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Abstract

• We shall find a multi-dimensional checkerboard copula of
maximum entropy that matches an observed set of grade
correlation coefficients. This problem is formulated as the
maximization of a concave function on a convex polytope.

• Under mild constraint qualifications we show that a unique
solution exists in the core of the feasible region.

• The theory of Fenchel duality is used to reformulate the
problem as an unconstrained minimization which is well solved
numerically using a Newton iteration.

• Finally, we discuss the numerical for some hypothetical
examples and describe how this work can be applied to the
modelling and simulation of monthly rainfall.



Modelling Accumulated Rainfall

• It has been usual to model both short-term and long-term
rainfall accumulations at a specific location by a gamma
distribution.

• We have observed that simulations in which monthly rainfall
totals are modelled as mutually independent gamma random
variables generate accumulated bi-monthly, quarterly and
yearly totals having lower variance than the observed
accumulations.

• We surmise that the variance of the generated totals will by
increased if the model includes an appropriate level of positive
correlation between individual months totals.



More generally . . .

The problem we address is:

how to construct a joint probability distribution which
preserves the known marginal distributions and matches
the observed grade correlations.

The method of copulas is one such possible solution method.
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What exactly are copulas?

Copulas are functions that join or
“couple” multivariate distribution
functions to their one-dimensional
marginal distributions.

(Inverse Problems)

See also:
JMB, A.S. Lewis, and R. Nussbaum,
“Entropy minimization, DAD problems
and stochastic kernels,” J. Functional
Analysis, 123 (1994), 264–307.



Checkerboard copula

An m-dimensional checkerboard copula is a distribution with a
corresponding density defined almost everywhere by a step function
on an m-uniform subdivision of the hypercube [0, 1]m.

Example

   

    

   

 

Simple 2-D example
with 3 subdivisions

Of course we expect a better solution if we increase the number of
subdivisions in the checkerboard.



An elementary form of the joint density

Let h be a non-negative m–dimensional hyper–matrix given by
h = [hi] ∈ R` where ` = nm and i ∈ {1, . . . , n}m with hi ∈ [0, 1].
Define the marginal sums σr : {1, . . . , n} 7→ R by

σr (ir ) =
∑

j 6=r ,ij∈ {1,2,...,n}

hi

for each r = 1, 2, . . . ,m. If σr (ir ) = 1 for all ir ∈ {1, 2, . . . , n} then
h is multiply stochastic.
Define the partition 0 = a(1) < a(2) < · · · < a(n) < a(n + 1) = 1
of the interval [0, 1] by setting a(k) = (k − 1)/n for each
k = 1, . . . , n + 1 and define a step function ch : [0, 1]m 7→ R by the
formula

ch(u) = nm−1 · hi if u ∈ Ii = ×m
r=1(a(ir ), a(ir + 1))

for each i = (i1, . . . , im) ∈ {1, 2, . . . , n}m.



The grade correlation coefficients

The grade correlation coefficient for continuous random variables
Xr and Xs where r < s is defined as the correlation for the grade
random variables Ur = Fr (Xr ) and Us = Fs(Xs) by the formula

ρr ,s =
E [(Ur − 1/2)(Us − 1/2)]√

E [(Ur − 1/2)2] · E [(Us − 1/2)2]

= 12(E [UrUs ]− 1/4).



A copula with fixed grade correlations

The grade correlation coefficient is

ρr ,s = 12

 1

n3

∑
i ∈ {1,...,n}m

hi(ir − 1/2)(is − 1/2) − 1

4


where

−1 +
1

n2
≤ ρr ,s ≤ 1− 1

n2
.



Copulas of Maximum Entropy

There are many copulas that could be used to construct a joint pdf
and match the known grade correlation coefficients.

What we wish to do is avoid unnecessary assumptions.
While producing a computationally efficient answer.

• We will construct a copula of
maximum entropy (or maximum
disorder) that satisfies the grade
correlation constraint.

• Hence by seeking to maximise the
entropy we add as little information
to the system as possible.

Cartoon by Sidney Harris
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The checkerboard copula of maximum entropy is the checkerboard
copula Ch defined by the hyper-matrix h that solves the following
convex programming problem.



