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|. INTRODUCTION

e An age old question: What is a walk?
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|. INTRODUCTION

M‘wm &OM by T. McCracken

e An age old question: What is a walk?
e Also random walks, random migrations, random flights.

JMB/JW Short Random Walks



Abstract

Following Pearson in 1905, we study the expected distance and
density of a two-dimensional walk in the plane with n unit steps in
random directions — what Pearson called a random walk.

o | present recent results on the densities, p,, of n-step random
uniform random walks in the plane.

e For n > 7 asymptotic formulas first developed by Raleigh are
largely sufficient to describe the density.
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Abstract

Following Pearson in 1905, we study the expected distance and
density of a two-dimensional walk in the plane with n unit steps in
random directions — what Pearson called a random walk.

o | present recent results on the densities, p,, of n-step random
uniform random walks in the plane.

e For n > 7 asymptotic formulas first developed by Raleigh are
largely sufficient to describe the density.

e For 2 < n < 6 this is far from true, as first investigated by
Pearson.

e | shall give remarkable new hypergeometric closed forms for
p3, p4 and precise analytic information for larger n.
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Abstract

Following Pearson in 1905, we study the expected distance and
density of a two-dimensional walk in the plane with n unit steps in
random directions — what Pearson called a random walk.

o | present recent results on the densities, p,, of n-step random
uniform random walks in the plane.

e For n > 7 asymptotic formulas first developed by Raleigh are
largely sufficient to describe the density.

e For 2 < n < 6 this is far from true, as first investigated by
Pearson.

e | shall give remarkable new hypergeometric closed forms for
p3, p4 and precise analytic information for larger n.

e Heavy use is made of analytic continuation of the integral
(also of modern special functions (e.g., Meijer-G) and
computer algebra (CAS)).
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Intro

|. Random walk integrals — our starting point

For complex s

Definition

n S

Wa(s) = /[0 " >

k=1

62ﬂmki

da

e W, is analytic precisely for R8s > —2.
e Also, let W,, := W, (1) denote the expectation.

Simplest case (obvious for geometric reasons):

1
Wi(s) = / ’e2ﬂim}sdx =1.
0
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e Second simplest case:

1 1
Wy = / / |e*™% 4+ 2| dady = 7
0o Jo
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e Second simplest case:

1 1
Wy = / / |e*™% 4+ 2| dady = 7
0o Jo

e Mathematica 7 and Maple 13 ‘think’ the answer is 0.
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e Second simplest case:

1 1
Wy = / / |e*™% 4+ 2| dady = 7
0o Jo

e Mathematica 7 and Maple 13 ‘think’ the answer is 0.

e There is always a 1-dimension reduction
Wi(s) = /
[0,1]™

N /[;]’1]n1

n

da

6271':%2
1

k=

n—1 S
1+ Z Xk d(zy, ..., 1)
k=1
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e Second simplest case:

1 1
Wy = / / |e*™% 4+ 2| dady = 7
0o Jo

e Mathematica 7 and Maple 13 ‘think’ the answer is 0.

e There is always a 1-dimension reduction

Wa(s) = /
[0,1]"
— 1+ 627Tl'ki
/[;]’1]n1 kzl

e So Wy = 4f0 cos(rz)dr = 2.

27T£l2k’l dx

d(z1,...,2p-1)
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Intro

n > 3 highly nontrivial and n > 5 still not well understood.

e Similar problems often get much more difficult in five
dimensions and above — e.g., Bessel moments, Box integrals,
Ising integrals (work with Bailey, Broadhurst, Crandall, ...).
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Intro

n > 3 highly nontrivial and n > 5 still not well understood.

e Similar problems often get much more difficult in five
dimensions and above — e.g., Bessel moments, Box integrals,
Ising integrals (work with Bailey, Broadhurst, Crandall, ...).

e In fact, W5 =~ 2.0081618 was the best estimate we could
compute directly, notwithstanding the use of 256 cores at the
Lawrence Berkeley National Laboratory.

e We have a general program to develop symbolic numeric
techniques for multi-dimensional integrals.
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n > 3 highly nontrivial and n > 5 still not well understood.

e Similar problems often get much more difficult in five
dimensions and above — e.g., Bessel moments, Box integrals,
Ising integrals (work with Bailey, Broadhurst, Crandall, ...).

e In fact, W5 =~ 2.0081618 was the best estimate we could
compute directly, notwithstanding the use of 256 cores at the
Lawrence Berkeley National Laboratory.

e We have a general program to develop symbolic numeric
techniques for multi-dimensional integrals.

e Most results are written up! (FPSAC 2010, RAMA, Exp.
Math). See
www.carma.newcastle.edu.au/~jb616/walks.pdf
Www.carma.newcastle.edu.au/~jb616/walks2.pdf and
www.carma.newcastle.edu.au/~jb616/densities.pdf
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Intro

n > 3 highly nontrivial and n > 5 still not well understood.

e Similar problems often get much more difficult in five
dimensions and above — e.g., Bessel moments, Box integrals,
Ising integrals (work with Bailey, Broadhurst, Crandall, ...).

e In fact, W5 =~ 2.0081618 was the best estimate we could
compute directly, notwithstanding the use of 256 cores at the
Lawrence Berkeley National Laboratory.

e We have a general program to develop symbolic numeric
techniques for multi-dimensional integrals.

e Most results are written up! (FPSAC 2010, RAMA, Exp.
Math). See
www.carma.newcastle.edu.au/~jb616/walks.pdf
Www.carma.newcastle.edu.au/~jb616/walks2.pdf and
www.carma.newcastle.edu.au/~jb616/densities.pdf

