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1 Introduction and preliminary results

We work in a real Banach space X whose closed unit ball is denoted by BX , and whose unit
sphere is denoted by SX . By a proper function f : X → (−∞,+∞], we mean a function which
is somewhere real-valued. A proper function f : X → (−∞,+∞] is convex if

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)y for all x, y ∈ dom f, 0 ≤ λ ≤ 1.

The conjugate function of f : X → (−∞,+∞] is defined for x∗ ∈ X∗ by

f∗(x∗) = sup
x∈X
〈x∗, x〉 − f(x).

Relevant background material on convex analysis can be found in various fine texts such as
[9, 11] and in our own book [3].

Given a proper convex function f : X → (−∞,+∞], its modulus of convexity is the function
δf : [0,+∞)→ [0,+∞] defined by

δf (t) := inf
{

1
2
f(x) +

1
2
f(y)− f

(
x+ y

2

)
: ‖x− y‖ = t, x, y ∈ dom f

}
,

where the infimum over the empty set is +∞. We say that f is uniformly convex when δf (t) > 0
for all t > 0, and f has a modulus of convexity of power type p if there exists C > 0 so that
δf (t) ≥ Ctp for all t > 0. In [11], uniformly convex functions are defined using the gage of
uniform convexity, and it follows from [10, Remark 2.1] that the definition presented here is
equivalent to that used in [10, 11].
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Relatedly, the modulus of convexity of the norm ‖ · ‖ , δ‖·‖, is defined for 0 ≤ ε ≤ 2 by

δ‖·‖(ε) := inf
{

1−
∥∥∥∥x+ y

2

∥∥∥∥ : ‖x‖ = ‖y‖ = 1, and ‖x− y‖ ≥ ε
}
.

In the case δ‖·‖(ε) > 0 for each ε > 0, ‖ · ‖ is said to be uniformly convex (as a norm). If there
exists C > 0 and p ≥ 2 such that δ‖·‖(ε) ≥ Cεp for all 0 ≤ ε ≤ 2, then ‖ · ‖ is said to have
modulus of convexity of power type p.

A systematic exposition of uniformly convex norms can be found in [6, Sections IV.4, IV.5],
and [11, Section 3.5] presents a thorough account of uniformly convex functions. However,
explicit constructions of such functions, especially those derived from a uniformly convex norm,
appear to be somewhat sparse. While it is easy to see, for example, that f := ‖ · ‖r with r > 1
is uniformly convex on bounded sets when ‖ · ‖ is uniformly convex, it is not necessarily globally
uniformly convex. In fact [2] shows when r ≥ 2, that f is uniformly convex if and only if ‖ · ‖
has modulus of convexity of power type r. Our goal in this note is provide precise conditions
under which g ◦ ‖ · ‖ is uniformly convex when g is a nondecreasing convex function on [0,∞).

In many algorithms, uniform convexity on bounded sets and other weaker forms of convexity
suffice for their implementation as can be seen, for example, in [4, 5]. Nonetheless, beyond
their theoretical interest, uniformly convex functions are dual under conjugation to uniformly
smooth convex functions [1]. Also when considered with moduli of power type, there is a tight
duality with Hölder continuity conditions on the derivatives (see [11, Theorem 3.5.10, Corollary
3.5.11 and Theorem 3.5.12]. Because uniformly convex norms, and even those with some power
type are (abundantly) available on superreflexive spaces as is discussed in the monograph [6],
we believe it is important to find explicit conditions under which the composition with a norm
yields a uniformly convex function (or even better, one with modulus of power type). Inter
alia, we adumbrate the somewhat subtle relationship between notions of uniform convexity for
norms—based on behaviour on the sphere—and those for convex functions.

We will use the following simple examples of uniformly convex functions on the real line
recorded in [3, Exercise 5.4.2].

