete metric space (X,d)

Definition: Invariance of a function

We say a lsc function f : X→ R∪{+∞}:
is G-subinvariant if

f (gx)≤ f (x) ∀g ∈ G,x ∈ X,

is G-superinvariant if

f (gx)≥ f (x) ∀g ∈ G,x ∈ X,

and is G-invariant if f is both sub and super invariant.

When G is a group these are all the same

Jon Borwein and Qiji Zhu Variational Methods in the Presence of Symmetry
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Symmetrization

Definition: S : X→ X is a (G, f )-symmetrization if

(i) for any g ∈ G,x ∈ X, S(gx) = gS(x) = S(x);

(ii) for any x ∈ X, S2(x) = S(x);

(iii) for any x ∈ X, f (S(x))≤ f (x)

If S(x) ∈ cl (G · x) then (iii) always holds but:

1. verifying that S(x) ∈ cl (G · x) is very hard, if even possible

2. usually, verifying (iii) is the key and is difficult

Jon Borwein and Qiji Zhu Variational Methods in the Presence of Symmetry
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A simple extremal principle involving symmetry

The following idea captures the essence of variational methods in
the presence of symmetry

Simple Extremal Principle (SEP)

Let f : X→ R∪{+∞} be a G-subinvariant function and S be a
(G, f )-symmetrization. Then

S(argmin(f ))⊆ argmin(f ).

Proof of SEP. One can not properly minorize the minimum! QED

Jon Borwein and Qiji Zhu Variational Methods in the Presence of Symmetry
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Compatible metrics

Q. What if the existence of the extremum is not guaranteed?

A. We need symmetric versions of “variational principles”. This
requires a compatible metric.

Definition: Metric d is (G,S)-compatible if

(i) For any x ∈ X, g ∈ G, d(x,y)≥ d(gx,gy); and

(ii) For any x,y ∈ X, d(x,S(y))≥ d(S(x),S(y)).

When G is a group, (i) is equivalent to, for any x ∈ X and g ∈ G,

d(x,y) = d(gx,gy),

i.e. g is an isometry.
Q. How can we build equivalent compatible metrics?

Jon Borwein and Qiji Zhu Variational Methods in the Presence of Symmetry
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Variational principles in the presence of symmetry

Symmetric Variational Principle (SymVP)

Let (X,d) be a complete metric space. Let f : X→ R∪{+∞} be an
G-invariant lsc function bounded below and let S be a
(G, f )-symmetrization such that d is (G,S)-compatible.

Then, for any ε,λ > 0 there exist y,z such that

(i) f (S(z))< infX f (x)+ ε;

(ii) d(S(y),S(z))≤ λ ;

(iii) f (S(y))+(ε/λ )d(S(y),S(z))≤ f (S(z)); and

(iv) f (x)+(ε/λ )d(x,S(y))≥ f (S(y)).

For G = {e} we get classic Ekeland variational principle (1972)

Jon Borwein and Qiji Zhu Variational Methods in the Presence of Symmetry
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Variational Principle in Pictures

Producing a (local) non-dominated point
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Proof of SymVP

Since f is invariant we can find S(z) satisfying (i), that is:

f (S(z))< inf
X

f (x)+ ε.

Apply Ekeland’s variational principle to find y satisfying

(iia) d(y,S(z))≤ λ ;

(iiia) f (y)+(ε/λ )d(y,S(z))≤ f (S(z)); and

(iva) f (x)+(ε/λ )d(x,y)≥ f (y), ∀x ∈ X.

Finally, we check that S(y) does what we need. QED

• A Symmetric Smooth Variational Principle can be similarly
established

Jon Borwein and Qiji Zhu Variational Methods in the Presence of Symmetry
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Other Symmetric Variational Principles

Ekeland VP and Smooth VP

Two other forms of SymVP use approximation of Schwarz
symmetry via polarization (discussed below)

1 Squassina M., “Symmetry in variational principles and
applications”, Journal of London Math Soc. 2012

2 Van Schaftingen J., “Universal approximation of symmetrization by
polarization”, Proc. AMS, 2005

The principles are simple – given the right definitions – but one
must find G,S and show compatibility. We will give illustrative
examples & applications as time permits (many more in paper).

