
Experimental Computation and Visual
Theorems

Jonathan M. Borwein1

CARMA, University of Newcastle, NSW
jon.borwein@gmail.com, www.carma.newcastle.edu.au

Abstract. Long before current graphic, visualisation and geometric tools
were available, John E. Littlewood (1885-1977) wrote in his delightful
Miscellany1:

A heavy warning used to be given [by lecturers] that pictures
are not rigorous; this has never had its bluff called and has per-
manently frightened its victims into playing for safety. Some
pictures, of course, are not rigorous, but I should say most are
(and I use them whenever possible myself). [p. 53]

Over the past five years, the role of visual computing in my own re-
search has expanded dramatically. In part this was made possible by
the increasing speed and storage capabilities—and the growing ease of
programming—of modern multi-core computing environments.

But, at least as much, it has been driven by my group’s paying more
active attention to the possibilities for graphing, animating or simulating
most mathematical research activities.
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1 Introduction

I first briefly discuss what is meant both by visual theorems and by experimen-
tal computation. I then turn to dynamic geometry (iterative reflection methods
[1]) and matrix completion problems2 (applied to protein confirmation [3]). (See
Case studies I and II.) I end with description of recent work from my group in
probability (behaviour of short random walks [6, 8]) and transcendental number
theory (normality of real numbers [2]). (See Case studies III.)

1 J.E. Littlewood, A mathematician’s miscellany, London: Methuen (1953); J. E. Lit-
tlewood and Béla Bollobás, ed., Littlewood’s miscellany, Cambridge University Press,
1986.

2 See http://www.carma.newcastle.edu.au/jon/Completion.pdf and http://www.

carma.newcastle.edu.au/jon/dr-fields11.pptx.
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1.1 Some Early Conclusions: So I am sure they get made

1. Maths can be done experimentally3 (it is fun) using computer algebra, nu-
merical computation and graphics: SNaG Computations, tables and pictures
are experimental data but you can not stop thinking.

2. Making mistakes is fine as long as you learn from them, and keep your eyes
open (conquer fear).

3. You can not use what you do not know and what you know you can usually
use. Indeed, you do not need to know much before you start research (as we
shall see).

2 Visual Theorems and Experimental mathematics

In a 2012 study On Proof and Proving [10] the International Council on Math-
ematical Instruction wrote:

The latest developments in computer and video technology have provided a
multiplicity of computational and symbolic tools that have rejuvenated math-
ematics and mathematics education. Two important examples of this revital-
ization are experimental mathematics and visual theorems.

By a visual theorem4 I mean a picture or animation which gives one confi-
dence that a desired result is true in Gianqunto’s sense that it represents “coming
to believe it in an independent, reliable, and rational way” (either as discovery
or validation) as described in [4]. While we have famous pictorial examples pur-
porting to show all triangle are equilateral, there are equally many or more bogus
symbolic proofs that 1 + 1 = 1. In all cases ‘caveat emptor’.

Modern technology properly mastered allows for a much richer set of tools for
discovery, validation, and even rigorous proof than our precursors could have ever
imagined would come to pass—and it is early days. The same ICMI study [10],
quoting [5, p. 1], says enough about the meaning of experimental mathematics
for our curernet purposes:

Experimental mathematics is the use of a computer to run computations—
sometimes no more than trial-and- error tests—to look for patterns, to identify
particular numbers and sequences, to gather evidence in support of specific
mathematical assertions that may themselves arise by computational means,
including search.

Like contemporary chemists — and before them the alchemists of old—who
mix various substances together in a crucible and heat them to a high tem-
perature to see what happens, today’s experimental mathematicians put a
hopefully potent mix of numbers, formulas, and algorithms into a computer in
the hope that something of interest emerges.

3 DHB and JMB, “Exploratory Experimentation in Mathematics” (2011), www.ams.
org/notices/201110/rtx111001410p.pdf

4 See http://vis.carma.newcastle.edu.au/.
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3 Case Studies

We turn to three sets of examples:

3.1 Case Study Ia: Iterative Reflections

Let S ⊂ Rm. The (nearest point or metric) projection onto S is the (set-valued)
mapping, PSx := argmins∈S‖s−x‖. The reflection with respect to S is then the
(set-valued) mapping, RS := 2PS − I. Iterative projection methods have a long
and successful history. The basic model [1, 3] finds a point in A ∩ B assuming
information about the projections on A and B is accessible. The corresponding
reflection methods are more recent and appear more potent.

Theorem 1 (Douglas–Rachford (1956–1979)). Suppose A,B ⊂ Rm are
closed and convex. For any x0 ∈ Rm define

xn+1 := TA,Bxn where TA,B :=
I +RBRA

2
.

If A ∩B 6= ∅, then xn → x such that PAx ∈ A ∩B. Else ‖xn‖ → +∞.