Fact 1.1. Suppose a function f on R satisfies f (n) ≥ α > 0 on [a,∞) where n ≥ 2 is a fixed
integer, and that f (k) ≥ 0 on [a,∞) for k ∈ {2, . . . , n+1}. Define the function g by g(x) := f(x)
for x ≥ a and g(x) := +∞ for x < a. Then g is uniformly convex with modulus of convexity of
power type n.

In particular, let b > 1 and g(x) := bx for x ≥ 0, and g(x) := +∞ otherwise. Then g is
uniformly convex with modulus of convexity of power type p for any p ≥ 2. Similarly, using
Taylor series one can show that for p ≥ 2 and g(x) := xp for x ≥ 0, and g(x) := +∞ otherwise,
g is uniformly convex with modulus of convexity of power type p.

2 Constructions of Uniformly Convex Functions

Our first objective is to determine precisely when a composition with a norm yields a uniformly
convex function.

Theorem 2.1. Suppose f : [0,+∞) → [0,+∞) is convex and nondecreasing. Then f ◦ ‖ · ‖ is
uniformly convex if and only if f and ‖ · ‖ are uniformly convex while

(2.1) lim inf
t→∞

f ′+(t) · δ‖·‖
(ε
t

)
· t > 0

for each ε > 0.
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Proof. ⇒: Clearly f is uniformly convex because for fixed x0 ∈ SX , we have that f(t) = f(‖tx0‖)
and so f is a uniformly convex function. Similarly, ‖ · ‖ is uniformly convex. Indeed, suppose
‖xn‖ = ‖yn‖ = 1 and ‖xn + yn‖ → 2. Then

1
2
f(‖xn‖) +

1
2
f(‖yn‖)− f

(∥∥∥∥xn + yn
2

∥∥∥∥)→ 0

because f is continuous at 1. The uniform convexity of f ◦ ‖ · ‖ implies ‖xn− yn‖ → 0; thus ‖ · ‖
is uniformly convex.

Thence, suppose for some ε > 0 and tn → ∞ that limn→∞ f
′
+(tn) · δ‖·‖

(
ε
tn

)
· tn = 0. Now

choose un, vn ∈ SX such that ‖un − vn‖ ≥ ε
tn

but∥∥∥∥un + vn
2

∥∥∥∥ ≥ 1− 2δ‖·‖

(
ε

tn

)
.

Let xn := tnun and yn := tnvn. Then ‖xn − yn‖ ≥ ε for all n, but

f

(∥∥∥∥ tnun + tnvn
2

∥∥∥∥) ≥ f(‖tnun‖)− 2tnδ‖·‖

(
ε

tn

)
· f ′+(tn)

≥ f(‖tnun‖)− 2εn where εn = tnδ‖·‖

(
ε

tn

)
· f ′+(tn)→ 0,

which contradicts the uniform convexity of f ◦ ‖ · ‖.
⇐: Suppose for each ε > 0, lim inf

t→∞
f ′+(t) · δ‖·‖

(ε
t

)
· t > 0, and f and ‖ · ‖ are uniformly

convex. Suppose f ◦ ‖ · ‖ is not uniformly convex. Then there exist (xn), (yn) ⊂ X and ε > 0
such that ‖xn − yn‖ ≥ ε for all n ∈ N, but

(2.2)
1
2
f(‖xn‖) +

1
2
f(‖yn‖)− f

(∥∥∥∥xn + yn
2

∥∥∥∥)→ 0.

We shall consider various cases. First suppose lim supn→∞
∣∣‖xn‖ − ‖yn‖∣∣ > 0. By switching

roles of xn and yn as necessary, and passing to a subsequence we may assume ‖xn‖−‖yn‖ ≥ η > 0
for all n ∈ N. Thus using the fact f is nondecreasing and uniformly convex we have

1
2
f(‖xn‖) +

1
2
f(‖yn‖)− f

(∥∥∥∥xn + yn
2

∥∥∥∥) ≥ 1
2
f(‖xn‖) +

1
2
f(‖yn‖)− f

(
‖xn‖+ ‖yn‖

2

)
≥ δf (η) > 0 for all n ∈ N.