Jon Borwein and Qiji Zhu Variational Methods in the Presence of Symmetry
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Invariance of action function not preserved by symmetrization
Symmetry mismatching
Part II: Approximate symmetrization and the Laplacian
Saddle points: Symmetric Criticality and the Mountain Pass

Proof of AG inequality by using symmetry

Consider

min f (x) :=−
N

∑
n=1

log(xn)+ ιC(x),

where C := {x : 〈x,~1〉= K,x≥ 0}, while vector ~1 has all
components 1, and ιC(x) = 0,x ∈ C and +∞ otherwise

• Then f is permutation (P(N)) invariant

• S(x) = x̄~1 is a (P(N), f )-symmetrization1

1 By SEP f has a minimum of the form S(x) = x̄~1
2 S(x) ∈ C forces x̄ = K/N and min=−N log(K/N)
3 This “easily” leads to the AG inequality

Note that S(x) 6∈ cl P(N) · x unless x = a~1

1x̄ is the average of components of x
Jon Borwein and Qiji Zhu Variational Methods in the Presence of Symmetry
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3 This “easily” leads to the AG inequality

Note that S(x) 6∈ cl P(N) · x unless x = a~1

1x̄ is the average of components of x
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Proof of Relative entropy inequality (majorization)

Consider

min f (p,q) :=−
N

∑
n=1

pn log(pn/qn)+ ιC(p,q),

where C := {(p,q) : 〈p,~1〉= 〈q,~1〉= 1,(p,q)≥ 0}

• Then f is P(N)-invariant (all permutations) with action
g(p,q) := (gp,gq),g ∈ P(N)

• S(p,q) = (p̄~1, q̄~1) is a (G, f )-symmetrization

1 Again, f has a minimum S(p,q) = (p̄~1, q̄~1)
2 S(x) ∈ C forces S(p,q) = (~1,~1) and minimum is 0 as needed

Note that, in general, f (p,q)> f (S(p,q))
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Example 3: Subdifferentials of spectral functions (RN)

The subdifferential of a convex function f on RN is

∂ f (x) = {y ∈ RN : x ∈ argmin(f − y)}

Subdifferential of Spectral Functions

(Lewis 1999) Let f : RN → R∪{+∞} be a convex P(N)-invariant
function. Then

y ∈ ∂ f (x)

iff
y↓ ∈ ∂ f (x↓) and 〈x,y〉= 〈x↓,y↓〉,

where x↓ is a decreasing rearrangement of the components

Although f is P(N)-invariant its subdifferential y is usually not
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Example 3: Key steps of Proof

• uij – switch components xi,xj of x if (xi− xj)(i− j)< 0
• G↓ ⊂ P(N) – the semigroup of finite compositions of uij

• Then f is G↓-invariant and

• S(x) = x↓ is a (G, f )-symmetrization

1 By the Von Neumann-Theobald inequality2 f − y↓ is
G↓-subinvariant

2 Choose gy ∈ P(N) such that y = gyy↓

3 Then h(z) := f (z)−〈y↓,z〉= f (gyz)−〈y,gyz〉 attains its
minimum at z = g−1

y x and, therefore, also at z↓

4 We can verify that z↓ = (g−1
y x)↓ = x↓

5 That is: y↓ ∈ ∂ f (x↓) QED

2〈A,B〉 ≤ 〈λ (A),λ (B)〉 for symmetric matrices.
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Example 4: Spectral Functions (l2)

Notation. For functions of (symmetric) nuclear equivalently
Hilbert-Schmidt operators we use:

1 l2 := {x = ∑
∞
n=−∞ xnen : ∑

∞
n=−∞ x2

n < ∞}

2 Right shift RSx := ∑
∞
n=−∞ xn−1en

3 Left shift LSx := ∑
∞
n=−∞ xn+1en

4 Inner product 〈x,y〉 := ∑
∞
n=−∞ xnyn

5 Hamilton product x◦ y := ∑
∞
n=−∞ xnynen

6 Unit vector for k < l (±∞ allowed) 1l
k := ∑

l
n=k en
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Example 4: Symmetry of Spectral Subdifferential

Define S(x) = x∗ to be a rearrangement such that

1 nonnegative components decrease with nonnegative indices,

2 negative components increase as negative indices increase.

Example. if

x = (......,−2,3,−1,−5,−4,7,4,5,2,0,0, ......)

then
x∗ = (......,0,−1,−2,−4,−5,7,5,4,3,2,0, ......)
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Example of the ∗-rearrangement in l2

Before and after
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Symmetry of Spectral Subdifferential

Spectral Subdifferential (Borwein, Lewis, Read & Zhu 2000)

Let f : l2→ R∪{+∞} be a convex rearrangement invariant
function. Then

y ∈ ∂ f (x)

iff
y∗ ∈ ∂ f (x∗) and 〈x,y〉= 〈x∗,y∗〉.

Can be done for c0 and all Shatten p-class operators (1≤ p < ∞)
[Conjugation: c0→ `1→ `∞ and Cs(H)→ B1(H)→ Bs(H)]
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Example 4: Switch and Move operators

Goal. define a semigroup G for which ∗ is the natural symmetry

We need two basic operations: switch snm and move mn

1 The switch operator switches components xn and xm if
n < m < 0 or 0≤ n < m – to fit the order of ∗;

2 The move operator moves all positive components to the right
of n = 0 (inclusive) and negative to the left of n =−1.
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Visualizing Switch and Move

Before and after
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Definition of Switch and Move operators

Switch Operator

snmx := x− xnen− xmem +max(xn,xm)en +min(xn,xm)em

Move Operator

mnx :=


x◦1k−1

−∞ − xnen + xnek +RS(x◦1∞
k ) n < 0,xn > 0

x◦1∞
l+1− xnen + xnel +LS(x◦1l

−∞) n≥ 0,xn < 0
x otherwise,

where k := min{m≥ 0 : supi≥m |xi|< xn}
and l := max{m < 0 : supi≤m |xi|<−xn}
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Example 4: Switch and Move Inequalities

Switch and Move Inequalities. Let x,y ∈ l2. Then

〈y∗,x〉 ≤ 〈y∗,snmx〉,

and
〈y∗,x〉 ≤ 〈y∗,mnx〉.
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Example 4: The missing semigroup

Definition: The semigroup H

Define H to be the semigroup of self-mappings on l2 which (i) add
or delete an arbitrary number of zeros and (ii) permute components

Though H is not a group, for y ∈ l2 there exists hy,hy ∈ H with

hyy∗ = y and y∗ = hyy.

Moreover, G⊆ H.

Coxeter’s 1927 kaleidoscope
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Definition: The semigroup H

Define H to be the semigroup of self-mappings on l2 which (i) add
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Example 4: Proof that ∗ is an (H, f )-symmetrization

1 Represent G := ∪∞
N=1GN where

GN := { finite compositions of snm,mn ∀|n|, |m| ≤ N }

2 By Switch and Move Ineq. ϕ(x) =−〈y∗,x〉 is G-subinvariant

3 For x ∈ l2,h ∈ H, if components of x∗ ◦1l
k are a subset of

{(hx)n, |n| ≤ N}, then ϕ(x) attains min on GN(hx) at some
element xN

h (key approximation)

4 We can verify x∗ ◦1l
k = xN

h ◦1l
k

5 As k→−∞, l→ ∞ we see xN
h → x∗ as N→ ∞ QED
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Example 4: Proof of Symmetry of Subdifferential

Let y ∈ ∂ f (x). Then, for all z ∈ l2,

f (z)−〈y∗,z〉 = f (hyz)−〈hyy∗,hyz〉
= f (hyz)−〈y,hyz〉 ≥ f (x)−〈y,x〉
= f (hyx)−〈y∗,hyx〉.