The method also applies to a good model for phase reconstruction, namely
for B affine and A a boundary ‘sphere’. In this case we have some local and many
fewer global convergence results; but much empirical evidence— both numeric
and geometric (using Cinderella, Maple and SAGE).

Cinderella applet5 showing 20000 starting points coloured by distance from
y-axis after 0, 7, 14, 21 steps. Is this a “generic visual theorem” showing global
convergence off the (chaotic) y-axis? Note the error—scattered red points—from
using ‘only’ 14 digit computation.

5 See http://carma.newcastle.edu.au/jon/expansion.html.
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Proven region of convergence in grey showing what we can prove (L)
is less than what we can see (R).

3.2 Case Study Ib: Protein Confirmation

Proteins are large biomolecules comprising multiple amino acid chains.6 Proteins
participate in virtually every cellular process and Protein structure → predicts
how functions are performed. NMR spectroscopy (Nuclear Overhauser effect7)
can determine a subset of interatomic distances without damage (under 6Å ).
This can profitably be viewed as a non-convex low-rank Euclidean distance ma-
trix completion problem. We use only interatomic distances below 6Å typically
constituting less than 8% of the total nonzero entries of the distance matrix and
use our reflection method to extrapolate the rest.

Six Proteins: average (maximum) errors from five replications.

Protein # Atoms Rel. Error (dB) RMSE Max Error

1PTQ 40 -83.6 (-83.7) 0.0200 (0.0219) 0.0802 (0.0923)
1HOE 581 -72.7 (-69.3) 0.191 (0.257) 2.88 (5.49)
1LFB 641 -47.6 (-45.3) 3.24 (3.53) 21.7 (24.0)
1PHT 988 -60.5 (-58.1) 1.03 (1.18) 12.7 (13.8)
1POA 1067 -49.3 (-48.1) 34.1 (34.3) 81.9 (87.6)
1AX8 1074 -46.7 (-43.5) 9.69 (10.36) 58.6 (62.6)

Here

Rel.error(dB) := 10 log10

(
‖PC2PC1XN − PC1XN‖2

‖PC1
XN‖2

)
,

RMSE :=

√∑m
i=1 ‖p̂i − ptrue

i ‖22
#ofatoms

, Max := max
1≤i≤m

‖p̂i − ptrue
i ‖2.

The points p̂1, p̂2, . . . , p̂n denote the best fitting of p1, p2, . . . , pn when rotation,
translation and reflection is allowed.

The numeric estimates do not well segregate good and poor reconstructions
so we ask what the reconstructions look like?

6 RuBisCO (responsible for photosynthesis) has 550 amino acids (smallish).
7 A coupling which occurs through space, rather than chemical bonds.
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1PTQ (actual) 5,000 steps, -83.6dB (perfect)

1POA (actual) 5,000 steps, -49.3dB (mainly good!)

The picture of ‘failure’ suggests many strategies for success. What do recon-
structions look like? 8 There are many projection methods, so it is fair to ask
why we use Douglas-Rachford? The two sets of images below show the striking
difference in the two methods.

500 steps, -25 dB. 1,000 steps, -30 dB. 2,000 steps, -51 dB. 5,000 steps, -84 dB.

Douglas–Rachford reflection method reconstruction

500 steps, -22 dB. 1,000 steps, -24 dB. 2,000 steps, -25 dB. 5,000 steps, -28 dB.

Alternating projection method reconstruction

Yet the method of alternating projections works very well for optical ab-
beration correction (originally on the Hubble telescope and now on amateur
telescopes attached to latops). And we still struggle to understand why and
when these methods work on different convex problems?

3.3 Case Study II: Trefethen’s 100 Digit Challenge

In the January 2002 issue of SIAM News, Nick Trefethen presented ten diverse
problems used in teaching modern graduate numerical analysis students at Ox-
ford University, the answer to each being a certain real number. Readers were

8 Video of the first 3,000 steps of the 1PTQ reconstruction is at http://carma.

newcastle.edu.au/DRmethods/1PTQ.html.
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challenged to compute ten digits of each answer, with a $100 prize to the best
entrant. Trefethen wrote, “If anyone gets 50 digits in total, I will be impressed.”
To his surprise, a total of 94 teams, representing 25 different nations, submitted
results. Twenty received a full 100 points (10 correct digits for each problem).
Bailey, Fee and I quit at 85 digits! The problems and solutions are dissected
most entertainingly in [9]. We shall examine the two final problems.

Problem #9. The integral I(a) =
∫ 2

0
[2 + sin(10α)]xα sin

(
α

2−x

)
dx depends

on the parameter α. What is the value α ∈ [0, 5] at which I(α) achieves its
maximum?

The maximum α is expressible in terms of a Meijer-G function—a special
function with a solid history that we use below. While knowledge of this function
was not common among contestants, Mathematica and Maple both will figure
this out; help files or a web search then quickly inform the scientist. This is
another measure of the changing environment. It is usually a good idea—and
not at all immoral—to data-mine.