This contradicts (2.2). Thus, for the rest of the proof we may and do suppose (‖xn‖−‖yn‖)→ 0.
(a) Consider the case where (xn) is a bounded sequence. By passing to a subsequence as
necessary we may assume ‖xn‖ → α and ‖yn‖ → α for some α ≥ 0. Because ‖xn − yn‖ ≥ ε it is
clear that α > 0 and by the uniform convexity of ‖ · ‖ we obtain

lim sup
n→∞

∥∥∥∥xn + yn
2α

∥∥∥∥ ≤ 1− δ
( ε
α

)
.

Consequently, lim sup
n→∞

∥∥∥∥xn + yn
2

∥∥∥∥ ≤ α [1− δ ( εα)]. Using the fact that f is convex and increas-

ing, we obtain

lim inf
n→∞

1
2
f(‖xn‖) +

1
2
f(‖yn‖)− f

(∥∥∥∥xn + yn
2

∥∥∥∥) ≥ lim inf
n→∞

f

(
‖xn‖+ ‖yn‖

2

)
− f

(∥∥∥∥xn + yn
2

∥∥∥∥)
≥ f(α)− f

(
α− αδ‖·‖

( ε
α

))
> 0.
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which contradicts (2.2).
(b) It remains to consider the case where (xn) is unbounded. In fact, any bounded subsequence
of (xn) would yield a contradiction as above, so we let αn := ‖xn‖ and assume αn →∞. Further,
because we now know that (‖xn‖ − ‖yn‖) → 0, interchanging xn and yn as necessary, we write
‖yn‖ = βn where αn = βn + ηn and ηn → 0+.

Now let x̃n := 1
αn
xn and ỹn := 1

βn
yn. Then ‖x̃n − ỹn‖ ≥ ε−ηn

αn
. Fix N ∈ N such that

‖x̃n − ỹn‖ ≥ ε
2βn

for n ≥ N . The uniform convexity of ‖ · ‖ ensures that∥∥∥∥ x̃n + ỹn
2

∥∥∥∥ ≤ 1− δ‖·‖
(

ε

2βn

)
for n ≥ N.

Let

(2.3) β̃n :=
βn + αn

2
− δ‖·‖

(
ε

2βn

)
· βn.

Note that ‖xn + yn‖ ≤ βn‖x̃n + ỹn‖+ ηn, and that β̃n/βn → 1 (since βn →∞, ηn → 0). Then,
for n ≥ N , monotonicity of f ensures that

f

(∥∥∥∥xn + yn
2

∥∥∥∥) ≤ f

(
βn

∥∥∥∥ x̃n + ỹn
2

∥∥∥∥+
ηn
2

)
≤ f

(
βn − δ‖·‖

(
ε

2βn

)
· βn +

ηn
2

)
= f(β̃n).(2.4)

The convexity of f guarantees that

(2.5)
1
2
f(αn) +

1
2
f(βn) ≥ f

(
αn + βn

2

)
≥ f(β̃n) + δ‖·‖

(
ε

2βn

)
· βn · f ′+(β̃n), for n ≥ N.

Hence

f(β̃n) ≤ 1
2
f(αn) +

1
2
f(βn)− δ‖·‖

(
ε

2βn

)
· βn · f ′+(β̃n)

=
1
2
f(‖xn‖) +

1
2
f(‖yn‖)− δ‖·‖

(
ε

2βn

)
· βn · f ′+(β̃n).(2.6)

To complete the proof, it remains to verify that

(2.7) lim inf
n→∞

δ‖·‖

(
ε

2βn

)
· βn · f ′+(β̃n) > 0

and as a consequence it will follow that (2.6) contradicts (2.2). Indeed, since β̃n/βn → 1, for
sufficiently large n, β̃n ≥ 1

2βn and because δ‖·‖ is nondecreasing on [0, 2] this additionally ensures

δ‖·‖

(
ε

2βn

)
≥ δ‖·‖

( ε
4

β̃n

)
for such n. Consequently,

δ‖·‖

(
ε

2βn

)
· βn · f ′+(β̃n) ≥ 1

2
δ‖·‖

( ε
4

β̃n

)
· β̃n · f ′+(β̃n) for sufficiently large n.