Since f is H-invariant and ∗ is an (H, f )-symmetrization,

f (z)−〈y∗,z〉 ≥ f (x∗)−〈y∗,x∗〉,

or y∗ ∈ ∂ f (x∗). QED
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Example 5: Laplace equation

Laplace Equation

The solutions of

∆u = f in Ω, u|∂Ω = 0 (1)

correspond to critical points of

F(u) :=
∫

Ω

(
|∇u|2

2
+ fu

)
µ(dx), (2)

in the Sobolev space H1
0(Ω).
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Example 5: Schwarz symmetry

We seek symmetric solution of Laplace’s equation as follows:

Schwarz symmetrization (Decreasing rearrangement)

The symmetrization ∗ on L2(Rn,M ,µ)+ for a measurable M ∈M
is

M∗ = Br(0) where µ(M) = µ(Br(0))

and for any u ∈ L2 we then define u∗ by

(u∗ > c) = (u > c)∗.

Does Schwarz symmetry of f and Ω ensure that of the solution?

Jakob Steiner (1796–1863) ‘proved’ isoperimetric inequality in 1836 by

symmetrization wrt line. Hermann Schwarz (1843-1921) first considered

hyperplanes.
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|x−1| and its Schwarz symmetrization on [−2,2]

|x−1| with blue symmetrization
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Example 5: Polarization-building semigroup G
1 Let 0 6∈ H0 be a hyperplane dividing RN into two closed

half-spaces 0 ∈ H+ and its complement H−
2 Let σ be the reflection exchanging the two half-spaces

Definition: The polarization of f at H0

f σ (x) :=


max{f (x), f (σx)} x ∈ H+,

min{f (x), f (σx)} x ∈ H−,
f (x) x ∈ H0.

• We next show a symmetrization of a function followed by a
sequence of polarizations of the function
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1 Let 0 6∈ H0 be a hyperplane dividing RN into two closed

half-spaces 0 ∈ H+ and its complement H−
2 Let σ be the reflection exchanging the two half-spaces

Definition: The polarization of f at H0

f σ (x) :=


max{f (x), f (σx)} x ∈ H+,
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f (x) x ∈ H0.
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Picture of |x−1| on [−2,2]

|x−1| with blue symmetrization
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Polarization of |x−1| on [−2,2]

H0 = (x =−0.3)
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Polarization of |x−1| on [−2,2]

H0 = (x = 0.4)
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Polarization of |x−1| on [−2,2]

H0 = (x = 0.2)
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Polarization of |x−1| on [−2,2]

H0 = (x =−0.1)
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Example 5: Symmetrization Movie

The sequence of polarizations revisited
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Properties of polarization: Brock and Solynin (1999)
Let G be semigroup of finite compositions of polarizations. Then

1 Hardy-Littlewood inequality:∫
fg≤

∫
f σ gσ ∀σ ∈ G

2 Decreasing L2 norm:

‖f −g‖2 ≥ ‖f σ −gσ‖2 ∀σ ∈ G

3 Strong approximation of Schwarz symmetrization in L2: there
exists a sequence gk ∈ G · f such that ‖gk− f ∗‖2→ 0

4 Weak approximation of Schwarz symmetrization in H1: the
sequence gk may be chosen so that also gk ⇁ f ∗ weakly3 in H1

5 Characterization of ∗: f ∗ = f iff gf = f for all g ∈ G
6 Preservation of the norm: ‖f σ‖H1 = ‖f‖H1

3
4 illustrates the curse of Sobolev. It uses weak integration by parts.
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Example 5: Putting everything together for the Laplacian

Recall

F(u) :=
∫

Ω

(
|∇u|2

2
+ fu

)
µ(dx)

Then

1 F is convex in H1 and, therefore, weakly lower continuous,

2 when f ∗ = f , F is G-subinvariant, and

3 ∗ is a (G,F)-symmetrization.