Problem #10. A particle at the center of a 10×1 rectangle undergoes Brow-
nian motion (i.e., 2-D random walk with infinitesimal step lengths) till it hits
the boundary. What is the probability that it hits at one of the ends rather
than at one of the sides?

Bornemann starts his remarkable solution by exploring Monte-Carlo meth-
ods, which are shown to be impracticable. A tour through many areas of pure
and applied mathematics leads to elliptic integrals and modular functions which
proves that the answer is p = 2

π arcsin (k100) where

k100 :=

((
3− 2

√
2
)(

2 +
√

5
)(
−3 +

√
10
)(
−
√

2 +
4
√

5
)2)2

,

is a singular value. [In general p(a, b) = 2
π arcsin

(
k(a/b)2

)
.] No one (except har-

monic analysts perhaps) anticipated a closed form—let alone one like this. This
analysis can be extended to some other shapes, and the computation has been
performed by Nathan Cilsby for self-avoiding walks.

3.4 Case Study IIIa: Short Walks

The final set of studies expressedly involve random walks. Our group, motivate
initially by multi-dimensional quadrature techniques for higher precision than
Monte Carlo can provide looked at the moments and densities of n-step walks
of unit size with uniform random angles [6, 8]. Intensive numeric-symbolic and
graphic computing lead to some striking new results for a century old problem.
Here we mention only two. Here pn is the radial density of the n-step walk
(pn(x) ∼ 2x

n e
−x2/n).
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The densities p3 (L) and p4 (R) and simulations.

We first discovered σ(x) := 3−x
1+x is an involution on [0, 3] ([0, 1] 7→ [1, 3]):

p3(x) =
4x

(3− x)(x+ 1)
p3(σ(x)). (1)

So 3
4p
′
3(0) = p3(3) =

√
3

2π , p(1) =∞. We then found and proved that:

p3(α) =
2
√

3α

π (3 + α2)
2F1

(
1

3
,

2

3
, 1

∣∣∣∣α2
(
9− α2

)2
(3 + α2)

3

)
=

2
√

3

π

α

AG3(3 + α2, 3 (1− α2)
2/3

)
(2)

where AG3 is the cubically convergent mean iteration (1991): AG3(a, b) :=

limn an = limn bn with an+1 = an+2bn
3 and bn+1 = 3

√
bn · a

2
n+anbn+b

2
n

3 , start-

ing with a0 = a, b0 = b. More surprisingly we ultimately get a modular closed
form:

p4(α) =
2

π2

√
16− α2

α
Re 3F2

(
1

2
,

1

2
,

1

2
,

5

6
,

7

6

∣∣∣∣
(
16− α2

)3
108α4

)
. (3)

Crucially, for Re s > −2 and s not an odd integer the corresponding moment
functions [6], W3,W4 have Meijer-G representations

W3(s) =
Γ (1 + s

2 )
√
π Γ (− s2 )

G21
33

(
1, 1, 1

1
2 ,−

s
2 ,−

s
2

∣∣∣∣14
)
, W4(s) =

2s

π

Γ (1 + s
2 )

Γ (− s2 )
G22

44

(
1, 1−s2 , 1, 1

1
2 −

s
2 ,−

s
2 ,−

s
2

∣∣∣∣1
)
.

3.5 Case Study IIIb: Number Walks

Our final studies concern representing base-b representations of real numbers as
planar walks. For simplicity we consider only binary or hex numbers and use two
bits for each direction: 0 = right, 1=up, 2=left, and 3=down [2]. This allows us
to compare the statistics of walks on any real number to those for pseudo-random
walks9 of the same length. For now we illustrate only the comparison between
the number of points visited by 10, 000 million-step pseudo-random walks and
for 10 trillion bits of π chopped up into 10, 000 walks.

9
Python uses the Mersenne Twister as the core generator. It has a period of 219937 − 1 ≈ 106002
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Number of points visited by 10, 000 million-step base-4 random walks (L) and π (R)

3.6 Case Study IIIc: Normality of Stoneham Numbers

A real constant α is b-normal if, given integer b ≥ 2, every m-long string of
digits appears in the base-b expansion of α with precisely the expected limiting
frequency 1/bm. Borel showed that almost all irrational real numbers are b-
normal in any base but no really explicit numbers (e.g., e, π

√
2) have been proven

normal. In our final study we shall detail the discovery of the next theorem.
The Stoneham numbers are defined by αb,c =

∑∞
n=1

1
cnbcn

.

Theorem 2 (Normality of Stoneham constants). For coprime pairs b ≥
2, c ≥ 2, the constant αb,c is b-normal, while if c < bc−1, αb,c is bc-nonnormal.

Since 3 < 23−1 = 4, α2,3 is 2-normal but 6-nonnormal ! This yields the first
concrete transcendental to be shown normal in one base yet abnormal in another.
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