The primal problem

Find the hyper-matrix h ∈ R` to maximize the entropy

J(h) = (−1)

1

n

∑
i ∈ {1,...,n}m

hi loge hi + (m − 1) loge n


subject to∑

j 6=r ,ij∈ {1,...,n}

hi = 1, ∀ ir ∈ {1, . . . , n}, r = 1, . . . ,m

and
hi ≥ 0 ∀ i ∈ {1, . . . , n}m

and the additional grade correlation coefficient constraints

12

 1

n3
·

∑
i ∈ {1,...,n}m

hi(ir − 1/2)(is − 1/2)

− 3 = ρr ,s

for 1 ≤ r < s ≤ m where ρr ,s is known for all 1 ≤ r < s ≤ m.



Solution procedure

We note that the problem is well posed. Nevertheless, it is not
easy to compute a numerical solution directly.

In fact it is much easier to solve the problem using the theory of
Fenchel duality.
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Borwein & Lewis (2006): Formulation and solution
of the

Fenchel dual problem

Let us define g : R` 7→ [0,∞) ∪ {+∞} by setting

g(h) :=

{
(−1)J(h) if hj ≥ 0 for all j ∈ {1, 2, . . . ,m}n
+∞ otherwise

where we have used the convention that h loge h = 0 when h = 0
and where we will allow functions to take values in the extended
set of real numbers.



Mathematical statement of the primal problem

Find

inf
h∈R`

{
g(h) | Ah = b

}
. (1)

If we assume that (1) has a unique solution h ∈ F with hj > 0 for
all j ∈ {1, 2, . . . ,m}n then the Fenchel dual problem is an
unconstrained maximization and the solution to the primal problem
can be recovered from the solution to the dual problem.



The Fenchel conjugate

The Fenchel conjugate of the function g is the function
g∗ : R` 7→ R ∪ {−∞} defined by

g∗(k) := sup
h∈R`

{
〈k,h〉 − g(h)

}
.

For each fixed k ∈ R` we define

G (h) =
∑

i ∈ {1,...,n}m
kihi−

1

n

∑
i ∈ {1,...,n}m

(
hi loge hi − hi

)
−(m−1) loge n

where we note that
∑

i∈{1,2,...,m}n hi = n:.



The Fenchel conjugate cont.

We can now use elementary calculus to show that G (h) is
maximized when hi = exp [nki] and hence find that

g∗(k) =
1

n

∑
i ∈ {1,...,n}m

exp [nki]− (m − 1) loge n.

Note that A∗ ∈ R`×k .

Using Corollary 3.3.11 from Borwein & Lewis (2006) we can now
write a mathematical statement of the dual problem in standard
form.



The Fenchel dual problem

Find
sup

ϕ∈Rk

{
〈b,ϕ〉 − g∗(A∗ϕ)

}
.

Let

H(ϕ) :=
k∑

j=1

bjϕj −
1

n

∑̀
i=1

exp

n ·
k∑

j=1

a∗ijϕj

+ (m − 1) loge n

and use elementary calculus once again to show that if the
maximum of H(ϕ) occurs when ϕ = ϕ then

∑̀
i=1

a∗ir exp

n ·
k∑

j=1

a∗ijϕj

 = br

for all r = 1, 2, . . . , k .



A solution scheme for the dual problem

The key equations are written in the form:

q(ϕ) = 0

where

qr (ϕ) :=
∑̀
i=1

a∗ir exp

n ·
k∑

j=1

a∗ijϕj

− br

for each r = 1, 2, . . . , k . Now the Newton iteration can be written
as

ϕ(j+1) = ϕ(j) − J−1[ϕ(j)]q[ϕ(j)]

using the Matlab inverse of the Jacobian matrix J ∈ Rk×k .



Recovering the primal solution

In general there is a closed form for the primal solution h. Let
k = A∗ϕ and suppose k j > 0for all j ∈ {1, 2, . . . ,m}n. Then the
unique solution to the primal problem is given by

h = ∇g∗(A∗ϕ).

Reference: Theorem 3.3.5, Borwein, J. and Lewis A., Convex
Analysis and Nonlinear Optimization, Theory and Examples,
Second Edition. CMS Books in Maths, Springer-Verlag (2006).



Numerical example for the dual problem

In the case where m = 2 and n = 3 the objective function is given
by

g∗(k) =
1

3

3∑
r=1

3∑
s=1

exp [3krs ]− loge 3

and the constraints can be written in the form Ah = b where

A =



1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1
1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
1
9

1
3

5
9

1
3 1 5

3
5
9

5
3

25
9

 and b =



1
1
1
1
1

ρ+ 3

 .



Numerical example for the dual problem cont.