When the facts change, | change my mind. What do you do, sir?
— John Maynard Keynes in Economist Dec 18, 1999.


www.carma.newcastle.edu.au/~jb616/walks.pdf
www.carma.newcastle.edu.au/~jb616/walks2.pdf
www.carma.newcastle.edu.au/~jb616/densities.pdf

Intro

One 1500-step ramble: a familiar picture
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Intro

One 1500-step ramble: a familiar picture

e 1D (and 3D) easy. Expectation of RMS distance is easy (y/n).
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Intro

One 1500-step ramble: a familiar picture

e 1D (and 3D) easy. Expectation of RMS distance is easy (y/n).
e 1D or 2D lattice: probability one of returning to the origin.
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Intro

1000 three-step rambles: a less familiar picture?
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Intro

A little history — from a vast literature

L: Pearson posed question R: Rayleigh gave large n asymptotics:
(Nature, 1905). pn(x) ~ 2%6_”"2/" (Nature, 1905).
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Intro

A little history — from a vast literature

L: Pearson posed question R: Rayleigh gave large n asymptotics:
(Nature, 1905). pn(x) ~ 27””6_”"2/" (Nature, 1905).

John William Strutt (Lord Rayleigh) (1842-1919): discoverer of
Argon, explained why sky is blue.
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Intro

A little history — from a vast literature

/ / ' \ =7y < K
L: Pearson posed question R: Rayleigh gave large n asymptotics:
(Nature, 1905). pn(x) ~ 27””6_”"2/" (Nature, 1905).

John William Strutt (Lord Rayleigh) (1842-1919): discoverer of
Argon, explained why sky is blue.

Karl Pearson (1857-1936): founded statistics, eugenicist & socialist,
changed name (C +— K), declined knighthood.
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Intro

A little history — from a vast literature

L: Pearson posed question R: Rayleigh gave large n asymptotics:
(Nature, 1905). pn(x) ~ 27””6_”"2/" (Nature, 1905).

John William Strutt (Lord Rayleigh) (1842-1919): discoverer of
Argon, explained why sky is blue.

The problem “is the same as that of the composition of n isoperiodic
vibrations of unit amplitude and phases distributed at random” he
studied in 1880 (diffusion equ’'n, Brownian motion, ...)

Karl Pearson (1857-1936): founded statistics, eugenicist & socialist,
changed name (C +— K), declined knighthood.
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Intro

A little history — from a vast literature

; ))/{

/ ‘P4
L: Pearson posed question R: Rayleigh gave large n asymptotics:
(Nature, 1905). pn(x) ~ 2%6_”"2/" (Nature, 1905).

John William Strutt (Lord Rayleigh) (1842-1919): discoverer of
Argon, explained why sky is blue.

The problem “is the same as that of the composition of n isoperiodic
vibrations of unit amplitude and phases distributed at random” he
studied in 1880 (diffusion equ’'n, Brownian motion, ...)

Karl Pearson (1857-1936): founded statistics, eugenicist & socialist,
changed name (C' +— K), declined knighthood.

e UNSW: Donovan and Nuyens, WWII cryptography.
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Intro

A little history — from a vast literature

; ))/{

/ ‘P4
L: Pearson posed question R: Rayleigh gave large n asymptotics:
(Nature, 1905). pn(x) ~ 2%6_”"2/" (Nature, 1905).

John William Strutt (Lord Rayleigh) (1842-1919): discoverer of
Argon, explained why sky is blue.

The problem “is the same as that of the composition of n isoperiodic
vibrations of unit amplitude and phases distributed at random” he
studied in 1880 (diffusion equ’'n, Brownian motion, ...)

Karl Pearson (1857-1936): founded statistics, eugenicist & socialist,
changed name (C' +— K), declined knighthood.

e UNSW: Donovan and Nuyens, WWII cryptography.

e Appear in quantum chemistry, in quantum physics as hexagonal and

diamond lattice integers, etc ...
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II. COMBINATORICS

REVERSE POLISH SAUSAGE
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Combinatorics

W, (k) at even values

Even values are easier (combinatorial — no square roots).

(k[of2]4 [6 [8 [10 |
126 |20 |70 |25
315|093 | 639 | 4653
428 | 256 | 2716 | 31504
5 | 45 | 545 | 7885 | 127905

Sy

SEEE
—~| [
\_/S\_/\_/

o
===

e Can get started by rapidly computing many values naively as
symbolic integrals.
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Combinatorics

W, (k) at even values

Even values are easier (combinatorial — no square roots).

|k [of2]4 |6 [8 [10 |
Wa(k) [1]2]6 |20 |70 | 252
Wi(k) | 1] 3] 15|93 | 639 | 4653
Wa(k) | 1|4 | 28 | 256 | 2716 | 31504
Ws(k) | 1|5 | 45 | 545 | 7885 | 127905

e Can get started by rapidly computing many values naively as
symbolic integrals.

e Observe that Wy(s) = (;2) for s > —1.
o MathWorld gives W,,(2) = n (trivial).
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Combinatorics

W, (k) at even values

Even values are easier (combinatorial — no square roots).

(k [of2]4 |6 [8 |10 |
Wak) [1]2]6 |20 |70 | 252
Wi(k) | 1] 3] 15|93 | 639 | 4653
Wa(k) | 1] 4|28 256 | 2716 | 31504
Ws(k) | 1|5 | 45 | 545 | 7885 | 127905

e Can get started by rapidly computing many values naively as
symbolic integrals.