Thus, F has a symmetric minimum u = u∗. QED

• The use of approximate polarization is essential and nontrivial

• Using symmetry helped but did not make the work easy
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Example 5: Putting everything together for the Laplacian

Recall

F(u) :=
∫
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|∇u|2

2
+ fu
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µ(dx)

Then

1 F is convex in H1 and, therefore, weakly lower continuous,

2 when f ∗ = f , F is G-subinvariant, and

3 ∗ is a (G,F)-symmetrization.

Thus, F has a symmetric minimum u = u∗. QED

• The use of approximate polarization is essential and nontrivial

• Using symmetry helped but did not make the work easy
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Example 6: Planar motion

The planar motion of two bodies

Mathematical formulation: minimize the action functional

F(x) :=
∫ P

0

[
‖x′(t)‖2

2
+

1
‖x(t)‖

]
dt

in space of periodic orbits {x ∈ H1([0,P],R2) : x(0) = x(P)}

• Clearly F is rotation invariant

• Kepler first ‘showed’ the solution is a circle

• Thus, both action function and solution are rotation invariant
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The planar motion of two bodies

Mathematical formulation: minimize the action functional
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2
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dt

in space of periodic orbits {x ∈ H1([0,P],R2) : x(0) = x(P)}

• Clearly F is rotation invariant

• Kepler first ‘showed’ the solution is a circle
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Example 6: Planar motion

Open Question: Can we find a (semi)group G and a (G,F)-
symmetrization to fit this problem into the above framework?

Two bodies with similar mass orbiting
around a common barycentre in elliptic orbits
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Example 6: Planar motion

Open Question: Can we find a (semi)group G and a (G,F)-
symmetrization to fit this problem into the above framework?

Two bodies with similar mass orbiting
around a common barycentre in elliptic orbits
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Example 6: Planar motion

Open Question: Can we find a (semi)group G and a (G,F)-
symmetrization to fit this problem into the above framework?

Two bodies with similar mass orbiting
around a common barycentre in elliptic orbits
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Example 7: Simple saddle points

Simple saddle point behavior

The function F(x,y) := x2− y2 is rather typical:

• F has a saddle point at (0,0)
• F is reflection symmetric with respect to both x and y axis

• F has no local extremum, and is unbounded

We will use F to illustrate two different ideas:

1 Palais principle of symmetric criticality; and

2 Ambrosetti and Rabinowitz mountain pass method — which
needs SymVP.

Jon Borwein and Qiji Zhu Variational Methods in the Presence of Symmetry



Introduction
Motivation

Framework and tools
Eight Applications or Examples

Invariance of action function not preserved by symmetrization
Symmetry mismatching
Part II: Approximate symmetrization and the Laplacian
Saddle points: Symmetric Criticality and the Mountain Pass

Example 7: Simple saddle points
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We will use F to illustrate two different ideas:
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Palais principle of symmetric criticality

Here is a simplified but effective version to illustrate the idea:

Principle of Symmetric Criticality (PSC)

Let X be a Hilbert space with an isometric linear group action G
and let F ∈ C1(X) be G-invariant.
Denote

Σ := {x ∈ X : gx = x, ∀g ∈ G}.

Then any critical point of F|Σ is also a critical point for F.

• Note that Σ is a subspace and, therefore, coincides with TΣ|x.
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Let X be a Hilbert space with an isometric linear group action G
and let F ∈ C1(X) be G-invariant.
Denote

Σ := {x ∈ X : gx = x, ∀g ∈ G}.

Then any critical point of F|Σ is also a critical point for F.