If we set ρ = 0.7 and let ϕ(0) = 0 ∈ R6 then after 8 iterations the
solution, shown to four decimal place accuracy, is given by

ϕ ≈



−0.8682
−2.4632
−0.2825
−1.1506
−2.7457

1.8474

 and h ≈

 0.7933 0.2010 0.0058
0.2010 0.5980 0.2010
0.0058 0.2010 0.7933



where we have written h = [hij ] for convenience. The Matlab
calculations show that

‖Ah− b‖ < 8× 10−15

and the value of the objective function is given by
g∗(k) ≈ −0.5761. The duality gap satisfies the inequality

J(h)− g∗(k) < 3× 10−16.



Case study

We have available 150 years of official monthly rainfall records
supplied by the Australian Bureau of Meteorology for Sydney, in
NSW, Australia, during the period 1859-2008.

Table : Monthly means (m) and standard deviations (s) for Sydney

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

m 103 118 130 126 103 131 98 82 70 77 84 78

s 76 110 103 112 111 116 82 84 60 66 76 63



Grade correlation coefficients for all monthly pairs

Ja Fe Mr Ap Ma Jn Jl Au Se Oc No De

Ja .18 -.06 -.19 -.01 -.02 -.02 .13 .09 -.16 .05 -.04
Fe .18 -.03 -.08 -.09 .05 -.01 .10 .09 -.05 .08 -.07
Mr -.06 -.03 .11 .04 .19 -.14 -.15 -.12 .15 -.05 -.01
Ap -.19 -.08 .11 .18 .05 .13 .12 -.08 .11 .09 -.03
Ma -.01 -.09 .04 .18 .05 -.02 -.05 -.08 -.07 .05 -.06
Jn -.02 .05 .19 .05 .05 -.04 -.07 -.17 .02 .05 -.05
Jl -.02 -.01 -.14 .13 -.02 -.04 .11 .12 .08 -.08 -.02
Au .13 .10 -.15 .12 -.05 -.07 .11 .13 .13 .12 -.09
Se .09 .09 -.12 -.08 -.08 -.17 .12 .13 .04 .07 -.01
Oc -.16 -.05 .15 .11 -.07 .02 .08 .13 .04 .22 -.03
No .05 .08 -.05 .09 .05 .05 -.08 .12 .07 .22 .08
De -.04 -.07 -.01 -.03 -.06 -.05 -.02 -.09 -.01 -.03 .08



Example m = 2 and n = 3

Consider the months Oct-Nov (spring for us). If we set ρ = 0.22
(observed correlation) and let ϕ(0) = 0 ∈ R6 then after 7 iterations
the solution, shown to four decimal place accuracy, is given by

ϕ ≈



−0.1746
−0.3805
−0.2920
−0.4666
−0.6726

0.2854

 and h ≈

 0.4580 0.3281 0.2139
0.3281 0.3439 0.3281
0.2139 0.3281 0.4580



where we have written h = [hij ] for convenience. The Matlab
calculations show that

‖Ah− b‖ < 8× 10−15

and the value of the objective is given by g∗(k) ≈ −0.9696.
The duality gap satisfies the inequality

J(h)− g∗(k) < 5× 10−16.



Accumulated rainfall totals over months Oct-Nov
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Results

Table : Comparison of mean and variance for the observed accumulated
totals; generated accumulated totals using independent random variables
(Independent Model) and generated accumulated totals using a copula of
maximum entropy (Correlated Model)

Mean (mm) Variance

Observed Data 160.488 10830.299
Independent Model 161.705 8732.117
Correlated Model (Max Ent) 160.451 10769.729

Table : P-values for Kolmogorov-Smirnov goodness of fit test

Kolmogorov-Smirnov test

Observed versus generated 0.7637



Simulations: total rainfall (February through April)
Kempsey in northern New South Wales

Observed statistics: µ = 427, σ2 = 53762 (µ, σ2)
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Comments

• By reformulating the problem as an unconstrained concave
optimization problem using the theory of Fenchel duality we
were able to show that solution of the dual problem and
subsequent recovery of the primal solution is a much more
tractable procedure.

• The underlying entropy model assures one that the dual
problem has many attractive features both theoretically and
numerically.

• Lastly, our theoretical ideas can be applied to more realistic
modelling and simulation of monthly rainfall (using Sydney
and Kempsey data, see J. Hydrology paper) and comparing
Gaussian copulas.
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