Applying (2.1) with ε/4 replacing ε to the right-hand side of the previous inequality, one deduces
(2.7) as desired.
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It is perhaps surprising that the previous result means that the composition of a uniformly
convex norm with a nondecreasing uniformly convex function on the positive axis is a uniformly
convex function if and only if (2.1) holds. Theorem 2.1 also enables us to construct continuous
uniformly convex functions using any uniformly convex norm on a superreflexive Banach space.

Example 2.2. Let ‖ · ‖ be a uniformly convex norm with modulus δ‖·‖. We define f(t) := t2

for 0 ≤ t ≤ 1 while

f(t) := t2 +
∫ t

1

1
δ‖·‖(u−2)

du when t > 1.

We may apply Theorem 2.1 to show f ◦ ‖ · ‖ is uniformly convex.

Proof. Indeed, f ′ is nonnegative increasing on [0,∞) so f is convex and nondecreasing. More-
over, t 7→ t2 is uniformly convex (hence so is its sum with another convex function) and so f is
uniformly convex. Finally, for t > 1, f ′(t) = 2t+ 1/δ‖·‖(t−2). For fixed ε when t−1 < ε we then
have

f ′+(t) · δ‖·‖
(ε
t

)
· t > 1

δ(t−2)
· δ‖·‖

(ε
t

)
· t > t

and so (2.1) holds.

Further examples will be given after the following more qualitative result concerning moduli
of power type.

Theorem 2.3. Suppose f : [0,+∞)→ [0,+∞) is a convex nondecreasing function and p ≥ 2.

(a) Suppose f and ‖ · ‖ have moduli of convexity of power type p and f ′+(t) ≥ Ctp−1 for some
C > 0 and for all t > 0. Then f ◦ ‖ · ‖ also has modulus of convexity of power type p.

(b) Conversely, if f ◦ ‖ · ‖ has modulus of convexity of power type p, then f and ‖ · ‖ have moduli
of convexity of power type p. In the case that ‖ · ‖ additionally satisfies

(2.8) 0 < lim inf
ε→0+

δ‖·‖(ε)
εp

<∞

(i.e., the modulus of ‖ · ‖ is no better than power type p), then

f ′+(t) ≥ Ktp−1

for some K > 0 and for all t > 0.

Proof. (a) First we fix positive constants A, B corresponding to the respective moduli, and let
C > 0 be as given. That is,

δf (ε) ≥ Aεp for all ε > 0, δ‖·‖(ε) ≥ Bεp for all 0 ≤ ε ≤ 2, and f ′+(t) ≥ Ctp−1 for all t > 0.

Let ε > 0 be fixed, and suppose x, y ∈ X satisfy ‖x− y‖ ≥ ε. We may assume ‖y‖ ≤ ‖x‖.
Suppose first, ‖y‖+ ε/2 ≤ ‖x‖. Using the modulus of convexity of f we obtain

(2.9)
1
2
f(‖x‖) +

1
2
f(‖y‖)− f

(∥∥∥∥x+ y

2

∥∥∥∥) ≥ 1
2
f(‖x‖) +

1
2
f(‖y‖)− f

(
‖x‖+ ‖y‖

2

)
≥ A

( ε
2

)p
.

Thus, for the remainder of the proof we will assume ‖y‖+ ε/2 > ‖x‖.
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Let a := ‖y‖ and x̃ := x/‖x‖, ỹ := y/‖y‖. Then ‖y−ax̃‖ > ε/2. Consequently, ‖ỹ− x̃‖ > ε
2a .