• Note that Σ is a subspace and, therefore, coincides with TΣ|x.
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Proof of Principle of Symmetric Criticality

For any g ∈ G, v ∈ X and x ∈ Σ, F ◦g = F implies that
dFx(v) = dFgx(g(v)). Since g is an isometry

〈g∇F(x),g(v)〉= 〈∇F(x),v〉= dFx(v).

On the other hand gx = x implies

dFgx(g(v)) = 〈∇F(gx),g(v)〉= 〈∇F(x),g(v)〉.

Thus, for all v ∈ X we have 〈g∇F(x),g(v)〉= 〈∇F(x),g(v)〉 and so

g∇F(x) = ∇F(x).

It follows that ∇F(x) ∈ Σ. Hence ∇F(x) ∈ TΣ|x. Thus, if x is a
critical point of F|Σ – namely ∇F(x) restricted to TΣ|x is 0 – then

∇F(x) ∈ Σ
⊥∩Σ = {0}

as claimed. QED
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Example 7: Applying Palais principle to x2− y2

• Consider the reflection

r(x,y) := (−x,y),

which is a linear isometry

• The invariant set of r is

Σ = {(0,y) : y ∈ R}

1 F(x,y) := x2− y2 is invariant with respect to r

2 (0,0) is a critical point of F(x,y)|Σ = y2

3 Hence (0,0) is a critical point of F QED
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Example 6: PSC and two body problem revisited

• G := rotations around the origin is a group of isometries

• The Lagrange action function

F(x) :=
∫ P

0

[
‖x′(t)‖2

2
+

1
‖x(t)‖

]
dt

is G-invariant

• Hence, Principle of Symmetric Criticality applies to 2-body
problem

• Thus, we need only look for a critical point of F(x) on

Σ := {x ∈ H1([0,P],R2) : x(0) = x(P),gx = x}

– the set of all P-periodic H1 cyclic trajectories
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Nonsmooth Saddle Points

By mollification or regularization, we can relax somewhat the
smoothness requirement in the Principle of Symmetric Criticality
so that it can be applied to, say, the nonsmooth critical point of

F(x,y) = |x|− |y|
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The Mountain Pass idea

Figure : A typical mountain pass
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Example 7: Mountain Pass method for saddle points

We now illustrate the use the Mountain pass lemma to deal with
the saddle point of F(x,y) := x2− y2

• Define

Γ := {γ ∈ C([0,1],R2) : γ(0) = (0,1),γ(1) = (0,−1)}

and
F̂(γ) := max

t∈[0,1]
F(γ(t))

• Define reflection r̂ on Γ by (r̂γ)(t) := r(γ(t))
• Then F̂ is r̂-subinvariant and bounded below by 0

However, we now face an infinite dimensional problem
The lack of compactness requires use of Symmetric VP
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Example 7: Use of SymVP

1 Apply SymVP to F̂ to ensure a symmetric approximate
minimum

2 Use the subdifferential formula for the max function to get an
approximate critical point for F

3 Then take limits to show zero is a critical point for F

• It is silly to use such heavy artillery (rather than PSC) for this
simple problem

• The point is the same method works for many other problems
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Example 8: Saddle points of quasi-linear Laplace equations

For a(x)≤ c < 0 and 2 < p < 2∗ = 2N/(N−2), consider

∆u = a(x)sgn(u) |u|p−1 in Ω, u|∂Ω = 0.

Then solution corresponds to a critical point of

F(u) :=
∫

Ω

(
|∇u|2

2
+a|u|p

)
µ(dx),

in the Sobolev space H1
0(Ω).