Observe that Wh(s) = (;2) for s > —1.

MathWorld gives W;,(2) = n (trivial).

Entering 1,5,45,545 in the OIES now gives “The function
W5(2n) (see Borwein et al. reference for definition).”
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Combinatorics

W, (k) at odd integers

inlk=1 |k=3 |k=5 |k=7 |k=9 |
2 [ 1.27324 | 3.39531 | 10.8650 | 37.2514 | 132.449
1.57460 | 6.45168 | 36.7052 | 241.544 | 1714.62
1.79909 | 10.1207 | 82.6515 | 822.273 | 9169.62
2.00816 | 14.2896 | 152.316 | 2037.14 | 31393.1
2.19386 | 18.9133 | 248.759 | 4186.19 | 82718.9

O ~W
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Combinatorics

W, (k) at odd integers

inlk=1 |k=3 |k=5 |k=7 |k=9 |
2 [ 1.27324 | 3.39531 | 10.8650 | 37.2514 | 132.449
1.57460 | 6.45168 | 36.7052 | 241.544 | 1714.62
1.79909 | 10.1207 | 82.6515 | 822.273 | 9169.62
2.00816 | 14.2896 | 152.316 | 2037.14 | 31393.1
2.19386 | 18.9133 | 248.759 | 4186.19 | 82718.9

O ~W

Memorize this number!
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Combinatorics

W, (k) at odd integers

(k=1 |k=3 |k=5 [k=T7 [k=9
1.27324 | 3.39531 | 10.8650 | 37.2514 [ 132.449
1.57460 | 6.45168 | 36.7052 | 241.544 | 1714.62
1.79909 | 10.1207 | 82.6515 | 822.273 | 9169.62
2.00816 | 14.2896 | 152.316 | 2037.14 | 31393.1
2.19386 | 18.9133 | 248.759 | 4186.19 | 82718.9

OO AWIN|S

Memorize this number!

During the three years which | spent at Cambridge my time was wasted, as far as the academical
studies were concerned, as completely as at Edinburgh and at school. | attempted mathematics,
and even went during the summer of 1828 with a private tutor (a very dull man) to Barmouth, but
| got on very slowly. The work was repugnant to me, chiefly from my not being able to see any
meaning in the early steps in algebra. This impatience was very foolish, and in after years | have
deeply regretted that | did not proceed far enough at least to understand something of the great
leading principles of mathematics, for men thus endowed seem to have an extra sense. —

Autobiography of Charles Darwin
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Combinatorics
Resolution at even values

e Even formula counts n-letter abelian squares xm(z) of length
2k (Shallit-Richmond (2008) give asymptotics):

Wa@k) = 3 (al,.]ia)Q' (1)

a1+...+an==k
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Combinatorics
Resolution at even values

e Even formula counts n-letter abelian squares xm(z) of length
2k (Shallit-Richmond (2008) give asymptotics):

s 2t

e Known to satisfy convolutions:
k k 2
Worins(2) = 3 (5) Wi~ ), s

J=0

Wa(2k) = 35 () CEN),60)* () = 2, (5 S, CO ) (0)* ()
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Combinatorics
Resolution at even values

e Even formula counts n-letter abelian squares xm(z) of length
2k (Shallit-Richmond (2008) give asymptotics):

s 2t

e Known to satisfy convolutions:
k

k 2
Warns () = 3 () W (2000200 = ), 0
j=0
Ws(2k) = 5, ()" CED) S0 () = () S 9 () ()
e and recursions such as:
(k+2)2Ws3(2k+4)— (10,2 +30k+23) W5 (2k+2)4+9(k+1)>W3(2k) = 0.
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n+1
2

o W, satisfies an |1 |-term recursion and | 242 | distinct

iterated sums:

Il
w
[
—
S~—
3
TN
—_
S >~
)
~_
ol
NgE
(=)
N
> 3
N~
/l\\
O —
N~
>
ol
YRS
S
"
[V}
7N\
&
N~

JMB/JW Short Random Walks



o W, satisfies an | &t

iterated sums:

|-term recursion and L%HJ distinct

() 0 ()50

7=0

S (SO S0

Jj=0

e Recursion gives better approximations than many methods of
numerical integration for many values of s.
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o W, satisfies an | &t

iterated sums:

w =2 ()5 50 6) 500

7=0

S (SO S0

Jj=0

|-term recursion and L”THJ distinct

e Recursion gives better approximations than many methods of
numerical integration for many values of s.

e Tanh-sinh (doubly-exponential) quadrature works well for W3
but not so well for Wy =~ 1.79909248.
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o W, satisfies an | &t

iterated sums:

w = () () 206 20

7=0

S (SO S0

Jj=0

|-term recursion and L”THJ distinct

e Recursion gives better approximations than many methods of
numerical integration for many values of s.

e Tanh-sinh (doubly-exponential) quadrature works well for W3
but not so well for Wy =~ 1.79909248.

e Quasi-Monte Carlo was not very accurate.
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Analysis

[11. ANALYSIS

Visualizing Wy in the complex plane

——
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Analysis

Carlson’s theorem: from discrete to continuous

Theorem (Carlson (1914, PhD) )

If f(2) is analytic for R(z) > 0, its growth on the imaginary axis is
bounded by e, |c| < m, and

then f(z) = 0 identically.

e sin(mz) does not satisfy the conditions of the theorem, as it
grows like €™ on the imaginary axis.
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Analysis

Carlson’s theorem: from discrete to continuous

Theorem (Carlson (1914, PhD) )