Thence the modulus of convexity implies∥∥∥∥ x̃+ ỹ

2

∥∥∥∥ ≤ 1−B
( ε

2a

)p
and so

(2.10)
∥∥∥∥x+ y

2

∥∥∥∥ ≤ a(∥∥∥∥ x̃+ ỹ

2

∥∥∥∥)+
‖x‖ − a

2
≤ 1

2
‖x‖+

1
2
‖y‖ −Ba

( ε

2a

)p
.

(i) We consider the case, Ba
(
ε
2a

)p ≥ a/2. Recalling that ‖x‖ + ‖y‖ ≥ ‖x − y‖ ≥ ε, we have
‖y‖ ≥ ε/4 since ‖y‖ ≥ ‖x‖ − ε/2. Because a = ‖y‖, it follows that a/2 ≥ ε/8. Thus, letting
t0 := (‖x‖+ ‖y‖)/2− a/2, we have t0 ≥ a/2 and the nondecreasing property of f ensures

f

(∥∥∥∥x+ y

2

∥∥∥∥) ≤ f(t0).

Now we use this with the convexity of f to compute,

1
2
f(‖x‖) +

1
2
f(‖y‖) ≥ f

(
‖x‖+ ‖y‖

2

)
≥ f(t0) + f ′+(t0) · (a/2)

≥ f(t0) + f ′+(a/2) · (a/2) ≥ f(t0) + f ′+(ε/8) · (ε/8)

≥ f

(∥∥∥∥x+ y

2

∥∥∥∥)+ C
( ε

8

)p
.(2.11)

(ii) For our remaining case, we suppose Ba
(
ε
2a

)p ≤ a/2. Then the right hand side of (2.10) is
at least a/2. Now use the fact f ′(t) ≥ C(a/2)p−1 when t ≥ a/2 to compute

f

(∥∥∥∥x+ y

2

∥∥∥∥) ≤ f

(
1
2
‖x‖+

1
2
‖y‖
)
−Ba

( ε

2a

)p
· C
(a

2

)p−1

≤ 1
2
f(‖x‖) +

1
2
f(‖y‖)−BC

( ε
4

)p
.(2.12)

Putting (2.9), (2.11) and (2.12) together we see that f ◦ ‖ · ‖ has modulus of convexity of power
type p as desired.

(b) Because f ◦ ‖ · ‖ has modulus of convexity of power type p, one need only fix x0 ∈ SX
and consider f(t) = f(‖tx0‖) for t ≥ 0 to see that f has modulus of convexity of power type p.

Also, let β := f ′+(1) and let C > 0 be such that δf◦‖·‖(ε) ≥ Cεp when ε > 0. Fix ε ∈ (0, 2],
and choose x, y ∈ SX with ‖x− y‖ ≥ ε and

∥∥x+y
2

∥∥ ≥ 1− 2δ‖·‖(ε). Then

f(1)− Cεp = f

(
‖x‖+ ‖y‖

2

)
− Cεp ≥ f

(∥∥∥∥x+ y

2

∥∥∥∥) ≥ f(1)− 2βδ‖·‖(ε)

and it follows δ‖·‖(ε) ≥ C
2β ε

p. Thus ‖ · ‖ has modulus of convexity of power type p as desired.
It remains to verify f ′(t) ≥Mtp−1 for some M > 0 and all t > 0 when (2.8) is valid. Indeed,

in this case, we find (un), (vn) ⊂ SX and K > 0 such that

εn := ‖un − vn‖ → 0+ and
∥∥∥∥un + vn

2

∥∥∥∥ ≥ 1−Kεpn.
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Now fix t > 0, and let xn := tun and yn := tvn. Then

(2.13)
∥∥∥∥xn + yn

2

∥∥∥∥ ≥ t(1−Kεpn).