It turns out F has a nontrivial saddle point. QED

• The celebrated Ambrosetti and Rabinowitz Mountain Pass
Lemma was motivated by just these kinds of problems. We
give symmetric versions in our paper.
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Conclusion

• Variational problems with symmetric action functions often
have symmetric solutions

1 Symmetric variational principles are useful tools

2 Using a natural symmetry is often helpful but does not ensure
the work is easy

3 Additional problem specific methods are often necessary

• Many more examples and case studies are needed

THANK YOU

Jon Borwein and Qiji Zhu Variational Methods in the Presence of Symmetry



Introduction
Motivation

Framework and tools
Eight Applications or Examples

Invariance of action function not preserved by symmetrization
Symmetry mismatching
Part II: Approximate symmetrization and the Laplacian
Saddle points: Symmetric Criticality and the Mountain Pass

Conclusion

• Variational problems with symmetric action functions often
have symmetric solutions

1 Symmetric variational principles are useful tools
2 Using a natural symmetry is often helpful but does not ensure

the work is easy

3 Additional problem specific methods are often necessary

• Many more examples and case studies are needed

THANK YOU

Jon Borwein and Qiji Zhu Variational Methods in the Presence of Symmetry



Introduction
Motivation

Framework and tools
Eight Applications or Examples

Invariance of action function not preserved by symmetrization
Symmetry mismatching
Part II: Approximate symmetrization and the Laplacian
Saddle points: Symmetric Criticality and the Mountain Pass

Conclusion

• Variational problems with symmetric action functions often
have symmetric solutions

1 Symmetric variational principles are useful tools
2 Using a natural symmetry is often helpful but does not ensure

the work is easy
3 Additional problem specific methods are often necessary

• Many more examples and case studies are needed

THANK YOU

Jon Borwein and Qiji Zhu Variational Methods in the Presence of Symmetry



Introduction
Motivation

Framework and tools
Eight Applications or Examples

Invariance of action function not preserved by symmetrization
Symmetry mismatching
Part II: Approximate symmetrization and the Laplacian
Saddle points: Symmetric Criticality and the Mountain Pass

Conclusion

• Variational problems with symmetric action functions often
have symmetric solutions

1 Symmetric variational principles are useful tools
2 Using a natural symmetry is often helpful but does not ensure

the work is easy
3 Additional problem specific methods are often necessary

• Many more examples and case studies are needed

THANK YOU

Jon Borwein and Qiji Zhu Variational Methods in the Presence of Symmetry



Introduction
Motivation

Framework and tools
Eight Applications or Examples

Invariance of action function not preserved by symmetrization
Symmetry mismatching
Part II: Approximate symmetrization and the Laplacian
Saddle points: Symmetric Criticality and the Mountain Pass

Conclusion

• Variational problems with symmetric action functions often
have symmetric solutions

1 Symmetric variational principles are useful tools
2 Using a natural symmetry is often helpful but does not ensure

the work is easy
3 Additional problem specific methods are often necessary

• Many more examples and case studies are needed

THANK YOU

Jon Borwein and Qiji Zhu Variational Methods in the Presence of Symmetry



Introduction
Motivation

Framework and tools
Eight Applications or Examples

Invariance of action function not preserved by symmetrization
Symmetry mismatching
Part II: Approximate symmetrization and the Laplacian
Saddle points: Symmetric Criticality and the Mountain Pass

Conclusion

• Variational problems with symmetric action functions often
have symmetric solutions

1 Symmetric variational principles are useful tools
2 Using a natural symmetry is often helpful but does not ensure

the work is easy
3 Additional problem specific methods are often necessary

• Many more examples and case studies are needed

THANK YOU

Jon Borwein and Qiji Zhu Variational Methods in the Presence of Symmetry


	Introduction
	Motivation
	 Symmetry and invariance
	Variational problems involving symmetry

	Framework and tools
	Invariance and Symmetrization
	Simple extremal principle involving symmetry
	Compatible metrics
	Variational principles in the presence of symmetry

	Eight Applications or Examples
	Invariance of action function not preserved by symmetrization
	Symmetry mismatching
	Part II: Approximate symmetrization and the Laplacian
	Saddle points: Symmetric Criticality and the Mountain Pass