If f(2) is analytic for R(z) > 0, its growth on the imaginary axis is
bounded by e, |c| < m, and

then f(z) = 0 identically.

e sin(mz) does not satisfy the conditions of the theorem, as it
grows like €™ on the imaginary axis.

e W, (s) satisfies the conditions of the theorem (and is in fact
analytic for R(s) > —2 when n > 2).
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Analysis

Carlson’s theorem: from discrete to continuous

Theorem (Carlson (1914, PhD) )

If f(2) is analytic for R(z) > 0, its growth on the imaginary axis is
bounded by e, |c| < m, and

then f(z) = 0 identically.

e sin(mz) does not satisfy the conditions of the theorem, as it
grows like €™ on the imaginary axis.

e W, (s) satisfies the conditions of the theorem (and is in fact
analytic for R(s) > —2 when n > 2).

e There is a lovely 1941 proof by Selberg of the bounded case.
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Analysis
Analytic continuation

e So integer recurrences yield complex functional equations. Viz

(5+4)*W3(s4+4)—2(552+305+46) W3 (s4+2)+9(s4+2)*W3(s) = 0.
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Analysis
Analytic continuation

e So integer recurrences yield complex functional equations. Viz
(5+4)*W3(s4+4)—2(552+305+46) W3 (s4+2)+9(s4+2)*W3(s) = 0.

e This gives analytic continuations of the ramble integrals to
the complex plane, with poles at certain negative integers
(likewise for all n).

“For it is easier to supply the proof when we have previously acquired, by
the method [of mechanical theorems|, some knowledge of the questions
than it is to find it without any previous knowledge. — Archimedes.
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Analysis
Analytic continuation

e So integer recurrences yield complex functional equations. Viz
(5+4)*W3(s4+4)—2(552+305+46) W3 (s4+2)+9(s4+2)*W3(s) = 0.

e This gives analytic continuations of the ramble integrals to
the complex plane, with poles at certain negative integers
(likewise for all n).

e Ws(s) has a simple pole at —2 with residue and other

_2
) : . . Vi’
simple poles at —2k with residues a rational multiple of Res_s.

“For it is easier to supply the proof when we have previously acquired, by
the method [of mechanical theorems|, some knowledge of the questions
than it is to find it without any previous knowledge. — Archimedes.
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Odd dimensions look like 3

Ws(s) on [—6, %]

3

e JW proved zeroes near to but not at integers: W3(—2n — 1) | 0.

JMB/JW Short Random Walks




Odd dimensions look like 3

Ws(s) on [—6, %]

3

e JW proved zeroes near to but not at integers: W3(—2n — 1) | 0.
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Analysis

Some even dimensions look more like 4

W

L: Wy(s) on [—6,1/2]. R: W5 on [—6,2] (T), Ws on [—6, 2] (B).
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Analysis

Some even dimensions look more like 4

0 R R

L: Wy(s) on [—6,1/2]. R: W5 on [—6,2] (T), Ws on [—6, 2] (B).
e The functional equation (with double poles) for n =4 is
(s +4)Wy(s+4) — 4(s+3)(5s% + 30s + 48)Wy(s + 2)
+ 64(s +2)3Wy(s) =0
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Analysis

Some even dimensions look more like 4

0 R R

L: Wy(s) on [—6,1/2]. R: W5 on [—6,2] (T), Ws on [—6, 2] (B).
e The functional equation (with double poles) for n =4 is
(s +4)Wy(s+4) — 4(s+3)(5s% + 30s + 48)Wy(s + 2)
+ 64(s +2)3Wy(s) =0

e There are (infinitely many) multiple poles if and only if 4|n.
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Analysis

Some even dimensions look more like 4

0 R R

L: Wy(s) on [—6,1/2]. R: W5 on [—6,2] (T), Ws on [—6, 2] (B).
e The functional equation (with double poles) for n =4 is
(s+4)°Wi(s+4) — 4(s+3)(55° + 30s + 48)Wa(s + 2)
+ 64(s+2)°Wy(s) =0
e There are (infinitely many) multiple poles if and only if 4|n.
e Why is Wy positive on R?



A discovery demystified

In particular, we had shown that

Waek) = Y ( k >2:3F2<1/2,—k,—k:‘4>

ai,as,a 1,1
a1+astas=Fk 1,d2,043 )

=:V3(2k)
where , I, is the generalized hypergeometric function. We
discovered numerically that: V3(1) = 1.57459 — .12602652i

Theorem (Real part)
For all integers k we have Ws(k) = R(Va(k)). J
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A discovery demystified

In particular, we had shown that

Eoo\? 1/2,—k, —k
2k) = = 3F: ’ ’ 4
Ws(2k) Z (al,az,a3> ° 2< 1,1 ‘ >

a1+az+az=k

—:V3(2k)

where , I, is the generalized hypergeometric function. We
discovered numerically that: V3(1) = 1.57459 — .12602652i
Theorem (Real part)

For all integers k we have Ws(k) = R(Va(k)). J

We have a habit in writing articles published in scientific journals to make
the work as finished as possible, to cover up all the tracks, to not worry
about the blind alleys or describe how you had the wrong idea first.