Then ‖xn − yn‖ = tεn and the modulus of convexity of f ◦ ‖ · ‖ implies

(2.14) f

(∥∥∥∥xn + yn
2

∥∥∥∥) ≤ 1
2
f(‖xn‖) +

1
2
f(‖yn‖)− C(tεn)p = f(t)− Ctpεpn.

The convexity of f implies that f(t− tKεpn) ≥ f(t)− f ′+(t)(tKεpn). Using this along with (2.13)
and the fact f is nondecreasing, we obtain

(2.15) f

(∥∥∥∥xn + yn
2

∥∥∥∥) ≥ f(t− tKεpn) ≥ f(t)− f ′+(t)(tKεpn).

Combining (2.14) and (2.15) implies f ′+(t) ≥ C
K t

p−1, as desired.

The following corollary recovers a result from [2] whose original proof proceeded via estab-
lishing uniform smoothness and invoking duality results from [1].

Corollary 2.4 (Theorem 2.3, [2]). Let f := ‖·‖p where p ≥ 2. Then the following are equivalent:

(a) f is uniformly convex;

(b) ‖ · ‖ has modulus of convexity of power type p;

(c) f has modulus of convexity of power type p.

Proof. (a) ⇒ (b): Suppose f is uniformly convex, then (2.1) holds with ε = 1. Consequently,

lim inf
t→∞

ptp δ‖·‖(t
−1) > 0

and so there exists C > 0 so that p tp δ‖·‖(t−1) > C for t > t0. In particular, for 0 < ε < 1/t0,
we have δ‖·‖(ε) > Kεp where K := Cp−1.

(b)⇒ (c): Follows from Theorem 2.3 because the function t 7→ |t|p has modulus of convexity
of power type p.

(c) ⇒ (a): is trivial.

Example 2.5. Suppose that b > 1 and ‖ · ‖ has modulus of convexity of power type p where
p ≥ 2. Then f := b‖·‖ is uniformly convex with modulus of convexity of power type p. However,
even on R2 there are uniformly convex norms ||| · ||| so that h := b|||·||| is not uniformly convex.

Proof. Let g(t) := bt. Then g′(t) ≥ Ctp for some C > 0 and all t ≥ 0, and g has modulus of
convexity of power type p. According to Theorem 2.3, f has modulus of convexity of power type
p. For the claim concerning h, we appeal to [7] to obtain a norm ||| · ||| on R2 so that

lim inf
t→∞

t bt log(b)δ|||·|||(t
−1) = 0.

Then (2.1) fails, and so Theorem 2.1 ensures h is not uniformly convex.

7



One may view the above conditions dually. For this, let us recall the modulus of smoothness
of a norm ‖ · ‖ is defined for τ > 0 by

ρ‖·‖(τ) := sup
{
‖x+ τh‖+ ‖x− τh‖ − 2

2
: ‖x‖ = ‖h‖ = 1

}
.

Given 1 < q ≤ 2, we will say ‖ · ‖ has modulus of smoothness of power type q if there exists
C > 0 so that ρ‖·‖(τ) ≤ Cτ q for τ > 0; see [6] for further information. Similarly, the modulus of
smoothness of a convex function f is defined for τ ≥ 0 by

ρf (τ) := sup
{

1
2
f(x+ τh) +

1
2
f(x− τh)− f(x) : x ∈ X, ‖h‖ = 1

}
;

as with norms, when ρf (τ) ≤ Cτ q for some C > 0 and all τ > 0 we will say f has modulus of
smoothness of power type q. See [11, p. 204ff] or [3, Section 5.4] for further discussion on this
and related concepts. We note also that given h := f ◦ ‖ · ‖, then the conjugate is given by

h∗(φ) = sup
x∈X

φ(x)− f(‖x‖) = sup
x∈X
‖φ‖‖x‖ − f(‖x‖) = f∗(‖φ‖).

We may now present the following dual version of Theorem 2.3.

Corollary 2.6. Suppose ‖ · ‖ is uniformly smooth with modulus of smoothness of power type q
where 1 < q ≤ 2, f is nondecreasing and f has modulus of smoothness of power type q while
f ′+(t) ≤ Ctq−1, t ≥ 0. Then f ◦ ‖ · ‖ has modulus of smoothness of power type q.

Conversely, suppose f ◦ ‖ · ‖ has modulus of smoothness of power type q. Then ‖ · ‖ has
modulus of smoothness of power type q, f has modulus of smoothness of power type q, and if the
modulus of smoothness of ‖ · ‖ is not better than power type q, then f ′(t) ≤ Ctq−1.

Proof. We may assume f(0) = 0 and f ′(0) = 0 (by subtracting the derivative at 0). Thus, we
may further assume f(t) = 0 for t ≤ 0. Consequently f∗ is nondecreasing, and f∗(0) = 0. Let
h := f ◦ ‖ · ‖ as above. According to [6, Proposition IV.1.12], the dual norm ‖ · ‖ has modulus of
convexity of power type p. Now let t ∈ ∂f∗(y). Then t ≥ 0, y ∈ ∂f(t) and so y ≤ Ctq−1. Thus
t ≥ Ky1/(q−1), or equivalently t ≥ Kyp−1.

This implies f ′+(y) ≥ Kyp−1 for all y ≥ 0. t ≥ 0, and f∗ has modulus of convexity of power
type p. According to Theorem 2.3(a) h∗ has modulus of convexity of power type p. By duality,
see [11, Corollary 3.5.11], h has modulus of smoothness of power type q.

The details of the converse follow similarly from Theorem 2.3(b); again by invoking duality
results of [11, Corollary 3.5.11] and [6, Proposition IV.1.12].

In conclusion, we should also mention that [2] provides renormings with moduli of convexity
of power type based on growth rates of uniformly convex functions on the space. In fact, [2,
Theorem 3.7] can be used as follows to illustrate the restrictiveness of obtaining functions that
are simultaneously uniformly convex and uniformly smooth.

Remark 2.7. Suppose X is a Banach space and f : X → R is both uniformly convex and uni-
formly smooth. Then X is isomorphic to a Hilbert space. Moreover, g := ‖ ·‖p is simultaneously
uniformly convex and uniformly smooth if and only if p = 2 and ‖ ·‖ has modulus of smoothness
and modulus of convexity both of power type 2.
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Proof. Let f be as given. Then [11, Proposition 3.5.8] implies that

lim inf
‖x‖→∞

f(x)
‖x‖2

> 0.

Because continuous convex functions are bounded below on bounded sets, we have f ≥ 4a‖·‖2+b
for some a > 0 and b ∈ R. Thus by replacing f with f − b, we may assume f ≥ 4a‖ · ‖2. Then
f∗ ≤ a‖ · ‖2 and so f∗ is uniformly convex [11, Theorem 3.5.12].

According to [2, Theorem 3.7], X∗ admits a norm with modulus of convexity of power type
2. Arguing similarly with f∗, one can show that f − B ≤ A‖ · ‖2 for some A > 0 and constant
B. Applying [2, Theorem 3.7] shows that X admits a norm with modulus of convexity of power
type 2. It follows from [6, Propositions IV.1.12, IV.5.10, IV.5.12] that X has type and cotype 2
and so X is isomorphic to a Hilbert space by Kwapien’s theorem [8].

For the ‘moreover’ assertion, we note that the ‘only if’ claim follows from Corollaries 2.4 and
2.6. For the ‘if’ assertion, as in the previous paragraph, the duality results just cited imply that
f and f∗ are both uniformly convex and hence [11, Proposition 3.5.8] implies both that p ≥ 2
and that its conjugate index q ≥ 2; consequently, p = 2 as claimed.
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[10] C. Zălinescu. On uniformly convex functions. J. Math. Anal. Appl., 95:344–374, 1983.
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