... So there isn't any place to publish, in a dignified manner, what you
actually did in order to get to do the work. — Richard Feynman (Nobel
acceptance 1966)



Proof with hindsight

k = 1. From a dimension reduction, and elementary manipulations,

1 r1
Wg(l) — /(; /O ‘1+€27rzx+e27rzy|d$dy

- /1 /1 V4sin(2rt) sin(27(s + t/2)) — 2 cos(2xt) + 3 dsdt.
0 0
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Proof with hindsight

k = 1. From a dimension reduction, and elementary manipulations,

1 r1
Wg(l) — /(; /O ‘1+62wzx+e2ﬁzy|d$dy

- /1 /1 V4sin(2rt) sin(27(s + t/2)) — 2 cos(2xt) + 3 dsdt.
0 0

e Let s+1¢/2 — s, and use periodicity of the integrand, to obtain

W3 = /0 1 { /0 1 /4 cos(2ms) sin(nt) — 2 cos(27t) + 3 ds} dt.

The inner integral can now be computed because

/OmdzszQ/%)
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Analysis
Proof continued

Here E(x) is the elliptic integral of the second kind:

E(z) := /(:/2 \/1 — 22sin?(t) da.

o After simplification,

/2 sin
= [ st 0z (RS a
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Analysis
Proof continued

Here E(x) is the elliptic integral of the second kind:

E(z) := /(:/2 \/1 — 22sin?(t) da.

o After simplification,

4

w/2
W3 = —2/0 (2sin(t) + 1)E (

T 1 + 2sin(t)

2,/2sin(t) ) y

Now we recall Jacobi's imaginary transform,

(z+1)E (j\ﬁ) — R(2E() - (1 - 2)K(2)

and substitute. Here K (x) is the elliptic integral of the first kind.
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Analysis
Proof continued

Here E(x) is the elliptic integral of the second kind:

E(z) := /(:/2 \/1 — 22sin?(t) da.

o After simplification,

4

w/2
W3 = —2/0 (2sin(t) + 1)E (

T 1 + 2sin(t)

2,/2sin(t) > y

Now we recall Jacobi's imaginary transform,

(@ +1)E ( 2V ) — RQ2E(z) — (1 - 2%)K ()
z+1
and substitute. Here K (x) is the elliptic integral of the first kind.
e This is where R originates:
e eg., Va(—1) =0.896441 — 0.517560:, W3(—1) = 0.896441.
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Analysis
Proof completed

Using the integral definition of K and E, we can express W3 as a
double integral involving only sin. Set

w/2 /2 _ 2 .9 . 9
4 / / 1+ a®sin?(t) — 2a?sin?(t) sin?(r) dedr,
7T V1 — a?sin?(t) sin?(r)

so that
R(Q23(2)) = Wa(1). (2)
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Analysis
Proof completed

Using the integral definition of K and E, we can express W3 as a
double integral involving only sin. Set

w/2 /2 _ 2 .9 . 9
4 / / 1+ a®sin?(t) — 2a?sin?(t) sin?(r) dedr,
7T V1 — a?sin?(t) sin?(r)

so that
R(Q23(2)) = Wa(1). (2)

e Expand using the binomial theorem, evaluate the integral
term by term for small a — where life is easier — and use
analytic continuation to deduce

Q3(2) = V3(1). (3)
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Analysis
Proof completed

Using the integral definition of K and E, we can express W3 as a
double integral involving only sin. Set

w/2 /2 _ 2 .9 . 9
4 / / 1+ a®sin?(t) — 2a?sin?(t) sin?(r) dedr,
7T V1 — a?sin?(t) sin?(r)

so that
R(Q23(2)) = Wa(1). (2)

e Expand using the binomial theorem, evaluate the integral
term by term for small a — where life is easier — and use
analytic continuation to deduce

Q3(2) = V3(1). (3)

e k= —1. A similar (and easier) proof obtains for W3(—1).
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Analysis
Proof completed

Using the integral definition of K and E, we can express W3 as a
double integral involving only sin. Set

/2 m)2 — 2a?sin?(t) sin®
[ [ i),
. V1 — a?sin?(t) sin?(r)

so that
R(Q23(2)) = Wa(1). (2)

e Expand using the binomial theorem, evaluate the integral
term by term for small a — where life is easier — and use
analytic continuation to deduce

Q3(2) = V3(1). (3)

e k= —1. A similar (and easier) proof obtains for W3(—1).
e As both sides satisfy the same 2-term recursion (computer
provable), we are done. QED
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Analysis

A pictorial ‘proof’ shows Carlson’s theorem does not apply

Ws(s) — RV3(s) on [0,12]

202

204
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Analysis

A pictorial ‘proof’ shows Carlson’s theorem does not apply

Ws(s) — RV3(s) on [0,12]

202

204

e This was hard to draw when discovered, as at the time we had

no good closed form for W3. For s # —3,—5,—7,... , we
now have
35+3/2 1 1 542 542 54214
W- — - - F 20 2 2 .
3(8) = =57 ﬁ<5+2’3+2) 2 1,558 |4
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Analysis
Closed forms

e We then confirmed 175 digits of

Ws5(1) ~ 1.57459723755189365749 . . .
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Analysis
Closed forms

e We then confirmed 175 digits of
Ws5(1) =~ 1.57459723755189365749 . . .

e Armed with a knowledge of elliptic integrals:

16472 3T(1)0 6/m2
W0 = Fg g =0
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Analysis
Closed forms

e We then confirmed 175 digits of
Ws5(1) =~ 1.57459723755189365749 . . .

e Armed with a knowledge of elliptic integrals:

1647 6 6/m>
Ws(1) = ré)ﬁ + 8\}7)74 W3(—1)+—W3/( 7
3046 23 1
Wa(—1) = o = 58 (3)
Here 5(s) := B(s,s) = %

e Obtained via singular values of the elliptic integral and
Legendre's identity.
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Probability

IV. PROBABILITY

It can be readily shown that

©

P () = f oIt [ 1" oy (1.2)

o

where J {y) is the Bessel function of the first kind of order k. Pearson tabu-
lated F(r)/2 for n 7, for r renging between O wd n {all that is nec-
essary). He used a graphical procedure in getting his results, and remarked that
for n =5 the function a‘ppeal‘ed to be constant over the ramge between 0 and 1.
He states; ‘From =0 to r=L (here 1) the graphical construction, however
carefully reinvestigated, did not permit of our considering the curve to be anything

but a straight line. . . . Even if it is not absolutely true, it exemplifies the

extraordinery power of such integrals of J products to give extremely close ap-

H.E. Fettis (1963)

u .
and more recently Scheid (Reference [5]) gave results for lower values of n (2 to 6) On a []‘906] ConJeCture

. "
obteined by a Monte Certo procedure. lhe function Fy(r) was computed for r <1 of Pearson.
on the Remington-Rand 1103 computer. The results are given in Table 1, and although

proximations to such simple forms as horizontal lines.'

Greenwood and Duncan (Reference (4]) later extended Pearson’ s work for n=6(1)24,

the function is not constant, it differs from 1/3 by less than 0034 in this range.

This settles Pearson's conjecture. The table given on page 51 may help investiga-

tors of Monte Carle techniques to compare their results with the known values,
JMB/ Short Random Walks



Probability
Alternative representations

In 1906 the influential Leiden mathematician J.C. Kluyver
(1860-1932) published a fundamental Bessel representation for the
cumulative radial distribution function (P,,) and density (p,,) of the
distance after n-steps:

P,(t)=t /000 Ji(zt) Jy (x) dx

pult) =t /0 T o) S @)z de (0> 4) (4)

where J,,(z) is the Bessel J function of the first kind (see Watson
(1932, §49); 3-dim walks are elementary).

e From (6) below, we find

pn(1) = Res_a (Wi41) (n=1,2,...). (5)
o As po(a) = m/iT’ we check in Maple that the following

code returns R = 2/(\/3m) symbolically:

R:=identify(evalf[20] (int (BesselJ(0,x) "3*x,x=0..infinity)))



Probability

A Bessel integral for W,
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Probability

A Bessel integral for W,

e Also P,(1) = %)HH = ﬁ (Pearson'’s original question).

+
—
3
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Probability

A Bessel integral for W,

e Also P,(1) = % = n+1 (Pearson'’s original question).

 Broadhurst used (4) to show for 2k > s > —% that

L1+35) [ 1d\*
Wn(s)=2s+1—kM / g2hms—l <—d> Jo(z)d,
0

L'(k—3) x dx
(6)
a useful oscillatory 1-dim integral (used below). Thence
d
/ Jo(a)dz, Wi —n/ Ty () Jo(x 1?‘”.
- (7)
l\ / e Integrands for Wy(—1) (blue) and

| Y Wa4(1) (red) on [m, 47] from (7).

P
g 5 ' 83 .
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Probability

The densities for n = 3,4 are modular

Let o(x) := i’jr—i Then o is an involution on [0, 3] sending [0, 1] to [1, 3]:
ps(z) = (3_93%]93(0(%» (8)

So %pg(O) =p3(3) = 2—‘/3,]3(1) = 00. We found:

The densities p3 (L) and ps (R)

Y
r{\ o /

oY
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Probability

The densities for n = 3,4 are modular

Let o(x) := i’jr—i Then o is an involution on [0, 3] sending [0, 1] to [1, 3]:
Pi(@) = Gy o)) ®)

So 2p4(0) = p3(3) = T@,p(l) = 0o. We found:
pale) = % 2 (;13 M) N 277£AG3(3+042,:(1 “aayrsy O

where AGg is the cubically convergent mean iteration (1991):

u2+ab+b2)1/3

®(r =
The densities p3 (L) and ps (R)

AG3(a,b) :=

a+ 2b
3

Y
r{\ o /

oY
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Probability

Formula for the ‘shark-fin' p4 (stimulated by S. Robins)

We ultimately deduce on 2 < o < 4 a hyper-closed form:

2 V16— a2 111116 - a?)’
P 6 @ 3F2<2 2 2( a) . (10)

pa(a) = 507
26 108 a4

2 o

)

) < p4 from (10) vs 18-terms of empirical
| power series
_ 23 26 _
v Proves py4(2) = W L) "=
VB (1) ~ 0.494233 <

e Empirically, quite marvelously, we
found — and proved by a subtle use of
distributional Mellin transforms — that
on [0,2] as well:
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Probability

Formula for the ‘shark-fin' p4 (stimulated by S. Robins)

We ultimately deduce on 2 < o < 4 a hyper-closed form:

2 V16— a2 111116 - a?)’
P 6 @ 3F2<2 2 2( a) . (10)

pa(a) = 527
26 108 a4

2 o

)

< p4 from (10) vs 18-terms of empirical
1 power series
_ 23 26 _
v Proves py4(2) = W L) "=
VB (1) ~ 0.494233 <

e Empirically, quite marvelously, we
found — and proved by a subtle use of
distributional Mellin transforms — that
on [0,2] as well:

(16 - aQ) > (11)

Discovering this R brought us full circle.
JMB/JW Short Random Walks
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Probability

The densities for 5 < n < 8 (and large n approximation)

Lo 035 7\
03sf ~ /
D 030 /
030fF N / \
\ 3\
y g/ A\
02sF / N 025 y A\
: \
P \ p \
00f A\ 020 y A\
/ A \\
ok 015 \
P 3
1 A
010F 0.10
00sF 005
1 2 3 4 5 1 2 3 4 5 6
L 030
030fF 4 N\ 7
// v // N
4 A\ 025fF p A
[ p 3 y A\
N
R 020 “\
020F ) )
3\ 3\
3\ )
0150 \ 01sf A
N 3
o100 \ 010F
00sf 005
1 2 3 4 5 6 7 2 4 6 8
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Probability

The densities for 5 < n < 8 (and large n approximation)

Lo 035 N\
03k ~ ¥
N 030 .
030f N /7 N\
y N 025 / 3

0250 y N /1 R

/, \\ 020 y \\
020f N ¥, \

/ N \\
ossf 015 \
p 3
010F 0.10
005, 005
1 2 3 4 5 1 2 3 4 5 6

e Both poy, 44, Pant5 are n-times continuously differentiable for z > 0
2 i, - " oo - "
(pn(x) ~ 2,,—1%*“5 /m, So “four is small” but “eight is large.
L 030
0.30F 4 N //
/ \\ 025f / N
0251 p, \\ // \\
020F \\ 020 \\
01sf \\ 015¢ \\\
0.10F \\ 0101
005} 005,
I P PR T S 2 3 B s
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Probability
An elliptic integral harvest

Indeed, PSLQ found various representations including:

o o (1355553 AN
W 1 — —F ) b b b b b 1 _2 F b ) b b b b 1
1) O 899911 el L1
o] n\ 6
EZ A(n 4+ 1)* —144(n + 1)® +108(n + 1)2 = 30(n + 1) + 3 (*")
4 = (n+1)3 46n
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Probability
An elliptic integral harvest

Indeed, PSLQ found various representations including:

97 7333111 5111111
W4(1) — _7F6 432 22222212121 —27T7F6 41212121212121
RE) 47ty b
6

>N 64(n + 1)1 — 144(n + 1)3 +108(n +1)2 = 30(n + 1) +3 (°)
z:: (n+1)3 46n "

Proofs rely on work by Nesterenko and by Zudilin. Inter alia:

1
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Probability
An elliptic integral harvest

Indeed, PSLQ found various representations including:

97 7333111 5111111
W4(1) — _7F6 432 22222212121 —27T7F6 41212121212121
RE) 47ty b
6

>N 64(n + 1)1 — 144(n + 1)3 +108(n +1)2 = 30(n + 1) +3 (°)
z:: (n+1)3 46n "

Proofs rely on work by Nesterenko and by Zudilin. Inter alia:

1
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Probability
An elliptic integral harvest

Indeed, PSLQ found various representations including:

97 7333111 5111111
Wil = T plT222222)) _9 p (14222222222
4(1) 470\ 2929911 el L1
0o n\ 6
Ty 64(n+ 1)* — 144(n + 1) +108(n + 1)2 = 30(n + 1) + 3 (*")
1 3 6n °
14 (n+1) 4
e Proofs rely on work by Nesterenko and by Zudilin. Inter alia:
1 1 a4 5111111
2 Kdek:/K’dek:(—> Fo[ P22z,
\/O ( ) 0 ( ) 2 e %7171a1,1,1
e We also deduce that (K’,El are complementary integrals)

8 R 96 1, ’
Wy(-1) = Trig/o K*(k)dk W4(1) = 7773/0 E' (k)K" (k)dk — 8 W4(—1).
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Probability
An elliptic integral harvest

Indeed, PSLQ found various representations including:

9r 7333111 5111111
Wil = T plT222222)) _9 p (14222222222
4(1) 170\ 8990911 TR L1,

0o n\ 6
Ty 64(n+ 1)* — 144(n + 1) +108(n + 1)2 = 30(n + 1) + 3 (*")
1 3 6n °

4 = (n+1) 4
e Proofs rely on work by Nesterenko and by Zudilin. Inter alia:
1 1 4 5111111

2/ K(k)Qdk:/ K’(k)Qdk:(f> 72 B A I

0 0 2 Zvlvlal,l,l
e We also deduce that (K’,El are complementary integrals)

8 R 96 1, ’
Wy(-1) = Trig/() K*(k)dk W4(1) = 7773/0 E' (k)K" (k)dk — 8 W4(—1).

Much else about moments of products of elliptic integrals has
been discovered (with massive 1600 relation PSLQ runs)
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Open Problems
V. Open problems (Mahler measures, )

Tantalizing parallels link the ODE methods we used for p4 to those
for the logarithmic Mahler measure of a polynomial P in n-space:

1 1 1 A }
M(P) ::/ / / log\P (627”91,"‘ 7627r7,9n)’d91_“d9n.
0 JO 0
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Open Problems
V. Open problems (Mahler measures, )

Tantalizing parallels link the ODE methods we used for p4 to those
for the logarithmic Mahler measure of a polynomial P in n-space:

1 1 1 A }
,U(P) ::/ / / log\P (627”91,"‘ 7627r7,9n)’d91_“d9n.
0 JO 0

Indeed
n—1
m (1 +> ;pk> =W, (0). (12)
k=1

which we have evaluated in for n = 3 and n = 4 respectively in
terms of log-sine integrals.
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Open Problems
V. Open problems (Mahler measures, )

Tantalizing parallels link the ODE methods we used for p4 to those
for the logarithmic Mahler measure of a polynomial P in n-space:

1 1 1 A }
,U(P) ::/ / / log\P (eQﬂ"Lel"'. 7627r7,9n)’d91_“d9n.
0 JO 0

Indeed
n—1
m (1 +> ;pk> =W, (0). (12)
k=1

which we have evaluated in for n = 3 and n = 4 respectively in
terms of log-sine integrals.
e 1(P) turns out to be an example of a period. When n =1
and P has integer coefficients exp(u(P)) is an algebraic
integer. In several dimensions life is harder.
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Open Problems
V. Open problems (Mahler measures, )

Tantalizing parallels link the ODE methods we used for p4 to those
for the logarithmic Mahler measure of a polynomial P in n-space:

1 1 1 A }
,U(P) ::/ / / log\P (eQﬂ"Lel"'. 7627r7,9n)’d91_“d9n.
0 JO 0

Indeed
n—1
m (1 +> xk> =W, (0). (12)
k=1

which we have evaluated in for n = 3 and n = 4 respectively in
terms of log-sine integrals.

e 1(P) turns out to be an example of a period. When n =1
and P has integer coefficients exp(u(P)) is an algebraic
integer. In several dimensions life is harder.

e There are remarkable recent results — many more discovered
than proven — expressing u(P) arithmetically.
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Open Problems

Open problems (Mahler measures, Il)

p(l+a+y) = Ly(—1) = L CI1(5) (Smyth).
,u(l~|—x+y~|—z)—14§( 2) = T <3 (Smyth).

\/
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Open Problems

Open problems (Mahler measures, Il)

o u(l+z+y)=Ly(—1) =L CL(Z) (Smyth).
o p(l4+z+y+z2)=14¢(-2) = T <3 (Smyth).

T2

e (12) recaptures both Smyth's results.
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Open Problems

Open problems (Mahler measures, Il)

o p(1+z+y)=Ly(—1) = LCI(5) (Smyth).
o p(1+z+y+2) =14 (-2) = 43 (Smyth).
e (12) recaptures both Smyth's results.
e Denninger's 1997 conjecture, checked to over 50 places, is

15
M(1+x+y+1/x+1/y)l4—LE( )

— an L-series value for an elliptic curve E with conductor 15.
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Open Problems

Open problems (Mahler measures, Il)

o p(1+z+y)=Ly(—1) = LCI(5) (Smyth).
o p(1+z+y+2) =14 (-2) = 43 (Smyth).
e (12) recaptures both Smyth's results.
e Denninger's 1997 conjecture, checked to over 50 places, is

15
M(1+x+y+1/x+1/y)l4—LE( )

— an L-series value for an elliptic curve E with conductor 15.
e Similarly for (12) (n = 5,6) conjectures of Villegas become:

W.(0) = (ZW)S/Q/ (PP e™™) + 0’ (e (e )} 3 dt

wio = (E) [ e e e e

2
and Dedekind's 7 is 1)(q) := ¢"/?* 37°° _ (—1)"gq"3n+D/4,



Open Problems

Open problems (n = 5)

e The functional equation for Wj is:

225(s + 4)% (s + 2)2Ws(s) = —(35(s + 5)% + 42(s + 5)% + 3)Ws (s + 4)
+ (s +6) " Ws(s+6) + (s + 49 (259(s + 4)° + 104) Wi (s + 2).

Q. Is there a hyper-closed form for W5(F1) ?



Open Problems

Open problems (n = 5)

e The functional equation for Wj is:

225(s + 4)% (s + 2)2Ws(s) = —(35(s + 5)% + 42(s + 5)% + 3)Ws (s + 4)
+ (s +6) " Ws(s+6) + (s + 49 (259(s + 4)° + 104) Wi (s + 2).

e From here we deduce the first two poles — and so all — are
simple since

lim_(s +2)7 W (s) = 24% (285 W5 (0) — 201 W (2) + 16 W (4)) = 0
5——
4

595 (5Ws5(0) — W5(2)) = 0.

. 2 o
i (s + 4)°Ws (s) =

Q. Is there a hyper-closed form for W5(F1) ?



Open Problems

Open problems (n = 5)

e The functional equation for Wj is:

225(s + 4)% (s + 2)2Ws(s) = —(35(s + 5)% + 42(s + 5)% + 3)Ws (s + 4)
+ (s +6) " Ws(s+6) + (s + 49 (259(s + 4)° + 104) Wi (s + 2).

e From here we deduce the first two poles — and so all — are
simple since

lim (s +2)*Ws(s) = 24% (285 W5 (0) — 201 W5(2) + 16 W5 (4)) = 0
s——

. 2 _ =
i (s + 4)°Ws (s) =

e We stumbled upon

Q. Is there a hyper-closed form for W5(F1) ?
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Open Problems

Open problems (n = 5)

e The functional equation for Wj is:

225(s + 4)% (s + 2)2Ws(s) = —(35(s + 5)% + 42(s + 5)% + 3)Ws (s + 4)
+ (s +6) " Ws(s+6) + (s + 49 (259(s + 4)° + 104) Wi (s + 2).

e From here we deduce the first two poles — and so all — are
simple since

lim (s +2)*Ws(s) = 24% (285 W5 (0) — 201 W5(2) + 16 W5 (4)) = 0
s——

. 2 _ =
i (s + 4)°Ws (s) =

e We stumbled upon

Q. Is there a hyper-closed form for W5(F1) ?
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Open Problems

Thank you

My younger collaborators
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Open Problems

Thank you

Conclusion. We continue to be fascinated by this blend of
combinatorics, number theory, analysis, probability, and differential
equations. all tied toeether with exnerimental mathematics.

My younger collaborators
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